## A Supplementary Material

## A. 1 The proposed DAve-QN method with exact time indices

| Algorithm 2 Illustration of the DAve-QN Algorith |  |
| :---: | :---: |
| Master: | Worker $i$ : |
| ```Initialize \(\mathbf{x}, \quad \mathbf{B}_{i}, \mathbf{g}=\sum_{i=1}^{n} \nabla f_{i}(\mathbf{x}), \quad \mathbf{B}^{-1}=\) \(\left(\sum_{i=1}^{n} \mathbf{B}_{i}\right)^{-1}, \mathbf{u}=\sum_{i=1}^{n} \mathbf{B}_{i} \mathbf{x}\), for \(t=1\) to \(T-1\) do If a worker sends an update: Receive \(\Delta \mathbf{u}, \mathbf{y}, \mathbf{q}, \alpha, \beta\) from it \(\mathbf{u}=\mathbf{u}+\Delta \mathbf{u}, \mathbf{g}=\mathbf{g}+\mathbf{y}, \mathbf{v}=(\mathbf{B})^{-1} \mathbf{y}\) \(\mathbf{U}=(\mathbf{B})^{-1}-\frac{\mathbf{v v}^{\top}}{\alpha+\mathbf{v}^{\top} \mathbf{y}}\) \(\mathbf{w}=\mathbf{U q},(\mathbf{B})^{-1}=\mathbf{U}+\frac{\mathbf{w w}^{\top}}{\beta-\mathbf{q}^{\top} \mathbf{w}}\) \(\mathbf{x}=(\mathbf{B})^{-1}(\mathbf{u}-\mathbf{g})\) end Send \(\mathbf{x}\) to the worker in return Interrupt all workers Output \(\mathrm{x}^{T}\)``` | Initialize $\mathbf{x}_{i}=\mathbf{x}, \mathbf{B}_{i}$ <br> while not interrupted by master do |

## A. 2 Proof of Lemma 1

Proof. To verify the claim, we need to show that $\mathbf{u}^{t}=\sum_{i=1}^{n} \mathbf{B}_{i}^{t} \mathbf{z}_{i}^{t}$ and $\mathbf{g}^{t}=\sum_{i=1}^{n} \nabla f_{i}\left(\mathbf{z}_{i}^{t}\right)$. They follow from our delayed vectors notation $\mathbf{z}_{i}^{t}=\mathbf{z}_{i}^{t-d_{i}^{t}}$ and how $\Delta \mathbf{u}^{t-d_{i}^{t}}$ and $\mathbf{y}_{i}^{t-d_{i}^{t}}$ are computed by the corresponding worker.

## A. 3 Proof of Lemma 2

To prove the claim in Lemma 2 we first prove the following intermediate lemma using the result of Lemma 5.2 in Broyden et al. (1973b).
Lemma 4. Consider the proposed method outlined in Algorithm 1. Let $\mathbf{M}$ be a nonsingular symmetric matrix such that

$$
\begin{equation*}
\left\|\mathbf{M} \mathbf{y}_{i}^{t}-\mathbf{M}^{-1} \mathbf{s}_{i}^{t}\right\| \leq \beta\left\|\mathbf{M}^{-1} \mathbf{s}_{i}^{t}\right\| \tag{21}
\end{equation*}
$$

for some $\beta \in[0,1 / 3]$ and vectors $\mathbf{s}_{i}^{t}$ and $\mathbf{y}_{i}^{t}$ in $\mathbb{R}^{p}$ with $\mathbf{s}_{i}^{t} \neq \mathbf{0}$. Let's denote $i$ as the index that has been updated at time $t$. Then, there exist positive constants $\alpha, \alpha_{1}$, and $\alpha_{2}$ such that, for any symmetric $\mathbf{A} \in \mathbb{R}^{p \times p}$ we have,

