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Abstract

Leave-one-out cross-validation (LOOCV)
can be particularly accurate among cross-
validation (CV) variants for machine learning
assessment tasks – e.g., assessing methods’
error or variability. But it is expensive
to re-fit a model N times for a dataset
of size N . Previous work has shown that
approximations to LOOCV can be both fast
and accurate – when the unknown parameter
is of small, fixed dimension. But these ap-
proximations incur a running time roughly
cubic in dimension – and we show that,
besides computational issues, their accuracy
dramatically deteriorates in high dimensions.
Authors have suggested many potential and
seemingly intuitive solutions, but these
methods have not yet been systematically
evaluated or compared. We find that all but
one perform so poorly as to be unusable for
approximating LOOCV. Crucially, though,
we are able to show, both empirically
and theoretically, that one approximation
can perform well in high dimensions – in
cases where the high-dimensional parameter
exhibits sparsity. Under interpretable as-
sumptions, our theory demonstrates that the
problem can be reduced to working within an
empirically recovered (small) support. This
procedure is straightforward to implement,
and we prove that its running time and error
depend on the (small) support size even
when the full parameter dimension is large.

1 Introduction

Assessing the performance of machine learning meth-
ods is an important task in medicine, genomics, and
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other applied fields. Experts in these areas are inter-
ested in understanding methods’ error or variability
and, for these purposes, often turn to cross valida-
tion (CV); see, e.g., Saeb et al. [2017], Powers et al.
[2019], Carrera et al. [2009], Joshi et al. [2009], Chan-
drasekaran et al. [2011], Biswal et al. [2001], Roff and
Preziosi [1994]. Even after decades of use [Stone, 1974,
Geisser, 1975], CV remains relevant in modern high-
dimensional and complex problems. In these cases, CV
provides, for example, better out-of-sample error esti-
mates than simple test error or training error [Stone,
1974]. Moreover, among variants of CV, leave-one-out
CV (LOOCV) offers to most closely capture perfor-
mance on the dataset size of interest. For instance,
LOOCV is particularly accurate for out-of-sample er-
ror estimation [Arlot and Celisse, 2010, Sec. 5].1

Modern datasets, though, pose computational chal-
lenges for CV. For instance, CV requires running a ma-
chine learning algorithm many times, especially in the
case of LOOCV. This expense has led to recent propos-
als to approximate LOOCV [Obuchi and Kabashima,
2016, 2018, Beirami et al., 2017, Rad and Maleki, 2020,
Wang et al., 2018, Giordano et al., 2019b, Xu et al.,
2019]. Theory and empirics demonstrate that these
approximations are fast and accurate – as long as the
dimension D of the unknown parameter in a problem
is low. Unfortunately a number of issues arise in high
dimensions, the exact case of modern interest. First,
existing error bounds for LOOCV approximations ei-
ther assume a fixed D or suffer from poor error scaling
when D grows with N . One might wonder whether
the theory could be improved, but our own experi-
ments (see, e.g., Fig. 1) confirm that LOOCV approx-
imations can suffer considerable error degradation in
high dimensions in practice. Second, even if the ap-
proximations were accurate in high dimensions, these
approximations require solving a D-dimensional linear
system, which incurs an O(D3) cost.

Previous authors have proposed a number of potential
solutions for one or both of these problems, but these

1In the case of linear regression, LOOCV provides the
least biased and lowest variance estimate of out-of-sample
error among other CV methods [Burman, 1989].
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methods have not yet been carefully evaluated and
compared. (#1) Koh and Liang [2017] use a random-
ized solver [Agarwal et al., 2017] successfully for qual-
itative analyses similar to high-dimensional approxi-
mate CV, so it is natural to think the same technique
might speed up approximate CV in high dimensions.
Another option is to consider that the unknown pa-
rameter may effectively exist in some subspace with
much lower dimension that D. For instance, `1 reg-
ularization offers an effective and popular means to
recover a sparse parameter support.2 Since existing
approximate CV methods require twice differentiabil-
ity of the regularizer, they cannot be applied directly
with an `1 penalty. (#2) Thus, a second proposal – due
to Rad and Maleki [2020], Wang et al. [2018] – is to ap-
ply existing approximate CV methods to a smoothed
version of the `1 regularizer. (#3) A third proposal –
made by, e.g., Burman [1989] – is to ignore modern ap-
proximate CV methods, and speed up CV by uniform
random subsampling of LOOCV folds.

