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Abstract

In this paper, we introduce Differentiable Fea-
ture Selection, a gradient-based search algo-
rithm for feature selection. Our approach
extends a recent result on the estimation of
learnability in the sublinear data regime by
showing that the calculation can be performed
iteratively (i.e., in mini-batches) and in lin-
ear time and space with respect to both the
number of features D and the sample size
N . This, along with a discrete-to-continuous
relaxation of the search domain, allows for
an efficient, gradient-based search algorithm
among feature subsets for very large datasets.
Our algorithm utilizes higher-order correla-
tions between features and targets for both
the N > D and N < D regimes, as opposed
to approaches that do not consider such cor-
relations and/or only consider one regime.
We provide experimental demonstration of
the algorithm in small and large sample- and
feature-size settings.

1 Introduction

We consider the problem of feature selection in super-
vised learning tasks. Feature selection remains a crucial
step in machine learning pipelines and continues to see
active research (e.g., Aghazadeh et al. (2018); Abid
et al. (2019)). Earlier application of feature selection
methods, such as those in computational biology, con-
sidered settings where the number of features available
was large and the sample size was relatively small. The
goal was to choose a small subset of features with good
explanatory power and doing so required statistically
efficient feature selection methods. More recent appli-
cations of feature selection methods (e.g., in natural
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language processing) are characterized both by large
sample sizes and large feature spaces, making compu-
tational efficiency another key requirement.

To address these challenges, several feature selection
methods have been proposed over the years. These
methods can be broadly categorized as either wrapper
or filter methods. Wrapper methods utilize a prescribed
model to select features by training and evaluating the
model on different feature subsets (Kohavi and John,
1997). Filter methods utilize a computationally cheap
evaluation criterion to rank features individually or in
certain combinations (Yu and Liu, 2003). In addition
to hybrid combinations of these basic approaches, em-
bedded feature selection methods that perform joint
model selection and training have also been proposed.
An example of such hybrid methods is the lasso (Tib-
shirani, 1996). Generally, wrapper methods give better
results since they directly evaluate the final supervised
learning task. However, they are also the most com-
putationally demanding, since they require training
and evaluating a model per proposed feature subset.
Filter methods are considered computationally cheaper
alternatives with better scaling, but are generally based
on heuristic objectives.

In this paper, our goal is to develop a feature selection
method that is statistically efficient (i.e., identifies a
high-quality subset of features for a linear model in
N < D settings), and computationally efficient (i.e.,
scales to millions of samples and features). Ideally, the
method should consist of primitive operations that can
be accelerated using GPUs.

We build such a method starting from a recent re-
sult by Kong and Valiant (2018) in which the authors
present an estimator for the accuracy induced by a
set of features in a linear model. While this estimator
has desirable statistical properties, it can only assess
the “quality” of a given set of features and doesn’t
prescribe a procedure for selecting a specific set of
features. In the following, we treat feature selection
as a combinatorial optimization problem and employ
a discrete relaxation to efficiently traverse the space
of possible feature sets. Our algorithm combines the
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strong statistical properties of the Kong and Valiant
(2018) estimator with the ability to search over com-
plex optimization spaces via standard gradient descent.
Specifically, the method we propose has the following
properties:

• Low computational complexity. The complexity
scales linearly both with the sample size and the
number of features, enabling feature selection even
in large datasets.

• High statistical efficiency. The estimation accu-
racy degrades sublinearly with increasing dimen-
sion allowing for accurate search over large fea-
turization spaces consisting of millions of features.
For example, increasing the number of features by
a factor γ > 1 only requires a factor of

√
γ increase

in the number of samples to maintain the same
level of accuracy.

• Efficient utilization of higher-order correlations.
Utilizing higher-order feature correlations to im-
prove the quality of selection only incurs a constant
increase in time and space complexity with each
additional order.

The final property is described next after introducing
the objective used to perform search.

2 Differentiable Feature Selection
(DFS)

Our algorithm is based on recent work on the learnabil-
ity of linear models by Kong and Valiant (2018) which
provides high probability bounds on the performance of
linear predictors in high-dimensional regression (resid-
ual variance) and classification (accuracy). In particu-
lar, the bounds for the estimators they introduce have
a sublinear dependence on dimension, highlighting the
possibility of making well-informed decisions on which
feature subset would be most useful for a dataset on
a task with relatively little data. We start by giving
a brief description of these estimators, moving on to
show how they can be modified and utilized for feature
selection by means of optimization over a continuous
space. For clarity of exposition, we focus on the regres-
sion case, but the same ideas and approach hold for
classification.

