
Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Appendix

A Discretization based algorithm

Definition 19 (r-discretization). An r-discretization
or r-net of a bounded set S ⊂ Rd is a finite set of points
D such that the Euclidean distance of any point in S
is at most r from some point in D.

Recall that C ⊂ Rd is contained in a ball of radius R. A
standard greedy construction gives an r-discretization
of size at most (3R/r)d [Balcan et al., 2018a]. Given
the dispersion parameter β, a natural choice is to use
a T−β-discretization as in Algorithm 1.

Theorem 4. Let Rfinite(T, s,N) denote the s-shifted
regret for the finite experts problem on N experts, for
the algorithm used in step 2 of Algorithm 1. Then Algo-
rithm 1 enjoys s-shifted regret RC(T, s) which satisfies

RC(T, s) ≤ Rfinite
(
T, s,

(
3RT β

)d)
+(sH+L)O(T 1−β).

Proof of Theorem 4. We show we can round the opti-
mal points in C to points in the (T−β)-discretization
D with a payoff loss at most (sH + L)T 1−β in expec-
tation. But in D we know a way to bound regret by
Rfinite(T, s,N), where N , the number of points in D,
is at most

(
3R
T−β

)d
=
(
3RT β

)d.
Let t0:s denote the expert switching times in the opti-
mal offline payoff, and ρ∗i be the point picked by the
optimal offline algorithm in [ti−1, ti − 1]. Consider a
ball of radius T−β around ρ∗i . It must have some point
ρ̂∗i ∈ D. We then must have that {ut | t ∈ [ti−1, ti−1]}
has at most O(T−βT) = O(T 1−β) discontinuities due
to β-dispersion, which implies

ti−1∑
t=ti−1

ut(ρ̂
∗
i) ≥

ti−1∑
t=ti−1

ut(ρ
∗
i)−O(T 1−β)H−L(ti−ti−1)T−β

Let ρ̂t = ρ̂∗i for each ti−1 ≤ t ≤ ti − 1. Summing over i
gives

T∑
t=1

ut(ρ̂t) ≥ OPT −O(T 1−β)sH − LT 1−β

= OPT − (sH + L)O(T 1−β)

Now payoff of this algorithm is bounded above by the
payoff of the optimal sequence of experts with s shifts

T∑
t=1

ut(ρ̂t) ≤ OPT finite

Let the finite experts algorithm with shifted regret
bounded by Rfinite(T, s,N) choose ρt at round t. Then,

using the above inequalities,

T∑
t=1

ut(ρt) ≥ OPT finite −Rfinite(T, s,N)

≥ OPT − (sH + L)O(T 1−β)−Rfinite(T, s,N)

We use this to bound the regret for the continuous case

RC(T, s) = OPT −
T∑
t=1

ut(ρt)

≤ Rfinite(T, s,N) + (sH + L)O(T 1−β)

B Counterexamples

We will construct problem instances where some sub-
optimal algorithms mentioned in the paper suffer high
regret.

We first show that the Exponential Forecaster algo-
rithm of [Balcan et al., 2018a] suffers linear s-shifted
regret even for s = 2. This happens because pure
exponential updates may accumulate high weights on
well-performing experts and may take a while to adjust
weights when these experts suddenly start performing
poorly.

Lemma 20. There exists an instance where Expo-
nential Forecaster algorithm of [Balcan et al., 2018a]
suffers linear s-shifted regret.

Proof. Let C = [0, 1]. Define utility functions

u(0)(ρ) =

{
1 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
0 if ρ < 1

2

1 if ρ ≥ 1
2

Now consider the instance where u(0)(ρ) is presented
for the first T/2 rounds and u(1)(ρ) is presented for the
remaining rounds. In the second half, with probability
at least 1

2 , the Exponential Forecaster algorithm will
select a point from [0, 12] and accumulate a regret of
1. Thus the expected 2-shifted regret of the algorithm
is at least T

2 ·
1
2 = Ω(T). Notice that the construction

does not depend on the step size parameter λ.

We further look at the performance of Random Restarts
EF (Algorithm 4), an easy-to-implement algorithm
which looks deceptively similar to Algorithm 2, against
this adversary. Turns out Random Restarts EF may
not restart frequently enough for the optimal value of
the exploration parameter, and have sufficiently long
chains of pure exponential updates in expectation to
suffer high regret.

Learning piecewise Lipschitz functions in changing environments

Theorem 21. There exists an instance where Random
Restarts EF (Algorithm 4) with parameters λ and α as
in Theorem 6 suffers linear s-shifted regret.

Proof. The probability of pure exponential updates
from t = T/4 through t = 3T/4 is at least

(1− α)T/2 =

(
1− 1

T − 1

)T/2
>

1

2

for T > 5. By Lemma 20, this implies at least T
8 regret

in this case, and so the expected regret of the algorithm
is at least T

16 = Ω(T).

C Analysis of algorithms

In this section we will provide detailed proofs of lemmas
and theorems from Section 4. We will restate them for
easy reference.

Lemma 10. (Algorithm 2) For each t ∈ [T],
wt(ρ) = E[ŵt(ρ)] and Wt = E[Ŵt], where the expecta-
tions are over random restarts zt = {z1, . . . , zt−1}.