We show that all three of these methods fail to ad-
dress the issues of approximate CV in high dimen-
sions. (#4) A fourth proposal – due to Rad and Maleki
[2020], Wang et al. [2018], Obuchi and Kabashima
[2016, 2018], Beirami et al. [2017] – is to again con-
sider `1 regularization for sparsity. But in this case,
the plan is to fit the model once with the full dataset
to find a sparse parameter subspace and then apply
existing approximate CV methods to only this small
subspace.

In what follows, we demonstrate with both empirics
and theory that proposal #4 is the only method that
is fast and accurate for assessing out-of-sample error.
We emphasize, moreover, its simplicity and ease of im-
plementation. On the theory side, we show in Sec-
tion 4 that proposal #4 will work if exact LOOCV
rounds recover a shared support. Our major theoret-
ical contribution is to prove that, under mild and in-
terpretable conditions, the recovered support is in fact
shared across rounds of LOOCV with very high prob-
ability (Sections 4.1 and 4.2). Obuchi and Kabashima
[2016] have considered a similar setup and shown that
the effect of the change in support is asymptotically
negligible for `1-regularized linear regression; however,
they do not show the support is actually shared. Addi-
tionally, Beirami et al. [2017], Obuchi and Kabashima
[2018] make the same approximation in the context of
other GLMs but without theoretical justification. We
justify such approximations by proving that the sup-

2Note that sparsity, induced by `1 regularization, is
typically paired with a focus on generalized linear models
(GLMs) since these models simplify when many parame-
ters are set to zero, are tractable to analyze with theory,
and typically form the building blocks for even more com-
plex models.
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Figure 1: Log percent error (Eq. (10)) of existing
approximate LOOCV methods (“IJ” and “NS”) as
a function of dataset size N for `2 regularized lo-
gistic regression. Dashed lines show Eq. (2) (“NS”)
and solid show Eq. (3) (“IJ”). Blue lines have fixed
data/parameter dimension D, while red lines have
D = N/10, although the true parameter has a fixed
support size of Deff = 2 (see Section 2 for a full de-
scription). IJ and NS fail to capture this low “effective
dimension” and suffer from substantially worse perfor-
mance in high dimensions.

port is shared with high probability in the practical
finite-data setting – even for the very high-dimensional
case D = o(eN ) – for both linear and logistic regression
(Theorems 2 and 3). Our support stability result may
be of independent interest and allows us to show that,
with high probability under finite data, the error and
time cost of proposal #4 will depend on the support
size – typically much smaller than the full dimension
– rather than D. Our experiments in Section 5 on real
and simulated data confirm these theoretical results.

Model assessment vs. selection. Stone [1974],
Geisser [1975] distinguish at least two uses of CV:
model assessment and model selection. Model assess-
ment refers to estimating the performance of a single,
fixed model. Model selection refers to choosing among
a collection of competing models. We focus almost en-
tirely on model assessment – for two principal reasons.
First, as discussed above, CV is widely used for model
assessment in critical applied areas – such as medicine
and genetics. Before we can safely apply approximate
CV for model assessment in these areas, we need to
empirically and theoretically verify our methods. Sec-
ond, historically, rigorous analysis of the properties of
model selection even for exact CV has required signif-
icant additional work beyond analyzing CV for model
assessment. In fact, exact CV for model selection
has only recently begun to be theoretically understood
for `1 regularized linear regression [Homrighausen and
McDonald, 2013, 2014, Chetverikov et al., 2020]. Our
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experiments in Appendix H confirm that approximate
CV for model selection exhibits complex behavior. We
thus expect significant further work, outside the scope
of the present paper, to be necessary to develop a theo-
retical understanding of approximate CV for model se-
lection. Indeed, to the best of our knowledge, all exist-
ing theory for the accuracy of approximate CV applies
only to model assessment [Beirami et al., 2017, Rad
and Maleki, 2020, Giordano et al., 2019b, Xu et al.,
2019, Koh et al., 2019].