Given inputs X ∈ RN×D, targets y ∈ RN , a posi-
tive integer k, and {ai}k−1i=0 with ai ∈ R, the residual
variance estimate for a subset of features denoted by
s ∈ {0, 1}D in the linear regression model of Kong and

Valiant (2018) is given by

f(s) =
y>y

N
−
k−1∑
i=0

ai(
N
i+2

)y>triud(Xdiag(s)X>)i+1y,

(1)
where triud(·) denotes the operation that zeros out
the lower triangular portion and diagonal entries of a
square matrix. The assumptions for the high proba-
bility bound to hold include i.i.d. examples/labels and
bounded moments1.

The parameter k defines the order of the estimator and
is related to the degree of a “greater-than-linear” poly-
nomial approximation to h(x) = x as described in Kong
and Valiant (2018)2 Increasing k in (1) results in higher-
order correlations between features being taken into
account in the residual variance computation thereby
increasing the quality of the estimate. By increasing
the quality, a potentially better set of features can be
located for a linear model in those features. We note
that the polynomial coefficients {ai} for any order can
be computed offline.

Now, we show that (1) can be efficiently computed:

Lemma 2.1. The function (1) requires O(ND) time
and O(N) space.

The following proposition is useful in proving
Lemma 2.1.

Proposition 2.1. For z ∈ RN and y ∈ RN , the oper-
ation triud(zz>)y requires O(N) time and space.

Proof. Expanding the first operation, we have

triud(zz>)y =


z1z2y2 + z1z3y3 + · · ·+ z1zNyN

z2z3y3 + · · ·+ z2zNyN
...

zN−1zNyN
0

 .

Letting u = z ◦ y,

triud(zz>)y =


z1
∑N
i=2 ui

z2
∑N
i=3 ui
...

zN−1uN
0

 ,

where the elements (
∑N
i=2 ui,

∑N
i=3 ui, . . . , uN , 0) can

be calculated from u with a (reverse) cumulative sum
in O(N). Since computing u and performing the inner

product between z and (
∑N
i=2 ui,

∑N
i=3 ui, . . . , uN , 0)>

are also O(N), the total cost is linear in N .
1Specifically, the 2nd and 4th order moments for the

examples and variance for the noise are assumed to be
bounded.

2See proposition 8.
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Proof of Lemma 2.1. For X ∈ RN×D, let X:d for 1 ≤
d ≤ D represent the d-th column of X. Then, note

y>triud(Xdiag(s)X>)i+1y = (2)

= y>
( D∑
d=1

sdtriud(X:dX
>
:d)
)i+1

y (3)

= y>
( D∑
d=1

sdGd

)
· · ·︸ ︷︷ ︸

i terms

( D∑
d=1

sdGd

)
y, (4)

where Gd , triud(X:dX
>
:d). From Proposition 2.1, it

follows that computing
∑D
d=1 sdGdy requires O(ND)

time and O(N) space. This operation can be iterated
i additional times without increasing the time or space
complexity.

Therefore, (1) can be utilized as an efficiently com-
putable filter criterion. However, given a prescribed
number of desired features 1 ≤ d ≤ D, the use of (1) for
search over s ∈ {0, 1}D subject to ‖s‖0 = d is limited
since the general problem is NP-hard (Natarajan, 1995).
To achieve an approximate, tractable solution, we relax
the discrete search domain to a continuous domain via
the transformation s = σ(v) where v ∈ RD and the
“squashing” function σ(·) : R 7→ [0, 1] is applied element-
wise. The relaxed, unconstrained optimization is then
given by arg minv∈RD f(σ(v)), which is amenable to
solution by gradient-based search in v. Further, mini-
batches of data can be utilized for increased efficiency.
In our experiments, we enforce model parsimony with
the penalty term λ

D‖s‖1 = λ
D

∑D
d=1 σ(vd) where se-

lection of the regularization parameter λ > 0 can be
accomplished with grid search evaluated on a validation
set.

