Supplementary Material
 Mixed Strategies for Robust Optimization of Unknown Objectives

Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause (AISTATS 2020)

A Proof of Theorem 2

Proof. In this proof, we condition on the event in Lemma 1 holding true, meaning that $u_{t} b_{t}$ and $l^{l} b_{t}$ provide valid confidence bounds as per (13). As stated in the lemma, this holds with probability at least $1-\delta$.

Our main goal in this proof is to upper bound the difference:

$$
\begin{equation*}
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})]-\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \tag{19}
\end{equation*}
$$

To do so, we provide upper and lower bounds of the first and second terms, respectively, and then we upper bound their difference.

First, we show that the following holds:

$$
\begin{equation*}
\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \geq\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-4 \beta_{T} \sqrt{\frac{\lambda \gamma_{T}}{T}} \tag{20}
\end{equation*}
$$

where \boldsymbol{x}_{t} is the point queried at time t.
To prove Eq. (20) we use the lower confidence bound and (14):

$$
\begin{align*}
\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) & \geq \min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \operatorname{lcb}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \tag{21}\\
& =\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T}\left(\operatorname{ucb}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)-2 \beta_{t} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right) \tag{22}\\
& \geq\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-\max _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} 2 \beta_{t} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \tag{23}\\
& \geq\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-\frac{2 \beta_{T}}{T} \sum_{t=1}^{T} \max _{\boldsymbol{\theta} \in \Theta} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \tag{24}\\
& =\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-\frac{2 \beta_{T}}{T} \sum_{t=1}^{T} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}\right) \tag{25}\\
& \geq\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}} \tag{26}
\end{align*}
$$

where (22) follows from the definition of the confidence bounds in (5) and (6), (24) is due to monotonicty of β_{t}, and (25) is by rule (10) used in Algorithm 1 to select $\boldsymbol{\theta}_{t}$. Finally, (26) is obtained via the standard result from (Srinivas et al., 2010; Chowdhury and Gopalan, 2017)

$$
\begin{equation*}
\sum_{t=1}^{T} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}\right) \leq \sqrt{4 T \lambda \gamma_{T}} \tag{27}
\end{equation*}
$$

when $\lambda \geq 1$.
Next, we show that the first term can be upper bounded as follows:

$$
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{w}_{t}}\left[\overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]
$$

To prove this, we start by upper bounding the minimum value of the inner objective:

$$
\begin{align*}
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})] & \leq \max _{\mathcal{P} \in \Delta(\mathcal{X})} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[f\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right] \tag{28}\\
& \leq \max _{\mathcal{P} \in \Delta(\mathcal{X})} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right] \tag{29}\\
& =\max _{\mathcal{P} \in \Delta(\mathcal{X})} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right] \tag{30}\\
& \leq \frac{1}{T} \sum_{t=1}^{T} \max _{\mathcal{P} \in \Delta(\mathcal{X})} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right] \tag{31}\\
& =\frac{1}{T} \sum_{t=1}^{T} \max _{\boldsymbol{x} \in \mathcal{X}} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right) \tag{32}\\
& =\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{i}\right) . \tag{33}
\end{align*}
$$

We obtain Eq. (28) as the following trivially holds

$$
\min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})] \leq \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[f\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right]
$$

for each t and $\boldsymbol{w}_{t} \in\left\{\boldsymbol{w} \in[0,1]^{m}: \sum_{i=1}^{m} \boldsymbol{w}[i]=1\right\}$, and hence it also holds for the average value

$$
\min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})] \leq \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[f\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right]
$$

Eq. (29) follows from (14), (30) follows by the linearity of expectation, and (32) holds since Dirac delta $\boldsymbol{\delta}_{\boldsymbol{x}}$, $\forall \boldsymbol{x} \in \mathcal{X}$, is in $\Delta(\mathcal{X})$. Finally, (33) follows by rule (9) used in Algorithm 1 to select \boldsymbol{x}_{t}.
Next, we bound the difference in (19) by combining the bounds obtained in (26) and (33):

$$
\begin{align*}
& \max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})]-\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \\
& \quad \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{w}_{t}}\left[\overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]-\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T}{\left.\overline{\operatorname{ucb}_{t-1}}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)+4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}}}^{\quad \leq \sqrt{\frac{\log (m)}{2 T}}+4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}}}\right.
\end{align*}
$$

where (34) follows by the guarantees of the no-regret online multiplicative weight updates algorithm played by the adversary, that is,