2 Overview of Approximations

Let θ ∈ Θ ⊆ RD be an unknown parameter of inter-
est. Consider a dataset of size N , where n ∈ [N ] :=
{1, 2, . . . , N} indexes the data point. Then a number
of problems – such as maximum likelihood, general M-
estimation, and regularized loss minimization – can be
expressed as solving

θ̂ := arg min
θ∈Θ

1

N

N∑
n=1

fn(θ) + λR(θ), (1)

where λ ≥ 0 is a constant, and R : Θ → R+ and
fn : Θ → R are functions. For instance, fn might
be the loss associated with the nth data point, R the
regularizer, and λ the amount of regularization. Con-
sider a dataset where the nth data point has covari-
ates xn ∈ RD and response yn ∈ R. In what follows,
we will be interested in taking advantage of sparsity.
With this in mind, we focus on generalized linear mod-
els (GLMs), where fn(θ) = f(xTnθ, yn), as they offer a
natural framework where sparsity can be expressed by
choosing many parameter dimensions to be zero.

In LOOCV, we are interested in solutions of the same
problem with the nth data point removed.3 To that
end,4 define θ̂\n := arg minθ∈Θ

1
N

∑
m:m 6=n fm(θ) +

λR(θ). Computing θ̂\n exactly across n usually re-
quires N runs of an optimization procedure – a pro-
hibitive cost. Various approximations, detailed next,
address this cost by solving Eq. (1) only once.

Two approximations. Assume that f and R are
twice differentiable functions of θ. Let F (θ) :=
(1/N)

∑
n f(xTnθ, yn) be the unregularized objective,

and let H(θ) := ∇2
θF (θ) + λ∇2

θR(θ) be the Hessian
matrix of the full objective. For the moment, we as-
sume appropriate terms in each approximation below
are invertible. Beirami et al. [2017], Rad and Maleki
[2020], Wang et al. [2018], Koh et al. [2019] approxi-

3See Appendix A for a brief review of CV methods.
4Note our choice of 1/N scaling here – instead of

1/(N − 1). While we believe this choice is not of par-
ticular importance in the case of LOOCV, this issue does
not seem to be settled in the literature; see Appendix B.

mate θ̂\n by taking a Newton step (“NS”) on the ob-

jective (1/N)
∑
m:m6=n fm + λR starting from θ̂; see

Appendix D.4 for details. We thus call this approxi-
mation ÑS\n(R) for regularizer R:

ÑS\n(R) := θ̂ +
1

N

(
H(θ̂)− 1

N
∇2
θfn(θ̂)

)−1

∇θfn(θ̂).

(2)
In the case of GLMs, Theorem 8 of Rad and Maleki
[2020] gives conditions on xn and f(·, ·) that imply,

for fixed D, the error of ÑS\n(R) averaged over n is
o(1/N) as N →∞.

Koh and Liang [2017], Beirami et al. [2017], Giordano
et al. [2019b], Koh et al. [2019] consider a second ap-
proximation. As their approximation is inspired by
the infinitesimal jackknife (“IJ”) [Jaeckel, 1972, Efron,

1982], we denote it by ĨJ\n(R); see Appendix D.1.

ĨJ\n(R) := θ̂ +
1

N
H(θ̂)−1∇θfn(θ̂). (3)

Giordano et al. [2019b] study the case of λ = 0, and, in
their Corollary 1, show that the accuracy of Eq. (3) is
bounded by C/N in general or, in the case of bounded
gradients ‖∇θf(xTnθ, yn)‖∞ ≤ B, by C ′B/N2. The
constants C,C ′ may depend on D but not N . Our
Proposition 2 in Appendix D.3 extends this result to
the regularized case, λ ≥ 0. Still, we are left with the
fact that C and C ′ depend on D in an unknown way.

In what follows, we consider both ÑS\n(R) and

ĨJ\n(R), as they have complimentary strengths. Em-

pirically, we find that ÑS\n(R) performs better in our

LOOCV GLM experiments. But ĨJ\n(R) is compu-
tationally efficient beyond LOOCV and GLMs. E.g.,
for general models, computation of ÑS\n(R) requires

inversion of a new Hessian for each n, whereas ĨJ\n(R)

needs only the inversion of H(θ̂) for all n. In terms of

theory, ÑS\n(R) has a tighter error bound of o(1/N)

for GLMs. But the theory behind ĨJ\n(R) applies
more generally, and, given a good bound on the gra-
dients, may provide a tighter rate.