The associated bound of Kong and Valiant (2018) for
classification (logistic regression) assumes (i) i.i.d. ex-
amples/labels, (ii) zero-mean Gaussian examples, and
(iii) bounded spectral norm. We further note that the
objective (plus penalty) is non-convex and likely has
many local optima. However, as we demonstrate in the
experiments, the algorithm is able to identify better
feature subsets than competing methods in practical
applications, where these conditions may not hold.

3 Related work

The research on feature selection is vast, and we cannot
hope to provide a list here with any claim to being
comprehensive. Instead, we highlight relevant work
with a focus on more recent scalable filter approaches.
The interested reader can refer to Guyon and Elisseeff
(2003) for a broader overview and Saeys et al. (2007)

and Forman (2003) for domain-specific reviews in key
application areas.

As mentioned previously, wrapper methods generally
produce high quality feature subsets since they opti-
mize directly for the desired supervised learning task.
However, here, we seek a general scalable solution that
can support arbitrary follow-on tasks. Moreover, in
the N � D regime, approaches that attempt to train
a model risk overfitting or underfitting. In contrast,
we are proposing method that produces high-quality
estimates of feature subset performance.

Standard filter criteria for classification include the
one-way ANOVA test among class means and mutual
information (computed per feature dimension). Like
DFS, the ANOVA computation is linear in sample size
and dimension, but is “greedy” in selection in that
features are evaluated in isolation.

The filter algorithm of Yu and Liu (2003, 2004) uti-
lizes a normalized mutual information as correlation
measure to first identify target-correleated features,
and then, from this set, perform rounds of elimina-
tion of redundant features, where redundant is also
defined w.r.t. the same correlation measure. Assum-
ing an average case performance of eliminating half of
all target-correlated features per round, the algorithm
complexity is O(ND logD); the worst-case complexity
is O(ND2).

Concrete and related relaxations developed for latent
variable models (Jang et al., 2016; Maddison et al.,
2016) offer an avenue for embedded feature selection.
Of these, the closest work is that of Abid et al. (2019)
which presents an unsupervised approach that selects a
prescribed number d of features by learning d (parallel)
Concrete distributions over the input features. Training
an autoencoding neural network architecture yields a
subset of features that are useful for reconstructing the
full-dimensional inputs, and, to an extent, supporting
follow-on supervised learning tasks. However, a neural
network architecture must be specified per problem
instance and trained which is a problem that can be
generally as difficult as subset selection. Convex relax-
ations of “`0”-regularized approaches (e.g., Tibshirani
(1996)) relax the objective function rather than the
search space. Our particular relaxation is more in line
with that of Liu et al. (2018).

Of the recent approaches for streaming feature selec-
tion (Sun et al., 2009; Yu et al., 2014), the MISSION
algorithm (Aghazadeh et al., 2018) most closely con-
siders the same setting we do. MISSION utilizes a
Count-Sketch data structure to store a running, com-
pressed gradient of a generalized linear model which
provides scalability to very high dimensional datasets.
However, the gradient information is effectively based
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on a 1st-order estimate of the residual variance.

4 Experiments

We validate the performance of our method for classifi-
cation tasks in both small and large datasets. Small
datasets allow us to carefully examine the performance
of the different algorithms we consider in cases where
N � D, whereas the larger datasets are useful to
demonstrate scalability to large sample size and large
dimension, in both the N > D and N < D regimes.
In cases where the total number of features is on the
order of the sample size or greater, statistical accuracy
will dominate the selection quality. In cases where the
sample size is large, computational efficiency will be
a limiting factor for selection algorithms. For small
datasets, we compare Differentiable Feature Selection
to traditional filter methods. In the large-scale set-
ting, where traditional filter methods would be too
computationally expensive, we compare to MISSION
(Aghazadeh et al., 2018), a recently-proposed algorithm
that can perform efficient feature selection by means
of count sketching. The datasets used in these experi-
ments are summarized in Table 1.

The evaluation methodology consisted of first running
our method and the competitors on train to yield fea-
ture subsets of varying sizes. Then, a logistic regression
model is fit per subset with train features (batch-trained
for small datasets, SGD-trained for large datasets). Fi-
nally, the fitted models are evaluated on test with area
under the curve (AUC) as the performance metric. In
this way, performance curves of AUC as a function of
feature subset size are recorded per dataset.