Proof of Lemma 10. wt(ρ) = E[ŵt(ρ)] implies Wt =
E[Ŵt] by Fubini’s theorem (recall C is closed and
bounded). wt(ρ) = E[ŵt(ρ)] follows by simple induc-
tion on t. In the base case, z1 is the empty set and
w1(ρ) = 1 = ŵt(ρ) = E[ŵt(ρ)]. For t > 1,

E[ŵt(ρ)] =(1− α)E[eλut(ρ)ŵt−1(ρ)]+

α

Vol(C)
E
[∫
C
eλut(ρ)ŵt−1(ρ)dρ

]
(definition of ŵt)

=(1− α)eλut(ρ)E[ŵt−1(ρ)]+

α

Vol(C)

∫
C
eλut(ρ)E[ŵt−1(ρ)]dρ

(expectation is over zt)

=(1− α)eλut(ρ)wt−1(ρ)

+
α

Vol(C)

∫
C
eλut(ρ)wt−1(ρ)dρ

(inductive hypothesis)
=wt(ρ)

(definition of wt)

Lemma 11. (Algorithm 2) WT+1 equals the sum

∑
s∈[T]

∑
t0=1<t1···<ts=T+1

αs−1(1− α)T−s

Vol(C)s−1
s∏
i=1

W̃ (ti−1, ti)

Proof. We use Lemma 10 to note that WT+1 =
Ezt [ŴT+1] = Es,ts [ŴT+1 | s, ts], where ŴT+1 | s, ts is
the total weight of Algorithm 4 at time T + 1 given
restarts occur exactly at ts, and is deterministic since
all weights ŵT+1(ρ) are fixed given exact restart times.
We will now show by an induction on s,

ŵT+1(ρ) | s, ts = w̃(ρ; ts−1, ts)

s−1∏
i=1

W̃ (ti−1, ti)

Vol(C)
(3)

In other words, we wish to show that ŵT+1(ρ) | s, ts
(weights of Algorithm 4 at time T + 1 given restarts
occur exactly at ts) can be expressed as the product
of weight w̃(ρ; ts−1, ts) at ρ of regular Exponential
Forecaster since the last restart times the normalized
total weights accumulated over previous runs.

For s = 1, we have no restarts and

w̃(ρ; ts−1, ts)

s−1∏
i=1

W̃ (ti−1, ti)

Vol(C)
= w̃(ρ; t0, t1)

0∏
i=1

W̃ (ti−1, ti)

Vol(C)

= w̃(ρ; 1, T + 1)

= ŵT+1(ρ) | 1, t1

For s > 1, the last restart occurs at ts−1 > 1. By
inductive hypothesis for time ts−1−1 until which we’ve
had s− 2 restarts,

ŵts−1−1(ρ) | s, ts = ŵts−1−1(ρ) | s− 1, ts−1

= w̃(ρ; ts−2, ts−1 − 1)

s−2∏
i=1

W̃ (ti−1, ti)

Vol(C)

Due to restart at ts−1,

ŵts−1(ρ) | s, ts =

∫
C e

λut(ρ)ŵts−1−1(ρ)dρ

Vol(C)

=

s−1∏
i=1

W̃ (ti−1, ti)

Vol(C)

It’s regular exponential updates from this point to ts,
which gives (3).

Integrating (3) to get ŴT+1 | s, ts, and noting proba-
bility of s−1 restarts at ts is αs−1(1−α)T−s completes
the proof.

Theorem 6. The s-shifted regret of Algorithm 2 with
α = s/T and λ =

√
s(d log(RT β) + log(T/s))/T/H is

O(H
√
sT (d log(RT β) + log(T/s)) + (sH + L)T 1−β).

Full proof of Theorem 6. We first provide an upper
and lower bound to WT+1

W1
.

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Upper bound: The proof is similar to the up-
per bound for exponential weighted forecaster in
[Balcan et al., 2018a] and uses Lemma 8 for Wt.

Wt+1

Wt
=

∫
C e

λut(ρ)wt(ρ)dρ

Wt

=

∫
C
eλut(ρ)

wt(ρ)

Wt
dρ

=

∫
C
eλut(ρ)pt(ρ)dρ

Finally use inequalities eλz ≤ 1+(eλ−1)z for z ∈ [0, 1]
and 1 + z ≤ ez to get

Wt+1

Wt
≤
∫
C
pt(ρ)

(
1 + (eHλ − 1)

ut(ρ)

H

)
dρ

= 1 + (eHλ − 1)
Pt
H

≤ exp

(
(eHλ − 1)

Pt
H

)
where Pt denotes the expected payoff of the algorithm in
round t. Let P (A) be the expected total payoff. Then
we can write WT+1

W1
as a telescoping product which gives

WT+1

W1
=

T∏
t=1

Wt+1

Wt
≤ exp

(
(eHλ − 1)

∑
t Pt
H

)
= exp

(
P (A)(eHλ − 1)

H

) (4)

Lower bound: Again the proof is similar to
[Balcan et al., 2018a] and the major difference is use
of Lemma 11.
We first lower bound payoffs of points close to the opti-
mal sequence of experts using dispersion. If the optimal
sequence with s shifts has shifts at t∗i (1 ≤ i ≤ s− 1),
by β-dispersion for any ρi ∈ B(ρ∗i , w)

t∗i−1∑
t=t∗i−1

ut(ρi) ≥
t∗i−1∑
t=t∗i−1

ut(ρ
∗
i)−kH−L(t∗i − t∗i−1)w (5)

where w = T−β and k = O(T 1−β). Summing both
sides over i ∈ [s − 1] helps us relate the lower bound
to the payoff OPT of the optimal sequence.

s∑
i=1

t∗i−1∑
t=t∗i−1

ut(ρi) ≥
s∑
i=1

t∗i−1∑
t=t∗i−1

ut(ρ
∗
i)− kH − L(t∗i − t∗i−1)w

= OPT − ksH − LTw
(6)

Now to lower bound WT+1

W1
, we first lower bound WT+1.