$$
\begin{align*}
\left\|\mathbf{B}_{i}^{t}-\mathbf{A}\right\|_{\mathbf{M}} \leq & {\left[\left(1-\alpha \theta^{2}\right)^{1 / 2}+\alpha_{1} \frac{\left\|\mathbf{M} \mathbf{y}_{i}^{t-D_{i}^{t}}-\mathbf{M}^{-1} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}{\left\|\mathbf{M}^{-1} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}\right]\left\|\mathbf{B}_{i}^{t-D_{i}^{t}}-\mathbf{A}\right\|_{\mathbf{M}} } \\
& +\alpha_{2} \frac{\left\|\mathbf{y}_{i}^{t-D_{i}^{t}}-\mathbf{A} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}{\left\|\mathbf{M}^{-1} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|} \tag{22}
\end{align*}
$$

where $\alpha=(1-2 \beta) /\left(1-\beta^{2}\right) \in[3 / 8,1], \alpha_{1}=2.5(1-\beta)^{-1}, \alpha_{2}=2(1+2 \sqrt{p})\|\mathbf{M}\|_{\mathbf{F}}$, and

$$
\begin{equation*}
\theta=\frac{\left\|\mathbf{M}\left(\mathbf{B}_{i}^{t-D_{i}^{t}}-\mathbf{A}\right) \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}{\left\|\mathbf{B}_{i}^{t-D_{i}^{t}}-\mathbf{A}\right\|_{\mathbf{M}}\left\|\mathbf{M}^{-1} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|} \quad \text { for } \mathbf{B}_{i}^{t-D_{i}^{t}} \neq \mathbf{A}, \quad \theta=0 \quad \text { for } \mathbf{B}_{i}^{t-D_{i}^{t}}=\mathbf{A} \tag{23}
\end{equation*}
$$

Proof. By definition of delays $d_{i}^{t}$, the function $f_{i}$ was updated at step $t-d_{i}^{t}$ and $\mathbf{B}_{i}^{t-1}$ is equal to $\mathbf{B}_{i}^{t-D_{i}^{t}}$. Considering this observation and the result of Lemma 5.2 in Broyden et al. (1973b), the claim follows.

Note that the result in Lemma 4 characterizes an upper bound on the difference between the Hessian approximation matrices $\mathbf{B}_{i}^{t}$ and $\mathbf{B}_{i}^{t-D_{i}^{t}}$ and any positive definite matrix $\mathbf{A}$. Let us show that matrices $\mathbf{M}=\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}$ and $\mathbf{A}=\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)$ satisfy the conditions of Lemma 4. By strong convexity of $f_{i}$ we have $\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\| \geq$ $\sqrt{\mu}\left\|\mathbf{s}_{i}^{t-D_{i}^{t}}\right\|$. Combined with Assumption 2 , it gives that

$$
\begin{equation*}
\frac{\left\|\mathbf{y}_{i}^{t-D_{i}^{t}}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right) \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}{\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|} \leq \frac{\tilde{L}\left\|\mathbf{s}_{i}^{t-D_{i}^{t}}\right\| \max \left\{\left\|\mathbf{z}_{i}^{t-D_{i}^{t}}-\mathbf{x}^{*}\right\|,\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|\right\}}{\sqrt{\mu}\left\|\mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}=\frac{\tilde{L}}{\sqrt{\mu}} \sigma_{i}^{t} \tag{24}
\end{equation*}
$$

This observation implies that the left hand side of the condition in 21 for $\mathbf{M}=\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}$ is bounded above by

$$
\begin{equation*}
\frac{\left\|\mathbf{M} \mathbf{y}_{i}^{t-D_{i}^{t}}-\mathbf{M}^{-1} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}{\left\|\mathbf{M}^{-1} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|} \leq \frac{\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}\right\|\left\|\mathbf{y}_{i}^{t-D_{i}^{t}}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right) \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|}{\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2} \mathbf{s}_{i}^{t-D_{i}^{t}}\right\|} \leq \frac{\tilde{L}}{\mu} \sigma_{i}^{t} \tag{25}
\end{equation*}
$$