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{w}_{t}}\left[\overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]-\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T}{\overline{\operatorname{ucb}_{t-1}}}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right) \leq \sqrt{\frac{\log (m)}{2 T}} \tag{35}
\end{equation*}
$$

with the learning rate set to $\eta_{T}=\sqrt{\frac{8 \log (m)}{T}}$. For more details on this result see (Cesa-Bianchi and Lugosi, 2006, Section 4.2) where the same online algorithm is considered. Specifically, the result above follows from (CesaBianchi and Lugosi, 2006, Theorem 2.2) by noting that $\sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{\theta} \sim \boldsymbol{w}_{t}}\left[\overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]=\sum_{t=1}^{T} \boldsymbol{w}_{t}^{T} \cdot \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \cdot\right)$, $\min _{\boldsymbol{\theta} \in \Theta} \sum_{t=1}^{T} \overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)=\min _{\boldsymbol{w} \in \Delta(\Theta)} \sum_{t=1}^{T} \boldsymbol{w}^{T} \cdot \overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \cdot\right)$ and $\overline{\operatorname{ucb}}_{t-1}(\cdot, \cdot) \in[0,1]$ for every t. In our case, the objective function changes with t but remains bounded, which allows the result to hold despite the changes (see time-varying games result extension (Cesa-Bianchi and Lugosi, 2006, Remark 7.3)).
By rearranging (34) and by letting $\mathcal{U}^{(T)}$ be the uniform distribution over the queried points $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}\right\}$ during
the run of Algorithm 1, we obtain:

$$
\min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{U}^{(T)}}[f(\boldsymbol{x}, \boldsymbol{\theta})] \geq \max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[f(\boldsymbol{x}, \boldsymbol{\theta})]-\sqrt{\frac{\log (m)}{2 T}}-4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}}
$$

Finally, we require $\epsilon \geq \sqrt{\frac{\log (m)}{2 T}}+4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}}$, which we obtain when

$$
T \geq \frac{1}{\epsilon^{2}}\left(\frac{\log (m)}{2}+\beta_{T} \sqrt{32 \lambda \gamma_{T} \log (m)}+16 \beta_{T}^{2} \lambda \gamma_{T}\right)
$$

B Proof of Corollary 3

Proof. The proof closely follows the one of Theorem 2. The main changes are due to the modified best-response rule from (16).

For a given distribution $\mathcal{Q} \in \Delta(\Theta)$ and trade-off parameter $\chi \in(0,1]$, we can define the new function

$$
\begin{equation*}
g(\boldsymbol{x}, \boldsymbol{\theta}):=\chi \cdot f(\boldsymbol{x}, \boldsymbol{\theta})+(1-\chi) \cdot \mathbb{E}_{\boldsymbol{\theta} \sim \mathcal{Q}}[f(\boldsymbol{x}, \boldsymbol{\theta})] \tag{36}
\end{equation*}
$$

Same as before, our goal is to upper bound the difference:

$$
\begin{equation*}
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[g(\boldsymbol{x}, \boldsymbol{\theta})]-\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} g\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \tag{37}
\end{equation*}
$$

where \boldsymbol{x}_{t} is the point selected at time t by GP-MRO using the modified best-response rule as in (16).
Next, we condition on the event in Lemma 1 holding true, and we provide upper and lower bounds of the first and second term, respectively.
First, we show that the second term of (37) can be lower bounded as:

$$
\begin{equation*}
\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} g\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \geq \chi\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right)-4 \beta_{T} \sqrt{\frac{\lambda \gamma_{T}}{T}} \tag{38}
\end{equation*}
$$

To prove Eq. (38) we make use of (36) and similar arguments as the ones used in the proof of Theorem 2:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} g\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)=\chi\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right) \\
& \geq \chi\left[\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-\frac{2 \beta_{T}}{T} \sum_{t=1}^{T} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}\right)\right]+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[f\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right) \\
& \geq \chi\left[\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)-\frac{2 \beta_{T}}{T} \sum_{t=1}^{T} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}\right)\right]+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)-2 \beta_{t} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right) \\
& \geq \chi\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T}{\overline{\operatorname{ucb}_{t-1}}}^{\left.\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right)-\frac{2 \beta_{T}}{T} \sum_{t=1}^{T} \sigma_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}\right)}\right. \\
& \geq \chi\left(\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} \overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right)-4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}} .
\end{aligned}
$$