We use Lemma 11 and lower bound by picking the term
corresponding to times of expert shifts in the optimal

sequence with s-shifted expert.
WT+1

=
∑
s∈[T]

∑
t0=1<t1···<ts=T+1

αs−1(1− α)T−s

Vol(C)s−1
s∏
i=1

W̃ (ti−1, ti)

≥ αs−1(1− α)T−s

Vol(C)s−1
s∏
i=1

W̃ (t∗i−1, t
∗
i)

(7)

The product of W̃ ’s can in turn be lower bounded
by restricting attention to points close (i.e. within
a ball of radius w centered at optimal expert ρ∗i) to
the optimal sequence. The payoffs of such points was
lower-bounded in (5) and (6) in terms of the optimal
payoff.

s∏
i=1

W̃ (t∗i−1, t
∗
i) =

s∏
i=1

∫
C

exp

(
λ

t∗i−1∑
t=t∗i−1

ut(ρ)

)
dρ

≥
s∏
i=1

∫
B(ρ∗i ,w)

exp

(
λ

t∗i−1∑
t=t∗i−1

ut(ρ)

)
dρ

≥
s∏
i=1

∫
B(ρ∗i ,w)

exp

(
λ

t∗i−1∑
t=t∗i−1

ut(ρ
∗
i)− kH − L(t∗i − t∗i−1)w

)
dρ

= Vol(B(w))s·

exp

(
s∑
i=1

λ

t∗i−1∑
t=t∗i−1

ut(ρ
∗
i)− kH − L(t∗i − t∗i−1)w

)

= Vol(B(w))s exp

(
λ
(
OPT − ksH − LTw

))
Plugging into equation (7) we get

WT+1 ≥
αs−1(1− α)T−sVol(B(w))s

Vol(C)s−1
·

exp

(
λ
(
OPT − ksH − LTw

))
Also, W1 =

∫
C w1(ρ)dρ = Vol(C). Thus, using the

fact that ratio of volume of balls B(w) and B(R) in
d-dimensions is (w/R)d, and assuming C is bounded
by some ball B(R).

WT+1

W1
≥αs−1(1− α)T−s

(
w

R

)sd
·

exp

(
λ
(
OPT − ksH − LTw

)) (8)

Putting together: Combining upper and lower bounds
from (4) and (8) respectively,

log
(
αs−1(1− α)T−s

)
− sd log

R

w
+

λ(OPT − ksH − LTw) ≤ P (A)(eHλ − 1)

H

Learning piecewise Lipschitz functions in changing environments

which rearranges to

OPT − P (A) ≤P (A)
(eHλ − 1−Hλ)

Hλ
+
sd log(R/w)

λ

+ ksH + LTw − log(αs−1(1− α)T−s)

λ

Using P (A) ≤ HT and using ez ≤ 1 + z+ (e− 2)z2 for
z ∈ [0, 1] we have

OPT − P (A) ≤HT (eHλ − 1−Hλ)

Hλ
+
sd log(R/w)

λ

+ ksH + LTw − log(αs−1(1− α)T−s)

λ

<H2Tλ+
sd log(R/w)

λ
+ ksH + LTw

− log(αs−1(1− α)T−s)

λ

Now we tighten the bound, first w.r.t. α then w.r.t. λ.
Note minα− log(αs−1(1−α)T−s) occurs for α0 = s−1

T−1
and

− log(αs−10 (1− α0)T−s)

= (T − 1)

[
− s− 1

T − 1
log

s− 1

T − 1
− T − s
T − 1

log
T − s
T − 1

]
≤ (s− 1) log e

T − 1

s− 1

(binary entropy function satisfies h(x) ≤ x ln(e/x) for
x ∈ [0, 1]). Finally minimizing over λ gives

OPT − P (A) ≤

O(H
√
sT (d log(R/w) + log(T/s)) + ksH + LTw)

for λ =
√
s(d log(R/w) + log(T/s))/T/H. Plugging

back w = T−β and k = O(T 1−β) completes the proof.

The rest of this section is concerned with the analysis
of Algorithm 3 for the sparse experts setting.

Lemma 22. For any t < T ,

wT (ρ) ≥ α(1− α)T−tπt(ρ)w̃(ρ; t, T)Wt

Proof. Follows using the restart algorithm technique
used in Lemmas 11 and 13. Consider the probability of
last ‘restart’ being at time t. Notice this also implies
Corollary 14.

Lemma 23. Let πt(ρ) =
∑t
i=1 βi,tpi(ρ) in Algorithm

3. Then

πt(ρ) =
α1,t

W1
+

t−1∑
i=1

αi+1,t
eλui(ρ)wi(ρ)

Wi+1

where

αi,t ≥
1− α
et

(
e−γ +

α

et

)t−i
and et :=

∑t
i=1 e

−γ(i−1).

Proof. Notice, by definition of weight update in Algo-
rithm 3,

pt(ρ) = (1− α)
eλut−1(ρ)wt−1(ρ)

Wt
+ α

t−1∑
i=1

βi,t−1pi(ρ)

= (1− α)
eλut−1(ρ)wt−1(ρ)

Wt
+ απt−1(ρ)

This gives us a recursive relation for αi,t.