3 Problems in high dimensions

In the above discussion, we noted that there exists en-
couraging theory governing the behavior of ÑS\n(R)

and ĨJ\n(R) when D is fixed and N grows large. We

now describe issues with ÑS\n(R) and ĨJ\n(R) when
D is large relative to N . The first challenge for both
approximations given large D is computational. Since
every variant of CV or approximate CV requires run-
ning the machine learning algorithm of interest at least
once, we will focus on the cost of the approximations
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after this single run. Given θ̂, both approximations
require the inversion of a D ×D matrix. Calculation
of ĨJ\n(R) across n ∈ [N ] requires a single matrix in-
version and N matrix multiplications for a runtime in
O(D3 + ND2). In general, calculating ÑS\n(R) has
runtime of O(ND3) due to needing an inversion for
each n. In the case of GLMs, though, ∇2

θfn is a rank-
one matrix, so standard rank-one updates give a run-
time of O(D3 +ND2) as well.

The second challenge for both approximations is the
invertibility of H(θ̂) and H(θ̂) − (1/N)∇2

θf(xTnθ, yn)

that was assumed in defining ÑS\n(R) and ĨJ\n(R).

We note that, if ∇2R(θ̂) is only positive semidefinite,
then invertibility of both matrices may be impossible
when D ≥ N ; see Appendix D.2 for more discussion.

The third and final challenge for both approximations
is accuracy in high dimensions. Not only do existing
error bounds behave poorly (or not exist) in high di-
mensions, but empirical performance degrades as well.
To create Fig. 1, we generated datasets from a sparse
logistic regression model with N ranging from 500 to
5,000. For the blue lines, we set D = 2, and for the
red lines we set D = N/10. In both cases, we see that
error is much lower when D is small and fixed.

We recall that for large N and small D, training error
often provides a fine estimate of the out-of-sample er-
ror (e.g., see [Vapnik, 1992]). That is, CV is needed
precisely in the high-dimensional regime, and this case
is exactly where current approximations struggle both
computationally and statistically. Thus, we wish to
understand whether there are high-D cases where ap-
proximate CV is useful. In what follows, we consider
a number of options for tackling one or more of these
issues and show that only one method is effective in
high dimensions.

Proposal #1: Use randomized solvers to reduce
computation. Previously, Koh and Liang [2017] have

utilized ĨJ\n(R) for qualitative purposes, in which they
are interested in its sign and relative magnitude across
different n. They tackle the O(D3) scaling of ĨJ\n(R)
by using the randomized solver from Agarwal et al.
[2017]. While one might hope to replicate the success
of Koh and Liang [2017] in the context of approximate
CV, we show in Appendix C that this randomized
solver performs poorly for approximating CV: while
it can be faster than exactly solving the needed linear
systems, it provides an approximation to exact CV
that can be an order of magnitude less accurate.

3.1 Sparsity via `1 regularization.

Intuitively, if the exact θ̂\n’s have some low “effec-
tive dimension” Deff � D, we might expect approx-

imate CV’s accuracy to depend only on Deff . One
way to achieve low Deff is sparsity: i.e., we have
D̂eff := |supp θ̂| � D, where Ŝ := supp θ̂ collects the

indices of the non-zero entries of θ̂. A way to achieve
sparsity is choosing R(θ) = ‖θ‖1. However, note that

ÑS\n(R) and ĨJ\n(R) cannot be applied directly in this
case as ‖θ‖1 is not twice-differentiable. Proposal #2:
Rad and Maleki [2020], Wang et al. [2018] propose the
use of a smoothed approximation to ‖ · ‖1; however, as
we show in Section 5, this approach is often multiple
orders of magnitude more inaccurate and slower than
Proposal #4 below.

Proposal #3: Subsample exact CV. Another op-
tion is to bypass all the problems of approximate CV
in high-D by uniformly subsampling a small collection
of LOOCV folds. This provides an unbiased estimate
of exact CV and can be used with exact `1 regulariza-
tion. However, our experiments (Section 5) show that,
under a time budget, the results of this method are
so variable that their error is often multiple orders of
magnitude higher than Proposal #4 below.