DFS implementation. Prior to performing the con-
tinuous search, we (i) center the data matrix, X, per
dimension, and (ii) estimate the largest singular value of
the covariance of X and divide the centered data matrix
by the square root of this value. Both of these opera-
tions are performed3 in order to meet the requirements
of the Kong and Valiant (2018) estimator. Specifically,
dividing by the square root of the largest singular value
allows a single set of degree-k polynomial coefficients
to be used for all input data matrices. The centering
and singular value estimation are performed on the
entire data matrix except in the cases of webspam and
criteo where it is estimated from a sub-sample of size
10,000. Adam (Kingma and Ba, 2014) with learning
rate 10−1 (and other parameters set to default) with a
gradient clipping value of 1.0 (max 2-norm) was used in
all cases. For the small data experiments, the stopping

3The operations are performed only during the feature
selection stage. Subsequent training and evaluation use raw
data.

Dataset D Ntrain Ntest

mnist35 784 11,552 1902
gisette 5000 6000 1000
rcv1 47,236 20,242 677,399
webspam 16,609,143 280,000 70,000
criteo 1,000,000 45,840,617 6,042,135

Table 1: Binary classification datasets.

criteria were 1000 maximum iterations or the relative
change in objective function dropping below 10−5. In
the large-scale experiments, training was performed for
one epoch. Mini-batch sizes are described in the rele-
vant sections. The squashing function was σ(2x) where
σ(·) is the sigmoid function (this choice of squashing
function is equivalent to 1

2 (tanh(x) + 1)).

Software is available at https://github.com/

rsheth80/dfs/.

Small datasets. The smaller dimensional datasets
are:

• mnist35. Classification of 3s vs. 5s in the MNIST
dataset with random noise added to produce a
more challenging scenario. Samples are shown in
Figure 1.

• gisette. Used in the 2003 NIPS feature selection
challenge.

Beyond benchmarking the performance of our method,
the goal of this experiment is to provide an intuitive
visual representation of the features selected by DFS.
We first discuss performance on the mnist35 dataset.

Figure 2 compares the performance of our method with
two filter-based methods implemented in scikit-learn.
One computes ANOVA F-values between features and
targets (SKF) and the other computes mutual infor-
mation (SKMI). In each subplot, DFS performance
is given by the y-axis, and competitor performance is
given by the x-axis. As described in the experimental
methodology, each point represents the output of fea-
ture selection at a given feature subset size denoted by
color. Generally, better performance is achieved when
increasing the desired number of features (however, as
demonstrated in the subplots for gisette, this trend
does not hold uniformly across datasets).

Our method significantly outperforms both baselines
across a range of feature subset sizes. As a whole, the
improvement given by DFS is statistically significant
at a significance level of 0.01 with a p-value < 10−4,
based on a paired t-test between AUCs obtained by
each baseline and AUCs obtained by our method.

https://github.com/rsheth80/dfs/
https://github.com/rsheth80/dfs/
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Figure 1: mnist35 input examples.
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Figure 2: DFS order 6 performance vs. standard filter methods SKF (left) and SKMI (right) on mnist35 (top)
and gisette (bottom). Points above the dashed line indicate where DFS outperformed the competitor and vice
versa below the dashed line. The color of the points denotes the feature subset size.
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5 10 15 20 25 30 40 50

Figure 3: Feature selection on mnist35. The different columns represent different feature subset sizes (denoted
below the bottom row). The features selected by the filter method utilizing the one-way ANOVA criterion (top)
and by DFS order 6 (bottom) are colored according to their (normalized) scores.
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Figure 4: Scores (y-axis) as a function of DFS order
(x-axis) on mnist35 (top) and gisette (bottom). Each
dot for a given order corresponds to a different number
of features selected. The boxplots show median, upper
and lower quartile of each distribution. The statistical
significance of the improvement between orders 1 and
6 was measured with a paired t-test: for mnist35, the
p-value is < 10−4; for gisette, the p-value is 0.043.

