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A Supplementary material

A.1 Proofs for results in the main text

Here we provide the proofs which were omitted in the main text due to the page limitation.

Proof of Proposition 3.3. Since we assume supx
√
k(x, x) = supx ‖φ(x)‖H = c <∞, we can apply a Hilbert space

version of Hoeffding’s inequality (Pinelis, 1992, 1994) to obtain the following concentration bounds (Rosasco
et al., 2010; Schneider, 2016). For every ε1, ε2 > 0, we have

Pr [‖µP − µ̂P‖H ≤ ε1] ≥ 1− 2 exp

(
−Nε

2
1

8c2

)
(7)

as well as

Pr
[∥∥∥Cρ − Ĉρ∥∥∥ ≤ ε2] ≥ 1− 2 exp

(
−Mε22

8c4

)
, (8)

where the estimates are based on N and M i.i.d. samples from P and ρ, respectively. Note that the bound (8)
is first obtained in Hilbert–Schmidt norm and based on the fact the the operator norm is aways dominated by
the Hilbert–Schmidt norm. We assume that (7) and (8) hold independently. We remark that every alternative
concentration bound for the above estimation errors can be used in the same way below, leading to analogue
results.

For every fixed α > 0 and corresponding solution to the regularized empirical and analytical problem (û =

(Ĉρ + αIH)−1µ̂P and uα = (Cρ + αIH)−1µP, respectively), we have

‖û− uα‖H =
∥∥∥(Ĉρ + αIH)−1µ̂P − (Cρ + αIH)−1µP

∥∥∥
H

≤
∥∥∥(Ĉρ + αIH)−1µ̂P − (Cρ + αIH)−1µ̂P

∥∥∥
H︸ ︷︷ ︸

(?)

+
∥∥(Cρ + αIH)−1µ̂P − (Cρ + αIH)−1µP

∥∥
H︸ ︷︷ ︸

(??)

.

Using the fact that Ĉρ and Cρ are both self-adjoint and positive, we have
∥∥∥(Ĉρ + αIH)−1

∥∥∥ ≤ 1
α as well as∥∥(Cρ + αIH)−1

∥∥ ≤ 1
α . Together with the identity A−1−B−1 = A−1(B−A)B−1 for all bounded linear operators

A and B, we get ∥∥∥(Ĉρ + αIH)−1 − (Cρ + αIH)−1
∥∥∥ ≤ 1

α2

∥∥∥Ĉρ − Cρ∥∥∥ .
We use the above inequality to bound the term (?) as

(?) ≤ 1

α2

∥∥∥Ĉρ − Cρ∥∥∥ ‖µ̂P‖H ≤
ε2
α2

(‖µP‖H + ε1)

and the term (??) as

(??) ≤
∥∥(Cρ + αIH)−1

∥∥ ‖µP − µ̂P‖H ≤
ε1
α
.

Both bounds hold simultaneously with probability of at least[
1− 2 exp

(
−Nε

2
1

8c2

)][
1− 2 exp

(
−Mε22

8c4

)]
as given by (7) and (8). Note that this implies ‖û− uα‖H ≤

ε2
α2 (‖µP‖H + ε1) + ε1

α with the same probability by
the inequalities above. We now express the resulting bound in terms of sample sizes M and N . Since the above
concentation bounds hold for arbitrary ε1, ε2 > 0, we can fix coefficients 0 < a < 1/2 and 0 < b < 1/2 and set
ε1 := N−a and ε2 := M−b, resulting in

‖û− uα‖H ≤
M−2b

α2
(‖µP‖H +N−2a) +

N−2a

α
.



Ingmar Schuster, Mattes Mollenhauer, Stefan Klus, Krikamol Muandet

with a probability of at least [
1− 2 exp

(
−N

1−2a

8c2

)][
1− 2 exp

(
−M

1−2b

8c4

)]
. �

A.2 Numerical representation of ÂY |X based on training data

In what follows, we derive a closed form expression for ÂY |X = (ĈZ + α′IF )−1ÛY |X which can be approximated
numerically given a fixed input x′ ∈ X.

We adopt the so-called feature matrix notation Muandet et al. (2017); Song et al. (2009) and define Φ =
[k(x1, ·), . . . , k(xN , ·)] and Ψ = [`(y1, ·), . . . , `(yN , ·)]. We express the Gram matrix for X as KX = Φ>Φ. Then
we have the standard estimates CYX ≈ ĈYX = N−1ΨΦ> and ĈX = N−1ΦΦ>. Assume additionally that we have
drawn samples from ρy and let Γ = [`(z1, ·), . . . , `(zM , ·)] for (zi)

M
i=1

i.i.d.∼ ρy. Let Z be a ρy-distributed random
variable. This implies Cρy ≈ ĈZ = M−1ΓΓ>.