Thus, the condition in 21 is satisfied since $\tilde{L} \sigma_{i}^{t} / \mu<1 / 3$. Replacing the upper bounds in 24) and 25) into the expression in 22 implies the claim in 20 with

$$
\begin{equation*}
\beta=\frac{\tilde{L}}{\mu} \sigma_{i}^{t}, \alpha=\frac{1-2 \beta}{1-\beta^{2}}, \alpha_{3}=\frac{5 \tilde{L}}{2 \mu(1-\beta)}, \alpha_{4}=\frac{2(1+2 \sqrt{p}) \tilde{L}}{\sqrt{\mu}}\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-\frac{1}{2}}\right\|_{\mathbf{F}} \tag{26}
\end{equation*}
$$

and the proof is complete.

## A. 4 Proof of Lemma 3

We first state the following result from Lemma 6 in Mokhtari et al. 2018a, which shows an upper bound for the error $\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|$ in terms of the gap between the delayed variables $\mathbf{z}_{i}^{t}$ and the optimal solution $\mathbf{x}^{*}$ and the difference between the Newton direction $\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)$ and the proposed quasi-Newton direction $\mathbf{B}_{i}^{t}\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)$.
Lemma 5. If Assumptions 1 and 2 hold, then the sequence of iterates generated by Algorithm 1 satisfies

$$
\begin{equation*}
\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\| \leq \frac{\tilde{L} \Gamma^{t}}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|^{2}+\frac{\Gamma^{t}}{n} \sum_{i=1}^{n}\left\|\left(\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right)\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)\right\| \tag{27}
\end{equation*}
$$

where $\Gamma^{t}:=\left\|\left((1 / n) \sum_{i=1}^{n} \mathbf{B}_{i}^{t}\right)^{-1}\right\|$.
We use the result in Lemma 5 to prove the claim of Lemma 3. We will prove the claimed convergence rate in Lemma 3together with an additional claim

$$
\left\|\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}} \leq 2 \delta
$$

by inductions on $m$ and on $t \in\left[T_{m}, T_{m+1}\right)$. The base case of our induction is $m=0$ and $t=0$, which is the initialization step, so let us start with it.
Since all norms in finite dimensional spaces are equivalent, there exists a constant $\eta>0$ such that $\|\mathbf{A}\| \leq \eta\|\mathbf{A}\|_{\mathbf{M}}$ for all A. Define $\gamma:=1 / \mu$ and $d:=\max _{m}\left(T_{m+1}-T_{m}\right)$, and assume that $\epsilon(r)=\epsilon$ and $\delta(r)=\delta$ are chosen such that

$$
\begin{equation*}
\left(2 \alpha_{3} \delta+\alpha_{4}\right) \frac{d \epsilon}{1-r} \leq \delta \quad \text { and } \quad \gamma(1+r)[\tilde{L} \epsilon+2 \eta \delta] \leq r \tag{28}
\end{equation*}
$$

where $\alpha_{3}$ and $\alpha_{4}$ are the constants from Lemma 2. As $\left\|\mathbf{B}_{i}^{0}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}} \leq \delta$, we also have

$$
\left\|\mathbf{B}_{i}^{0}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\| \leq \eta \delta
$$

Therefore, by triangle inequality from $\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\| \leq L$ we obtain $\left\|\mathbf{B}_{i}^{0}\right\| \leq \eta \delta+L$, so $\left\|(1 / n) \sum_{i=1}^{n} \mathbf{B}_{i}^{0}\right\| \leq \eta \delta+L$. The second part of inequality (28) also implies $2 \gamma(1+r) \eta \delta \leq r$. Moreover, it holds that $\left\|\mathbf{B}_{i}^{0}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\| \leq \eta \delta<2 \eta \delta$ and by Assumption $11 \gamma \geq\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1}\right\|$, so we obtain by Banach Lemma that

$$
\left\|\left(\mathbf{B}_{i}^{0}\right)^{-1}\right\| \leq(1+r) \gamma
$$

We formally prove this result in the following lemma.