αi,t =

{
βi,t(1− α) + α

∑t
j=i+1 βj,tαi,j−1 if i > 1

βi,t + α
∑t
j=i+1 βj,tαi,j−1 if i = 1

Thus for each 1 ≤ i ≤ t

αi,t ≥ βi,t(1− α) + α

t∑
j=i+1

βj,tαi,j−1

We proceed by induction on t− i. For i = t,

αt,t ≥ βt,t(1− α) =
1− α
et

(
e−γ +

α

et

)t−t
For i < t, by inductive hypothesis

αi,t ≥βi,t(1− α) +

t∑
j=i+1

βj,tααi,j−1

≥(1− α)
e−γ(t−i)

et

+ α
1− α
et

t∑
j=i+1

e−γ(t−j)

et

(
e−γ +

α

et

)j−1−i

=
1− α
et

(
e−γ +

α

et

)t−i
which completes the induction step.

Corollary 24. Let wt(ρ),Wt be as in Algorithm 3
and πt as in Lemma 13. For each τ < τ ′ < t and any
bounded f defined on C.∫

C
πt(ρ)f(ρ)dρ ≥ α(1− α)τ

′−τ (1− e−γ)

(e−γ + α(1− e−γ))
τ ′−t

Wτ

Wτ ′
·∫

C
πτ (ρ)w̃(ρ; τ, τ ′)f(ρ)dρ

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

Proof. By Lemma 23,∫
C
πt(ρ)f(ρ)dρ =

∫
C
πt(ρ)f(ρ)dρ

≥
∫
C
ατ ′,t

eλuτ′−1(ρ)wτ ′−1(ρ)

Wτ ′
f(ρ)dρ

≥1− α
et

(
e−γ +

α

et

)t−τ ′
1

Wτ ′
·∫

C
eλuτ′−1(ρ)wτ ′−1(ρ)f(ρ)dρ

≥1− α
et

(
e−γ +

α

et

)t−τ ′
α(1− α)τ

′−1−τWτ

Wτ ′
·∫

C
πτ (ρ)w̃(ρ; τ, τ ′)f(ρ)dρ

where for the last inequality we have used Lemma 22.
The lemma then follows by noting

1

et
=

1− e−γ

1− e−γt
≥ 1− e−γ

where et =
∑t
i=1 e

−γ(i−1) as defined in Lemma 23.

Theorem 7. The (m-sparse, s-shifted) regret of Al-
gorithm 3 is O(H

√
T (md log(RT β) + s log(mT/s)) +

(mH + L)T 1−β) for α = s/T , γ = s/mT and λ =√
(md log(RT β) + s log(T/s))/T/H.

Proof of Theorem 7. Like Theorem 6 we first provide
an upper and lower bound to WT+1

W1
. The upper bound

proof is identical to that of Theorem 6 by replacing
Lemma 8 by Lemma 12.

For the lower bound we use Corollaries 14 and 24.
Applying corollary 24 repeatedly to collect exponential
updates for the times OPT played the same expert lets
us use the arguments for Theorem 6 to get Equation ??.
Indeed if {(si, fi) | 1 ≤ i ≤ l} are the start and finish
times of a particular expert ρ in the OPT sequence, we
can use Corollary 14 to write

Wfl+1 ≥ α(1− α)fl+1−slWslW̃ (πsl ; sl, fl + 1)

Applying Corollary 24 repeatedly now gets us

Wfl+1 ≥
αl(1− α)

∑l
j=1 fj+1−sj (1− e−γ)l−1

(e−γ + α(1− e−γ))
∑l−1
j=1 fj+1−sj+1

·

∏l
i=1Wsi∏l−1
i=1Wfi+1

∫
C

πs1(ρ)

l∏
j=1

w̃(ρ; sj , fj + 1)

 dρ

or∏l
i=1Wfi+1∏l
i=1Wsi

≥α
l(1− α)

∑l
j=1 fj+1−sj (1− e−γ)l−1

(e−γ + α(1− e−γ))
∑l−1
j=1 fj+1−sj+1

·

∫
C

πs1(ρ)

l∏
j=1

w̃(ρ; sj , fj + 1)

 dρ

Multiplying these inequalities for each of m experts in
the optimal sequence gives us WT+1

W1
on the left side.

Also note ∫
C
πt(ρ)f(ρ)dρ ≥ α1,t

W1

∫
C
f(ρ)dρ

and, using dispersion as in proof of Theorem 6,

∏
experts in OPT

∫
C

 l∏
j=1

w̃(ρ; sj , fj + 1)

 dρ ≥

Vol(B(T−β))m exp
(
λ
(
OPT − (mH + L)O(T 1−β)

))
Putting it all together gives Equation ??. Combining
the lower and upper bounds on WT+1

W1
gives us a bound

on OPT − P (A).

OPT − P (A) <H2Tλ+
md log(RT β)

λ

+ (mH + L)O(T 1−β)

− log

(
αs(1− α)T (1− e−γ)s

(e−γ + α(1− e−γ))−mT

)
/λ

We now chose parameters γ, α, λ to get the tightest
regret bound. Note that − log(αs(1−α)T) is minimized
for α = s

T+s = Θ(sT) and − log((1− e−γ)s(e−γ +α(1−
e−γ))mT) is minimized for γ = log

(
1+s/mT

1−sα/mT (1−α)

)
=

Θ(s
mT). The corresponding minimum values can be

bounded as

− log(αs(1− α)T) = s log
T + s

s
+ T log

(
1 +

s

T

)
≤ s log

T + s

s
+ s

= O

(
s log

T

s

)
using log(1 + x) ≤ x, and substituting e−γ =
1−sα/mT (1−α)

1+s/mT

− log((1− e−γ)s(e−γ + α(1− e−γ))mT)

= −s log

s
mT ·

1
(1−α)

1 + s
mT

−mT log
1

1 + s
mT

≤ s log

(
(1− α)

(
mT

s
+ 1

))
+ 1

= O

(
s log

mT

s

)
Finally we minimize w.r.t. λ, to obtain the desired
regret bound.