It is well known that M−1LZ = M−1Γ>Γ ∈ RM×M and the empirical covariance operator ĈZ share the same
nonzero eigenvalues and their eigenvectors/eigenfunctions can be related. This fact has been examined a lot in
various scenarios, see for example Shawe-Taylor et al. (2002); Rosasco et al. (2010). In particular, we have the
relation

M−1LZ = V ΛV > ⇔ ĈZ =

r∑
i=1

λi (λ
−1/2
i Γvi)⊗ (λ

−1/2
i Γvi) = (ΓV Λ−1/2)Λ(ΓV Λ−1/2)>,

where Λ = diag(λ1, . . . , λr, 0, . . . , 0) ∈ RM×M contains the r ≤M nonzero eigenvalues λi ofM−1LZ corresponding
to unit norm eigenvectors vi ∈ RM and Λ−1/2 = diag(λ

−1/2
1 , . . . , λ

−1/2
r , 0, . . . , 0).

Hence, the F -normalized eigenfunctions of ĈZ are given by λ
−1/2
i Γvi = λ

−1/2
i

∑M
j=1 v

(j)
i `(zj , ·). Note that

F = span Γ⊕ (span Γ)⊥. For a closed subspace U ⊆ F , let PU denote the orthogonal projection operator onto U .
Based on the eigendecomposition of ĈZ , we naturally have

ĈZ + α′IF = (ΓV Λ−1/2)(Λ + α′IM)(ΓV Λ−1/2)> + α′P(span Γ)⊥

for any fixed regularization parameter α′ > 0. As an immediate consequence, we obtain

(ĈZ + α′IF )−1 = (ΓV Λ−1/2)(Λ + α′IM)−1 (ΓV Λ−1/2)> + α′−1P(span Γ)⊥

= ΓV (Λ−1/2Λ−1/2)(Λ + α′IM)−1V >Γ> + α′−1P(span Γ)⊥

= ΓV (Λ−1/2Λ−1/2)V >V (Λ + α′IM)−1V >Γ> + α′−1P(span Γ)⊥

= M−2 ΓL†Z (LZ + α′IM)−1 Γ> + α′−1P(span Γ)⊥ ,

Where we use that Λ−1/2 and (Λ + α′IM)−1 are diagonal and therefore commute with every M ×M matrix and
the fact that V (Λ−1/2Λ−1/2)V >V (Λ + α′IM)−1V > = M−2L†Z (LZ + α′IM)−1.

For stability reasons, we can additionally replace L†Z in the above expression with its regularized inverse and end
up with

(ĈZ + α′IF )−1
∣∣∣
span Γ

= M−2 Γ(LZ + α′IM)−2 Γ>. (9)

Here, we make use of the estimate ÛY |X = Ψ(KX + NαIN)−1Φ> derived in the literature (Muandet et al.,

2017) and insert this expression of ÛY |X and the above derived expression for (ĈZ + α′IF )−1
∣∣∣
span Γ

into ÂY |X =

(ĈZ + α′IF )−1ÛY |X . We discuss a potential bias induced by moving from (ĈZ + α′IF )−1 to its restriction onto
span Γ at the end of this subsection.
Inserting both terms yields

ÂY |X ≈M−2 Γ(LZ + α′IM)−2 Γ>Ψ(KX +NαIN)−1Φ>,
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which for given x′ ∈ X can be evaluated as ÂY |Xk(x′, ·) =
∑M
i=1 βi`(zi, ·) with the coefficient vector β =

M−2(LZ + α′IM)−2LZY (KX +NαIN)−1[k(x1, x
′), . . . , k(xN , x

′)]> ∈ RM . The latter is the form presented in the
main text.

In general, we introduce a bias by replacing (ĈZ +α′IF )−1 with its restriction to span Γ in the analytical version of
the estimate ÂY |X = (ĈZ + α′IF )−1ÛY |X . This is because range(UY |X) = range(ĈYX ) = span Ψ is not necessarily
contained in span Γ, so information can get “lost”. We note that in this general scenario, this cannot be avoided
since (ĈZ + α′IF )−1 is always of infinite range when F is infinite dimensional – however, we must approximate
(ĈZ + α′IF )−1 on the finite-dimensional subspace span Γ in numerical scenarios. By assuming that the reference
samples are covering the domain X in a sufficient way such that this loss of information becomes arbitrarily small,
replacing (ĈZ +α′IF )−1 with its restriction to span Γ also introduces an arbitrarily small error since (ĈZ +α′IF )−1

is bounded. The detailed analysis of this phenomenon will be covered in future work.

A.2.1 Closed form expression for mean and variance

Let û =
∑M
i=1 βi`(zi, ·) be the RKHS approximation of a density and `(zi, ·) be not only a psd kernel evaluated in

one argument, but also a probability density with variance v`. Then the mean of û is given by mu =
∑M
i=1 βizi

and the variance by vu =
∑M
i=1 βiz

2
i −m2

u + v`.

A.3 Computational tricks

In this section, we will detail two tricks that can help fitting large datasets or using density reconstruction when
the output domain is high-dimensional.