Lemma 6. If the Hessian approximation $\mathbf{B}_{i}$ satisfies the inequality $\left\|\mathbf{B}_{i}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\| \leq 2 \eta \delta$ and $\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1}\right\| \leq \gamma$, then we have $\left\|\mathbf{B}_{i}^{-1}\right\| \leq(1+r) \gamma$.

Proof. Note that according to Banach Lemma, if a matrix A satisfies the inequality $\|\mathbf{A}-\mathbf{I}\| \leq 1$, then it holds $\left\|\mathbf{A}^{-1}\right\| \leq \frac{1}{1-\|\mathbf{A}-\mathbf{I}\|}$.
We first show that $\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2} \mathbf{B}_{i} \nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}-\mathbf{I}\right\| \leq 1$. To do so, note that

$$
\begin{align*}
\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2} \mathbf{B}_{i} \nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}-\mathbf{I}\right\| & \leq\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}\right\|\left\|\mathbf{B}_{i}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}\right\| \\
& \leq 2 \eta \delta \gamma \\
& \leq \frac{r}{r+1} \\
& <1 . \tag{29}
\end{align*}
$$

Now using this result and Banach Lemma we can show that

$$
\begin{align*}
\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2} \mathbf{B}_{i}^{-1} \nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2}\right\| & \leq \frac{1}{1-\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2} \mathbf{B}_{i} \nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{-1 / 2}-\mathbf{I}\right\|} \\
& \leq \frac{1}{1-\frac{r}{r+1}} \\
& =1+r \tag{30}
\end{align*}
$$

Further, we know that

$$
\begin{equation*}
\left\|\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2} \mathbf{B}_{i}^{-1} \nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)^{1 / 2}\right\| \geq \frac{\left\|\mathbf{B}_{i}^{-1}\right\|}{\gamma} \tag{31}
\end{equation*}
$$

By combining these results we obtain that

$$
\begin{equation*}
\left\|\mathbf{B}_{i}^{-1}\right\| \leq(1+r) \gamma \tag{32}
\end{equation*}
$$

Similarly, for matrix $\left((1 / n) \sum_{i=1}^{n} \mathbf{B}_{i}^{0}\right)^{-1}$ we get from $\left\|(1 / n) \sum_{i=1}^{n} \mathbf{B}_{i}^{0}-(1 / n) \sum_{i=1}^{n} \nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\| \leq(1 / n) \sum_{i=1}^{n} \| \mathbf{B}_{i}^{0}-$ $\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right) \| \leq \eta \delta$ and $\left\|\nabla^{2} f\left(\mathbf{x}^{*}\right)^{-1}\right\| \leq \gamma$ that

$$
\left\|\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{B}_{i}^{0}\right)^{-1}\right\| \leq(1+r) \gamma .
$$

We have by Lemma 2 and induction hypothesis

$$
\begin{aligned}
\left\|\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}}-\left\|\mathbf{B}_{i}^{t-D_{i}^{t}}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}} & \leq \alpha_{3} \sigma_{i}^{t-D_{i}^{t}}\left\|\mathbf{B}_{i}^{t-D_{i}^{t}}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}}+\alpha_{4} \sigma_{i}^{t-D_{i}^{t}} \\
& \leq\left(\alpha_{3}\left\|\mathbf{B}_{i}^{t-D_{i}^{t}}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}}+\alpha_{4}\right) r^{m-1} \epsilon \\
& \leq\left(2 \alpha_{3} \delta+\alpha_{4}\right) r^{m-1} \epsilon,
\end{aligned}
$$

By summing this inequality over all moments in the current epoch when worker $i$ performed its update, we obtain that

$$
\left\|\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}}-\left\|\mathbf{B}_{i}^{T_{m}-d_{i}^{T_{m}}}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}} \leq\left(2 \alpha_{3} \delta+\alpha_{4}\right) d r^{m-1} \epsilon
$$