D Adaptive Regret

It is known that the fixed share algorithm obtains
good adaptive regret for finite experts and OCO

Learning piecewise Lipschitz functions in changing environments

[Adamskiy et al., 2012]. We show that it is the case
here as well.
Definition 25. The τ -adaptive regret (due to
[Hazan and Seshadhri, 2007]) is given by

E

[
max
ρ∗∈C,

1≤r<s≤T,s−r≤τ

s∑
t=r

(ut(ρ
∗)− ut(ρt))

]

The goal here is to ensure small regret on all intervals
of size up to τ simultaneously. Adaptive regret mea-
sures how well the algorithm approximates the best
expert locally, and it is therefore somewhere between
the static regret (measured on all outcomes) and the
shifted regret, where the algorithm is compared to a
good sequence of experts.
Theorem 26. Algorithm 2 enjoys
O(H

√
τ(d log(R/w) + log τ) + (H + L)τ1−β) τ -

adaptive regret for λ =
√

(d log(Rτβ) + log(τ))/τ/H
and α = 1/τ .

Proof sketch of Theorem 26. Apply arguments of The-
orem 6 to upper and lower bound Ws+1/Wr for any
interval [r, s] ⊆ [1, T] of size τ . We get

Ws+1

Wr
≤ exp

(
P (A)(eHλ − 1)

H

)
where P (A) is the expected payoff of the algorithm in
[r, s], Also, by Corollary 14 (equivalent for Algorithm
2)

Ws+1 ≥
α(1− α)s+1−r

Vol(C)
W̃ (r, s)Wr

=
α(1− α)τ

Vol(C)
W̃ (r, s)Wr

By dispersion, as in the proof of Theorem 6,

W̃ (r, s) ≥ Vol(B(τ−β)) exp
(
λ
(
OPT−(H+L)O(τ1−β)

))
Putting the upper and lower bounds together gives us a
bound on OPT − P (A), which gives the desired regret
bound for α = 1

τ .

E Efficient Sampling

In Section 5 we introduced Algorithm 5 for efficient
implementation of Algorithm 2 in Rd. We present
proofs of the results in that section, and an exact
algorithm for the case d = 1.
Lemma 15. In Algorithm 2, for t ≥ 1,

Wt+1 =(1− α)t−1W̃ (1, t+ 1)+

α

Vol(C)

t∑
i=2

[
(1− α)t−iWiW̃ (i, t+ 1)

]

Algorithm 6 Fixed Share Exponential Forecaster -
exact algorithm for one dimension
Input: λ ∈ (0, 1/H]

1. W1 = Vol(C)

2. For each t = 1, 2, . . . , T :

Estimate Ct,j using Lemma 16 for each 1 ≤ j ≤ t
using memoized values for weights.
Sample i with probability Ct,i.
Sample ρ with probability proportional to
w̃(ρ; i, t).
Estimate Wt+1 using Lemma 15.

Proof of Lemma 15. For t = 1, first term is W̃ (1, 2) =∫
C e

λu1(ρ)dρ = W2 and second term is zero. Also, by
Lemma 8, for t > 1

Wt+1 =

∫
C
eλut(ρ)wt(ρ)dρ

=

∫
C
eλut(ρ)

[
(1− α)eλut−1(ρ)wt−1(ρ)

+
α

Vol(C)

∫
C
eλut−1(ρ)wt−1(ρ)dρ

]
dρ

=(1− α)

∫
C
eλ(ut(ρ)+ut−1(ρ))wt−1(ρ)dρ

+
α

Vol(C)
Wt

∫
C
eλut(ρ)dρ

Continue substituting wj(ρ) = (1−α)eλuj(ρ)wj−1(ρ) +
α

Vol(C)
∫
C e

λuj(ρ)wj−1(ρ)dρ in the first summand until
w1 = 1 to get the desired expression.

Definition 27. For α ≥ 0 we say Â is an (α, ζ)-
approximation of A if

Pr
(
e−αA ≤ Â ≤ eαA

)
≥ 1− ζ

Lemma 28. If Â is an (α, ζ)-approximation of A and
B̂ is a (β, ζ ′)-approximation of B, such that A,B, Â, B̂
are all positive reals

1. ÂB̂ is an (α+ β, ζ + ζ ′)-approximation of AB

2. pÂ + qB̂ is a (max{α, β}, ζ + ζ ′)-approximation
of pA+ qB for p, q ≥ 0

Proof. The results follow from union bound on failure
probabilities.

Corollary 29. For one-dimensional case, we can ex-
actly compute W̃ (i, j), 1 ≤ i < j ≤ t, hence Wt at each
iteration can be computed in O(t) time using Lemma
15. More generally, if we have a (β, ζ) approximation

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

for each W̃ (i, j), 1 ≤ i < j ≤ t, then by Lemma 15 we
can compute a (tβ, t2ζ)-approximation for Wt+1.

Proof. Union bound on failure probabilities of all
W̃ (i, j), 1 ≤ i < j ≤ t gives we have a β approxi-
mation for each with probability at least 1− t2ζ. This
covers failure for all terms in Wi, 2 ≤ i ≤ t. Further,
by induction, the error for estimates for Wi is at most
(i− 1)β. By Lemma 28, the error for Wt+1 estimates
is at most tβ.