A.3.1 Trick for large datasets using factorization of the joint probability

We fitted the training data of 32 256 input-output pairs for the traffic prediction experiment in under 5 minutes
by observing that the dataset only had 1008 distinct inputs and 32 output samples per input. The following
general method takes advantage of this, reducing the involved real matrices from size 32 2562 to 10082. Note that
the cross-covariance operator can be written as

CYX =

∫
X
ψ(y)⊗ φ(x)dPXY (x, y) =

∫
X

(∫
Y
ψ(y)dPY |X=x(y)

)
⊗ φ(x)dPX(x),

which suggests the empirical estimate CYX ≈ N−1
∑N
i=1

(
n−1
i

∑ni
j=1 ψ(yi,j)

)
⊗ φ(xi), where ni is the number of

output samples for input sample xi and yi,j is the jth such sample. In feature matrix notation (see A.2), this is
equivalent to CYX ≈ N−1ΨΦ> for Φ = [k(x1, ·), . . . , k(xN , ·)] and Ψ = [n−1

1

∑n1

j=1 `(y1,j, ·), . . . , n−1
N

∑nN
j=1 `(yN,j, ·)].

For simplicity, consider the conditional mean operator estimate resulting from this. This will be given by
UY |X ≈ Ψ(GΦ + αNIN )−1Φ>, where Φ>Φ = GΦ ∈ RN×N is the Gram matrix induced by Φ. Thus we have to

compute the inverse of an N ×N real matrix, while in the standard method a
(∑N

i=1 ni

)
×
(∑N

i=1 ni

)
matrix

has to be inverted, reducing the complexity from O(N3) to O
((∑N

i=1 ni

)3
)
. When solving the system of

equations instead of computing a matrix inverse, we also get computational savings from this trick, even if
slightly less so. Also, the trick is applicable if there are multiple inputs per output by using the factorizing
PXY (x, y) = PX|Y=y(x)PY (y) instead.

A.3.2 Trick for high dimensions using Kronecker structure of Gram matrices

Assume we have a positive definite kernel ` over Rd such that

`([y1, y2, . . . , yd]
>, [y′1, y

′
2, . . . , y

′
d]
>) =

d∏
i=1

`i(yi, y
′
i)

where `1, . . . , `d are positive definite kernels, i.e., ` factorizes. Choose M ∈ N+ such that d
√
M is an integer.

Furthermore, let Li be the Gram matrix computed on d
√
M samples from the uniform covering the support of the
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data distribution in dimension j. Then L = L1 ⊗ · · · ⊗ Ld and by properties of the Kronecker product, we have
L−1 = L−1

1 ⊗ · · · ⊗ L
−1

d .
Thus, by inverting d gram matrices of size d

√
M × d

√
M and computing Kronecker products, we can get the

inverse of an M ×M gram matrix. The inversion has computational complexity O(dM3/d), while the Kronecker

products have complexity O
((

d
√
M
)2d
)

= O(M2). Assuming d ≥ 2 and d
√
M > 2, the O(M2) complexity of the

Kronecker products will dominate. This is a significant improvement from the O(M3) computational complexity
it would take to invert L directly. The d-dimensional points for which L is the Gram matrix uniformly cover a
d-dimensional box. Thus, this trick will be useful with a Lebesgue (i.e., uniform) reference measure on this box.
Another advantage is that the computation of Kronecker products is vectorized in most linear algebra packages
and trivial to parallelize across dimensions, and further computation could be saved by taking advantage of the
symmetry of Gram matrices when computing Kronecker products. Similar tricks have been used in the literature
on scalable Gaussian Processes, see for example Wilson and Nickisch (2015); Flaxman et al. (2015); Nickson et al.
(2015); Evans and Nair (2018).

B Related work: Least squares conditional density estimator

We also experimented with the least squares conditional density estimator (LSCDE, Sugiyama et al., 2010). This
method uses a signed mixture as a least-squares approximation to the conditional density of interest. To get
an unsigned density, mixture components with a negative weight are subsequently clipped to weight zero. We
suspect that the bad performance of LSCDE estimates results from the clipping operation. While the necessity of
getting unsigned estimates is clear, no justification for clipping rather than another method is given in the paper
(Sugiyama et al., 2010). A principled way would be to use gradient based optimization rather than the closed
form solution to minimize the LSCDE objective, which would enable enforcing the nonnegativity constraint.
Another would be to compute an unsigned mixture density that is closest to the closed form solution in a vector
space norm. See Table 3 and Figures 4, 5 for experimental results including LSCDE estimates.

Table 3: Test Set SMAEs rough terrain

Estimator SMAE

CDO 0.0269± 0.0006
GP 0.0358± 0.0006
Cond. Real NVP 0.0373± 0.0380
Cond. MAF 0.0309± 0.0395
LSCDE 0.8497± 0.0006

Estimates using 3750 samples
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Figure 4: Errors of conditional density estimation for the Gaussian donut in L1(ρy)-norm.
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Figure 5: Road occupancy prediction experiment. Left: Histogram of test data for three days in black, test data
mean and prediction. Right: Boxplots of scaled absolute errors with respect to test data.