Summing the new bound again, but this time over all passed epoch, we obtain

$$
\left\|\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}}-\left\|\mathbf{B}_{i}^{0}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}} \leq\left(2 \alpha_{3} \delta+\alpha_{4}\right) d \epsilon \sum_{k=0}^{m-1} r^{k} \leq \frac{\left(2 \alpha_{3} \delta+\alpha_{4}\right) d \epsilon}{1-r} \leq \delta
$$

Therefore, $\left\|\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right\|_{\mathbf{M}} \leq 2 \delta$. By using the Banach argument again, we can show that $\left\|\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{B}_{i}^{t}\right)^{-1}\right\| \leq$ $(1+r) \gamma$. Using this result, for any $t \in\left[T_{m}, T_{m+1}\right)$ we have $z_{i}^{t}=x^{t-D_{i}^{t}} \in\left[T_{m-1}, t\right)$ and we can write

$$
\begin{align*}
\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\| & \leq(1+r) \gamma\left[\frac{\tilde{L}}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|^{2}+\frac{1}{n} \sum_{i=1}^{n}\left\|\left[\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right]\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)\right\|\right] \\
& \leq(1+r) \gamma[\tilde{L} \epsilon+2 \eta \delta] \max _{i}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\| \\
& \leq r \max _{i}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\| \\
& \leq r^{m}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\| . \tag{33}
\end{align*}
$$

## A. 5 Proof of Theorem 1

Dividing both sides of 27 by $(1 / n) \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|$, we get

$$
\begin{equation*}
\frac{\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|}{\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|} \leq \tilde{L} \Gamma^{t} \sum_{i=1}^{n} \frac{\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|^{2}}{\sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|}+\Gamma^{t} \sum_{i=1}^{n} \frac{\left\|\left(\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right)\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)\right\|}{\sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|} \tag{34}
\end{equation*}
$$

As every term in $\sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|$ is non-negative, the upper bound in 34 will remain valid if we keep only one summand out of the whole sum in the denominators of the right-hand side, so

$$
\begin{align*}
\frac{\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|}{\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|} & \leq \tilde{L} \Gamma^{t} \sum_{i=1}^{n} \frac{\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|^{2}}{\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|}+\Gamma^{t} \sum_{i=1}^{n} \frac{\left\|\left(\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right)\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)\right\|}{\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|} \\
& =\tilde{L} \Gamma^{t} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|+\Gamma^{t} \sum_{i=1}^{n} \frac{\left\|\left(\mathbf{B}_{i}^{t}-\nabla^{2} f_{i}\left(\mathbf{x}^{*}\right)\right)\left(\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right)\right\|}{\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|} \tag{35}
\end{align*}
$$

Now using the result in Lemma 5 of Mokhtari et al. (2018a), the second sum in (35) converges to zero. Further, $\Gamma^{t}$ is bounded above by a positive constant. Hence, by computing the limit of both sides in (35) we obtain

$$
\lim _{t \rightarrow \infty} \frac{\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|}{\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|}=0
$$

Therefore, if $T$ is big enough, for $t>T$ we have

$$
\begin{equation*}
\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\| \leq \frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t}-\mathbf{x}^{*}\right\|=\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}^{t-D_{i}^{t}}-\mathbf{x}^{*}\right\| \leq \max _{i}\left\|\mathbf{x}_{i}^{t-D_{i}^{t}}-\mathbf{x}^{*}\right\| \tag{36}
\end{equation*}
$$