Lemma 16. In Algorithm 2, for t ≥ 1, pt(ρ) =∑t
i=1 Ct,i

w̃(ρ;i,t)

W̃ (i,t)
. The coefficients Ct,i are given by

Ct,i =


1 i = t = 1

α i = t > 1

(1− α)Wt−1

Wt

W̃ (i,t)

W̃ (i,t−1)Ct−1,i i < t

and (Ct,1, . . . , Ct,t) lies on the probability simplex ∆t−1.

Proof of Lemma 16. At each iteration, pt is obtained
by mixing eutpt−1 with the uniform distribution, i.e.
we rescale distributions that pt−1 was a mixture of and
add one more. Another way to view it is to consider
a distribution over the sequences of exponentially up-
dated or randomly chosen points. The final probability
distribution is the mixture of a combinatorial number
of distributions but a large number of them have a
proportional density. Ct,i are simply sums of mixture
coefficients. This establishes the intuition for the ex-
pression for pt and that the mixing coefficients should
sum to 1, but we still need to convince ourselves that
the coefficients can be computed efficiently.
We proceed by induction on t. For t = 1 (using defini-
tions for w2(ρ) and w2(ρ))

p1(ρ) =
w1(ρ)

W1
=

1

Vol(C)
= C1,1

w̃(ρ; 1, 1)

W̃ (1, 1)

(recall w̃(ρ; 1, 1) := 1 and W̃ (1, 1) =
∫
C w̃(ρ; 1, 1)dρ).

For the inductive step, we first express pt+1 in terms
of pt

pt+1(ρ) =
wt+1(ρ)

Wt+1

= (1− α)
eλut(ρ)wt(ρ)

Wt+1
+

α

Vol(C)

= (1− α)
Wt

Wt+1

eλut(ρ)wt(ρ)

Wt
+

α

Vol(C)

= (1− α)
Wt

Wt+1
eλut(ρ)pt(ρ) +

α

Vol(C)

The lemma is now straightforward to see with induction
hypothesis.

pt+1(ρ)

=(1− α)
Wt

Wt+1
eλut(ρ)

[t∑
i=1

Ct,i
w̃(ρ; i, t)

W̃ (i, t)

]
+

α

Vol(C)

=

t∑
i=1

[
(1− α)

Wt

Wt+1
Ct,i

w̃(ρ; i, t+ 1)

W̃ (i, t)

]
+

α

Vol(C)

=

t∑
i=1

[(
(1− α)

Wt

Wt+1

W̃ (i, t+ 1)

W̃ (i, t)
Ct,i

)
w̃(ρ; i, t+ 1)

W̃ (i, t+ 1)

]
+
Ct+1,t+1

Vol(C)

=

t∑
i=1

Ct+1,i
w̃(ρ; i, t+ 1)

W̃ (i, t+ 1)
+
Ct+1,t+1

Vol(C)

Finally noting

Ct+1,t+1
w̃(ρ; t+ 1, t+ 1)

W̃ (t+ 1, t+ 1)
= Ct+1,t+1

1∫
C(1)dρ

=
Ct+1,t+1

Vol(C)

completes the proof.

Thus Wt (by Lemma 15) and Ct,i can be computed
recursively for logconcave utility functions using in-
tegration algorithm from [Lovász and Vempala, 2006].
We can compute them efficiently using Dynamic
Programming.
Finally it’s straightforward to establish that the
coefficients for pt must lie on the probability simplex
∆t−1. All coefficients are positive, which is easily seen
from the recursive relation and noting all weights are
positive. Also we know

pt(ρ) =

t∑
i=1

Ct,i
w̃(ρ; i, t)

W̃ (i, t)

Since pt(ρ) is a probability distribution by definition,
integrating both sides over C gives

∫
C
pt(ρ)dρ =

t∑
i=1

Ct,i

∫
C w̃(ρ; i, t)dρ

W̃ (i, t)
or,

1 =

t∑
i=1

Ct,i

Corollary 30. If we have a (β, ζ) approximation for
each W̃ (i, j), 1 ≤ i < j ≤ t, then by Corollary 29 and
Lemma 16 we can compute Ĉt+1,i which are (2tβ, t2ζ)-
approximation for each Ct+1,i.

Learning piecewise Lipschitz functions in changing environments

Proof. For i = t, we know Ct,i exactly by Lemma 16.
For i < t,

Ct,i = (1− α)t−i
Wi

Wt

W̃ (i, t)

Vol(C)
Ci,i (9)

In Corollary 29, we show how to compute ((i−1)β, (i−
1)2ζ)-approximation for Wi and ((t − 1)β, (t − 1)2ζ)-
approximation for Wt given (β, ζ) approximations for
each W̃ (i, j), 1 ≤ i < j ≤ t. A similar argument using
Lemma 28 shows with failure probability at most t2ζ,
plugging in the approximations in equation 9 has at
most (t+ i)β error.

Theorem 17. If utility functions are piecewise con-
cave and L-Lipschitz, we can approximately sample
a point ρ with probability pt+1(ρ) in time Õ(Kd4T 4)
for approximation parameters η = ζ = 1/

√
T and

λ =
√
s(d ln(RT β) + ln(T/s))/T/H and enjoy the

same regret bound as the exact algorithm. (K is number
of discontinuities in ut’s).