Next, we show that the first term of (37) can be upper bounded as:

$$
\begin{equation*}
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[g(\boldsymbol{x}, \boldsymbol{\theta})] \leq \chi\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \boldsymbol{w}_{t}}{\mathbb{E}}\left[\overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right)+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\operatorname{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right) \tag{39}
\end{equation*}
$$

To prove this we use similar arguments as in the proof of Theorem 2:

$$
\begin{align*}
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[g(\boldsymbol{x}, \boldsymbol{\theta})] & \leq \max _{\mathcal{P} \in \Delta(\mathcal{X})} \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[g\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right] \\
& \left.\leq \frac{1}{T} \sum_{t=1}^{T} \max _{\mathcal{P} \in \Delta(\mathcal{X})} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot g\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)\right]\right] \\
& =\frac{1}{T} \sum_{t=1}^{T} \max _{\boldsymbol{x} \in \mathcal{X}} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot g\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right) \\
& =\frac{1}{T} \sum_{t=1}^{T} \max _{\boldsymbol{x} \in \mathcal{X}}\left[\chi \cdot \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot f\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)+(1-\chi) \cdot \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}[f(\boldsymbol{x}, \boldsymbol{\theta})]\right] \\
& \leq \frac{1}{T} \sum_{t=1}^{T} \max _{\boldsymbol{x} \in \mathcal{X}}\left[\chi \cdot \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \overline{u c b}_{t-1}\left(\boldsymbol{x}, \boldsymbol{\theta}_{i}\right)+(1-\chi) \cdot \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\mathrm{ucb}}_{t-1}(\boldsymbol{x}, \boldsymbol{\theta})\right]\right] \\
& =\chi\left(\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \boldsymbol{w}_{t}[i] \cdot \overline{u c b}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right)+(1-\chi)\left(\frac{1}{T} \sum_{t=1}^{T} \underset{\boldsymbol{\theta} \sim \mathcal{Q}}{\mathbb{E}}\left[\overline{\mathrm{ucb}}_{t-1}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)\right]\right), \tag{40}
\end{align*}
$$

where (40) is obtained by the rule in (16) used to select \boldsymbol{x}_{t}.
Next, we bound the difference in (37) by combining the bounds (38) and (39) and applying (35) to obtain:

$$
\begin{equation*}
\max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[g(\boldsymbol{x}, \boldsymbol{\theta})]-\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} g\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) \leq \chi \sqrt{\frac{\log (m)}{2 T}}+4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}} \tag{41}
\end{equation*}
$$

By letting $\mathcal{U}^{(T)}$ be the uniform distribution over the queried points $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}\right\}$ and by using the definitions of $W(\cdot)$ and \mathcal{P}^{*} together with the bound (41), we obtain:

$$
\begin{align*}
W\left(\mathcal{U}^{(T)}\right)=\min _{\boldsymbol{\theta} \in \Theta} \frac{1}{T} \sum_{t=1}^{T} g\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right) & \geq \max _{\mathcal{P} \in \Delta(\mathcal{X})} \min _{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}[g(\boldsymbol{x}, \boldsymbol{\theta})]-\chi \sqrt{\frac{\log (m)}{2 T}}-4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}} \\
& =W\left(\mathcal{P}^{*}\right)-\chi \sqrt{\frac{\log (m)}{2 T}}-4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}} \tag{42}
\end{align*}
$$

Finally, we require $\epsilon \geq \chi \sqrt{\frac{\log (m)}{2 T}}+4 \beta_{T} \sqrt{\frac{\gamma_{T} \lambda}{T}}$, which we obtain when

$$
T \geq \frac{1}{\epsilon^{2}}\left(\frac{\chi^{2} \log (m)}{2}+\chi \beta_{T} \sqrt{32 \lambda \gamma_{T} \log (m)}+16 \beta_{T}^{2} \lambda \gamma_{T}\right)
$$