Now, let $t_{0}=t_{0}(m):=\min \left\{\tilde{t} \in\left[T_{m+1}, T_{m+2}\right):\left\|\mathbf{x}^{\tilde{t}}-\mathbf{x}^{*}\right\|=\max _{t \in\left[T_{m+1}, T_{m+2}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|\right\}$. In other words, $t_{0}$ is the first moment in epoch $m+1$ attaining the maximal distance from $x^{*}$. Then, for all $t \in\left[T_{m+1}, t_{0}\right)$ we have $\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|<\left\|\mathbf{x}^{t_{0}}-\mathbf{x}^{*}\right\|$. Furthermore, from equation (36) and the fact that, according to Proposition 1 , $t_{0}-D_{i}^{t_{0}} \in\left[T_{m}, t_{0}\right)$ we get

$$
\max _{t \in\left[T_{m+1}, T_{m+2}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|=\left\|\mathbf{x}^{t_{0}}-\mathbf{x}^{*}\right\| \leq \max _{i}\left\|\mathbf{x}_{i}^{t_{0}-D_{i}^{t_{0}}}-\mathbf{x}^{*}\right\| \leq \max _{t \in\left[T_{m}, t_{0}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|
$$

Note that it can not happen that $\max _{t \in\left[T_{m}, t_{0}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|=\max _{t \in\left[T_{m+1}, t_{0}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|$ as that would mean that there exists a $\hat{t} \in\left[T_{m+1}, t_{0}\right)$ such that $\left\|\mathbf{x}^{\hat{t}}-\mathbf{x}^{*}\right\| \geq\left\|\mathbf{x}^{t_{0}}-\mathbf{x}^{*}\right\|$, which we made impossible when defining $t_{0}$. Then, the only option is that in fact

$$
\max _{t \in\left[T_{m}, t_{0}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|=\max _{t \in\left[T_{m}, T_{m+1}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|
$$

Finally,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\max _{t \in\left[T_{m+1}, T_{m+2}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|}{\max _{t \in\left[T_{m}, T_{m+1}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|} & =\lim _{t \rightarrow \infty} \frac{\left\|\mathbf{x}^{t_{0}(m)}-\mathbf{x}^{*}\right\|}{\max _{t \in\left[T_{m}, T_{m+1}\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|} \\
& =\lim _{t \rightarrow \infty} \frac{\left\|\mathbf{x}^{t_{0}(m)}-\mathbf{x}^{*}\right\|}{\max _{t \in\left[T_{m}, t_{0}(m)\right)}\left\|\mathbf{x}^{t}-\mathbf{x}^{*}\right\|} \\
& \leq \lim _{t \rightarrow \infty} \frac{\left\|\mathbf{x}^{t_{0}(m)}-\mathbf{x}^{*}\right\|}{\max _{i} \| \mathbf{x}^{t_{0}(m)-D_{i}^{t_{0}(m)}-\mathbf{x}^{*} \|}} \\
& \leq \lim _{t \rightarrow \infty} \frac{\left\|\mathbf{x}^{t_{0}(m)}-\mathbf{x}^{*}\right\|}{\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{z}_{i}^{t_{0}(m)}-\mathbf{x}^{*}\right\|}=0
\end{aligned}
$$

where at the last step we used again the fact that $\mathbf{z}_{i}^{t}=\mathbf{x}^{t-D_{i}^{t}}$.

## B Implementation of Dave-QN

In Algorithm 2, we provide a simplified version of the Dave-QN in terms of notation and indices of the variables, which illustrates how Dave-QN can be implemented from master's and worker nodes' side further. We observe that steps at worker $i$ is devoted to performing the update in 11. Using the computed matrix $\mathbf{B}_{i}$, node $i$ evaluates the vector $\Delta \mathbf{u}$. Then, it sends the vectors $\Delta \mathbf{u}, \mathbf{y}_{i}$, and $\mathbf{q}_{i}$ as well as the scalars $\alpha$ and $\beta$ to the master node. The master node uses the variation vectors $\Delta \mathbf{u}$ and $\mathbf{y}$ to update $\mathbf{u}$ and $\mathbf{g}$. Then, it performs the update $\mathbf{x}^{t+1}=\left(\mathbf{B}^{t+1}\right)^{-1}\left(\mathbf{u}^{t+1}-\mathbf{g}^{t+1}\right)$ by following the efficient procedure presented in 16 - 17 .