Proof of Theorem 17. Based on Lemma 16, we can
sample a uniformly random number r in [0, 1] and
then sample a ρ from one of t distributions (selected
based on r) that pt(ρ) is a mixture of with proba-
bility proportional to Ct,i. The sampling from the
exponentials can be done in polynomial time for con-
cave utility functions using sampling algorithm of
[Bassily et al., 2014]. At each round we sample from ex-
actly one of t distributions in the sum for pt in Lemma
16. We compute (η/6T, ζ/2T 2) approximations for
W̃ (i, j), 1 ≤ i < j ≤ T in time O(T 2K.T∫) where T∫ is
the time to integrate a logconcave distribution (at most
Õ(d4/ε2) from [Lovász and Vempala, 2006]). These
give (η/3, ζ/2)-approximation for Ct,i’s by corollary 30.
Finally we run Algorithm 2 from [Balcan et al., 2018a]
with approximation-confidence parameters (η/3, ζ/2).
With probability at least 1− ζ, Ct,i estimation and ρ
sampling according to w̃(ρ; i, t) succeeds. If µ̂ denotes
output distribution of ρ with approximate sampling,
and µ denotes the exact distribution per pt(ρ), then we
show D∞(µ̂, µ) ≤ η. Indeed, for any set of outcomes
E ⊂ C

µ̂(E) = Pr(ρ̂ ∈ E) =

t∑
i=1

Pr(ρ̂ ∈ E | Ei,t)Pr(Ei,t)

=

t∑
i=1

µ̂i(E)
Ĉt,i∑
j Ĉt,j

where Ei,t denotes the event that w̃(ρ; i, t) was used for
sampling pt(ρ), and µ̂i corresponds to the distribution
for approximate sampling of w̃(ρ; i, t). Noting that we
used η/3 approximation for µ̂i and each Ĉt,i, we have

µ̂(E) ≤
t∑
i=1

eη/3µi(E)e2η/3
Ct,i∑
j Ct,j

= eηµ(E)

Similarly, µ̂(E) ≥ e−ηµ(E) and hence D∞(µ̂, µ) ≤ η.
Finally we can show (cf. Theorem 12 of
[Balcan et al., 2018a]) that with probability at
least 1 − ζ the expected utility per round of the
approximate sampler is at most a (1 − η) factor
smaller than the expected utility per round of the
exact sampler. Together with failure probability of
ζ, this implies at most (η + ζ)HT additional regret
which results in same asymptotic regret as the exact
algorithm for η = ζ = 1/

√
T .

To compute the time complexity, we note from
[Lovász and Vempala, 2006] that logconcave functions
can be integrated in Õ(d4/ε2) and sampled from in
Õ(d3) time. The time to integrate dominates the
complexity, and the overall complexity can be up-
per bounded by O(T 2K · d4/(η/T)2) = O(KT 4d4).
Note: The approximate integration and sampling are
only needed for multi-dimensional case, for the one-
dimensional case we can compute the weights and sam-
ple exactly in polynomial time.

F Lower bounds

We start with a simple lower bound argument for
s-shifted regret for prediction with two experts based
on a well-known Ω(

√
T) lower bound argument for

static regret. We will then extend it to the continuous
setting and use it for the Ω(

√
sT) part of the lower

bound in Theorem 18 in Section 6.

Lemma 31. For prediction with two experts, there
exists a stochastic sequence of losses for which the s-
shifted regret of any online learning algorithm satisfies

E[RT] ≥
√
sT/8

Proof. Let the two experts predict 0 and 1 respectively
at each time t ∈ [T]. The utility at each time t is
computed by flipping a coin - with probability 1/2 we
have u(0) = 1, u(1) = 0 and with probability 1/2 it’s
u(0) = 0, u(1) = 1. Expected payoff for any algorithm
A is

P (A, T) = E
[T∑
t=1

ut(ρt)
]

=

T∑
t=1

E[ut(ρt)] =
T

2

since expected payoff is 1/2 at each t no matter which
expert is picked.
To compute shifted regret we need to compare this
payoff with the best sequence of experts with s − 1
switches. We compare with a weaker adversary A′
which is only allowed to switch up to s− 1 times, and

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

(a) MNIST (b) Omniglot_small_1 (c) Omniglot (full)

Figure 3: Average k-shifted regret vs game duration T for online clustering against k-shifted distributions. Color
scheme: Exponential Forecaster, Fixed Share EF, Generalized Share EF

switches at only a subset of fixed times ti = iT/s to
lower bound the regret.

E[RT] = OPT − P (A, T)

≥ P (A′, T)− P (A, T)

=

T∑
t=1

E[ut(ρ
′
t)]−

T∑
t=1

E[ut(ρt)]

=

s−1∑
i=0

ti+1∑
t=ti+1

E[ut(ρ
′
t)]− E[ut(ρt)]

Now let Pi,j =
∑ti+1

t=ti+1 E[ut(j)] for i + 1 ∈ [s] and
j ∈ {0, 1}

ti+1∑
t=ti+1

E[ut(ρ
′
t)] = max

ρ∈{0,1}

ti+1∑
t=ti+1

E[ut(ρ)]

=
1

2

[
Pi,0 + Pi,1 + |Pi,0 − Pi,1|

]
=
T

2s
+ |Pi,0 − T/2s|

using Pi,0 + Pi,1 = T/s. Thus,

E[RT] ≥
s−1∑
i=0

[(T
2s

+ |Pi,0 − T/2s|
)
− T

2s

]
=

s−1∑
i=0

|Pi,0 − T/2s|

Noting Pi,0 =
∑ti+1

t=ti+1 E[ut(0)] =
∑ti+1

t=ti+1

(
1+σt

2

)
where σt are Rademacher variables over {−1, 1} and
applying Khintchine’s inequality (see for example
[Ben-David et al., 2009]) we get

E[RT] ≥
s−1∑
i=0

∣∣∣∣ ti+1∑
t=ti+1

σt/2

∣∣∣∣ ≥ s−1∑
i=0

√
T/8s =

√
sT/8

Corollary 32. We can embed the two-expert setting
to get a lower bound for the continuous case.