In Figure 3, we highlight which features within the im-
ages are selected by the previous filter-based approach,
SKF (top), and our algorithm (bottom). In particular,
we plot values of the feature scores, i.e., elements of the
solution s = σ(v) for different settings of the penalty λ
corresponding to different amounts of sparsity. Across
all the sparsity levels we considered, the selected fea-
tures tended to cluster in the top half of the image.
Indeed, it’s easy to see that the most useful features to
distinguish the digit “3” from the digit “5” are those
located where the “upper loop” in the digit closes or
opens. However, in contrast to the features selected by
filter-based methods, which tend to concentrate owing
to considering only single features at a time, the DFS-
selected features can be more “diffuse” owing to the
simultaneous consideration of multiple features which
may not be “spatially close” but are more predictive
of the target as a group.

Finally, we investigate whether increasing the order
of the estimator produces significant improvements in
accuracy. In Figure 4, we show the distribution of the
AUCs for subsets of different sizes across different or-
ders of the estimator. Overall, we see that higher orders
correspond to better performance. We measure sta-
tistical significance with a paired t-test (paired across
feature subsets sizes) and find that the improvement
between order 6 and order 1 is statistically significant
with a p-value of < 10−4 for mnist35 (top).

We repeat the same experiments for gisette, an even
more challenging dataset in which the number of fea-
tures is close to the number of samples available. The
results in Figure 2 bottom left and right show that our
method shows significantly better performance than
the baselines we considered. As was the case for the
previous dataset, increasing the order of DFS signif-
icantly increases performance (Figure 4 bottom). In
general, we recommend using the highest computation-
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Figure 5: DFS order 4 performance vs. MISSION on rcv1 (top left), webspam (top right), and criteo (bottom
center).

ally feasible estimator order to maximize performance
on a given task.

Large-scale experiments. Here, we compare DFS
order 4 against MISSION on one moderate-sized
dataset rcv1 and two large datasets webspam and criteo.
In the case of rcv1, a mini-batch size of 1000 was used.
For webspam, the mini-batch size was 8, and for criteo
it was 100. In these two latter cases, the mini-batch
size was selected to be the largest that would fit into
GPU memory on an NVIDIA Tesla P100. Also, in the
latter two datasets, gradients were accumulated up to
a size of 1000 examples. After training DFS for one
epoch to learn the feature subsets, the MISSION code
was used to train and evaluate an SGD classifier using
the selected features. To support a fair comparison, the
authors’ code was modified to support this evaluation4.
MISSION was then also run for the selected number of
features.

Figure 5 shows the performance of DFS order 4 vs.
MISSION on rcv1 (top left) and webspam (top right).
For both datasets, DFS is able to locate feature subsets

4Specifically, we modified the code to allow a set of
features to be input prior to test.

resulting in test set performance significantly better
than MISSION (significance level 0.01, with p-values of
0.0064 and 0.0201 for rcv1 and webspam, respectively).
Notably, for the webspam dataset, DFS order 4 is able
to maintain 0.92 AUC on test with just 22 features
selected out of over 16 million.

Finally, as shown in Figure 5 bottom, DFS signifi-
cantly (p-value < 10−4) outperforms MISSION on
criteo across all the sparsity levels (i.e., number of
features) considered.

5 Conclusion

As the experiments show, our proposed method, Dif-
ferentiable Feature Selection, results in feature subsets
that are more predictive of the targets than standard
filter-based methods on small datasets as well as state-
of-the-art streaming feature selection on large datasets.
The main limitation of DFS lies in the data centering
step performed per mini-batch, which results in large
memory utilization. In memory-constrained environ-
ments (e.g., when using GPUs to accelerate compu-
tations), this issue can be mitigated by accumulating
gradients. However, avoiding the data centering step
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entirely would result in better memory usage and faster
computation, for example, when dealing with sparse
data. We will focus on this aspect in future work.

Differentiable Feature Selection can be trivially ex-
tended to the multi-classification setting via the stan-
dard softmax relaxation applied across multiple out-
puts. Additionally, our method is also capable of “on-
line” feature selection, where instances are presented
one at a time. Preliminary results (not shown) indicate
that DFS is capable of tracking which feature subsets
are most correlated with the target as a function of
time on criteo. A promising direction would be to com-
bine DFS with dynamic feature engineering wherein
features are iteratively constructed, rather than first
expanded and then filtered, as done in this paper.
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