Proof. Indeed in Lemma 31 let C = [0, 1], expert 0
correspond to ρ1 = 1/4, expert 1 corresponds to ρ2 =
3/4 and replace the loss functions by

u(0)(ρ) =

{
1 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
0 if ρ < 1

2

1 if ρ ≥ 1
2

We can further generalize this while dispersing the
discontinuities somewhat. Instead of having all the
discontinuties at ρ = 1

2 , we can have discontinuities
dispersed say within an interval [13 ,

2
3] and still have

Ω(
√
sT) regret.

G Experiments

We supplement our results in Section 7 by looking at
different changing environments and comparing with
performance in the static environment setting. We
also look at differences between Generalized and Fixed
Share EFs.

G.1 Frequently changing environments

In Section 7 we presented a comparison of our algo-
rithms Fixed Share EF (Algorithm 2) and General-
ized Share EF (Algorithm 3) with the Exponential
Forecaster algorithm of [Balcan et al., 2018a] for online
clustering using well-known datasets. We evaluated
the 2-shifted regret for problems where the clustering
instance distribution changed exactly once and com-
pletely at T/2. Here we consider experiments with
environments that change more gradually but more
frequently.

We consider a sequence of clustering instances drawn
from the four datasets. At each time t ≤ T ≤ 50 we
sample a subset of the dataset of size 100. For each

Learning piecewise Lipschitz functions in changing environments

T , we take uniformly random points from all but one
classes. The omitted class is changed every T/k rounds,
where k is the total number of classes for the dataset.
We use parameters α = k−1

T , γ = 1
T in our algorithms.

We determine the hamming cost of (ᾱ, 2)-Lloyds++-
clustering for α ∈ C = [0, 10] which is used as the
piecewise constant loss function.

We compute the average regret against the best offline
algorithm with k shifts. In Figure 3 we plot the average
of 20 runs for each dataset. The average regret is higher
for all algorithms here since the k-shifted baseline is
stronger.

G.2 Generalized vs Fixed Share EFs

(a) MNIST

(b) Omniglot_small_1

(c) Omniglot (full)

Figure 4: Number of recurrences of various values of α
in the top decile across all rounds

We note that Generalized Share EF performs better
on most problem instances. This is because it is better

able to use recurring patterns in good values for the
parameter that occur non-contiguously, which depends
upon the dataset and the problem instance. We verify
this hypothesis by a simple experiment (Figure 4).

We compute the set of intervals containing the top
10% of the measure of α ∈ [0, 10] for each t and sum
up occurrences of such intervals across all rounds. We
observe most recurrences in Omniglot_small_1 dataset,
which explains the large gap between Generalized vs
Fixed Share EFs.

G.3 Comparison with static environments

We compare the performance of Fixed Share EF with
Exponential Forecaster in static vs dynamic environ-
ments on the MNIST dataset. For the changing envi-
ronment we consider the setting of Section 7, where
we present clustering instances for even digits for t = 1
through t = T/2 and odd digits thereafter. For the
static environment we continue to present clustering
instances from even labeled digits even after t = T/2.
We plot the 2-shifted regret in both cases for easier
comparison (Figure 5). Note that even though static
regret is the more meaningful metric in a static environ-
ment, this only changes the baseline and the relative
performance of algorithms is unaffected by this choice.

(a) static environment

(b) dynamic environment

Figure 5: Average 2-shifted regret vs game duration
T for online clustering against static/dynamic distri-
butions for the MNIST dataset. Color scheme: Expo-
nential Forecaster, Fixed Share EF

Maria-Florina Balcan, Travis Dick, Dravyansh Sharma

(a) {0, 2, 4, 6, 8} (b) {0, 1, 2, 3, 4} (c) {2, 3, 5, 6, 9}

(d) {1, 3, 4, 8, 9} (e) {0, 4, 5, 7, 8} (f) Average

Figure 6: Average 2-shifted regret vs game duration T for online clustering against various dynamic instances for
the MNIST dataset. Color scheme: Exponential Forecaster, Fixed Share EF

Notice that Fixed Share EF is slightly better in the
static environment but significantly better in the dy-
namic environment. It’s also worthwhile to note that
while the performance of Exponential Forecaster de-
grades with changing environment, Fixed Share EF
actually improves in the dynamic environment since
the exploratory updates are more useful.

G.4 Different environments from the same
dataset

We look at 2-shifted regret of MNIST clustering in-
stances with the same setting as in Section 7 but with
different partitions of clustering classes (i.e. classes
used before and after T/2). The results are summa-
rized in Figure 6. For each instance we note the set of
5 digits used for drawing uniformly random clustering
instances from MNIST till T/2, the complement set is
used for the remaining rounds. We observe that perfor-
mance gap between Fixed Share EF and Exponential
Forecaster depends not only on the dataset, but also
on the clustering instance from the dataset. Across sev-
eral partitions, Fixed Share EF performs significantly
better on average (Figure 6 (f)).

	Introduction
	Problem setup
	Algorithms with low shifting regret
	Analysis of algorithms
	Regret bounds
	Proof sketch and insights

	Efficient implementation
	Lower bounds
	Experiments
	Discussion and open problems
	Acknowledgements
	Discretization based algorithm
	Counterexamples
	Analysis of algorithms
	Adaptive Regret
	Efficient Sampling
	Lower bounds
	Experiments
	Frequently changing environments
	Generalized vs Fixed Share EFs
	Comparison with static environments
	Different environments from the same dataset