Proposal #4: Use the sparsity from θ̂. Instead,
in what follows, we take the intuitive approach of ap-
proximating CV only on the dimensions in supp θ̂.
Unlike all previously discussed options, we show that
this approximation is fast and accurate in high dimen-
sions in both theory and practice. For notation, let
X ∈ RN×D be the covariate matrix, with rows xn. For
S ⊂ [D], let X·,S be the submatrix of X with column

indices in S; define xnS and θS similarly. Let D̂
(2)
n :=[

d2f(z, yn)/dz2
]
z=xTn θ̂

, and define the restricted Hes-

sian evaluated at θ̂: HŜŜ := XT
·,Ŝdiag{D̂(2)

n }X·,Ŝ .

Further define the LOO restricted Hessian, H
\n
ŜŜ

:=

HŜŜ − [∇2
θf(xTn θ̂, yn)]ŜŜ . Finally, without loss of gen-

erality, assume Ŝ = {1, 2, . . . , D̂eff}. We now define

versions of ÑS\n(R) and ĨJ\n(R) restricted to the en-

tries in supp θ̂:

NS\n :=

(
θ̂Ŝ + (H

\n
ŜŜ

)−1
[
∇θf(xTn θ̂, yn)

]
Ŝ

0

)
(4)

IJ\n :=

(
θ̂Ŝ +H−1

ŜŜ

[
∇θf(xTn θ̂, yn)

]
Ŝ

0

)
. (5)

Other authors have previously considered NS\n. Rad
and Maleki [2020], Wang et al. [2018] derive NS\n
by considering a smooth approximation to `1 and
then taking the limit of ÑS\n(R) as the amount of
smoothness goes to zero. In Appendix E, we show a
similar argument can yield IJ\n. Also, Obuchi and
Kabashima [2016, 2018], Beirami et al. [2017] directly

propose NS\n without using ÑS\n(R) as a starting
point. We now show how NS\n and IJ\n avoid the
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three major high-dimensional challenges with ÑS\n(R)

and ĨJ\n(R) we discussed above.

The first challenge was that compute time for ÑS\n(R)

and ĨJ\n(R) scaled poorly with D. That NS\n and
IJ\n do not share this issue is immediate from their
definitions.

Proposition 1. For general fn, the time to compute
NS\n or IJ\n scales with D̂eff , rather than D. In
particular, computing NS\n across all n ∈ [N ] takes

O(ND̂3
eff) time, and computing IJ\n across all n ∈ [N ]

takes O(D̂3
eff + ND̂2

eff) time. Furthermore, when fn
takes the form of a GLM, computing NS\n across all

n ∈ [N ] takes O(D̂3
eff +ND̂2

eff) time.

The second high-dimensional challenge was thatH and
H\n may not be invertible when D ≥ N . Notice the
relevant matrices in NS\n and IJ\n are of dimension

D̂eff = |Ŝ|. So we need only make the much less restric-
tive assumption that D̂eff < N , rather than D < N .
We address the third and final challenge of accuracy
in the next section.

4 Approximation quality in high
dimensions

Recall that the accuracy of ÑS\n(R) and ĨJ\n(R) in
general has a poor dependence on dimension D. We
now show that the accuracy of NS\n and IJ\n de-

pends on (the hopefully small) D̂eff rather than D.
We start by assuming a “true” population parame-
ter5 θ∗ ∈ RD that minimizes the population-level loss,
θ∗ := arg minEx,y[f(xT θ, y)], where the expectation is
over x, y from some population distribution. Assume
θ∗ is sparse with S := supp θ∗ and Deff := |S|. Our
parameter estimate would be faster and more accurate
if an oracle told us S in advance and we worked just
over S:

φ̂ := arg min
φ∈RDeff

1

N

N∑
n=1

f(xTnSφ, yn) + λ ‖φ‖1 . (6)

We define φ̂\n as the leave-one-out variant of φ̂ (as θ̂\n
is to θ̂). Let RNS\n and RIJ\n be the result of applying
the approximation in NS\n or IJ\n to the restricted
problem in Eq. (6); note that RNS\n and RIJ\n have
accuracy that scales with the (small) dimension Deff .

Our analysis of the accuracy of NS\n and IJ\n will de-

pend on the idea that if, for all n, NS\n, IJ\n, and θ̂\n
run over the same Deff -dimensional subspace, then the

5This assumption may not be necessary to prove the

dependence of NS\n and IJ\n on D̂eff , but it allows us to
invoke existing `1 support results in our proofs.

accuracy of NS\n and IJ\n must be identical to that
of RNS\n and RIJ\n. In the case of `1 regularization,
this idea specializes to the following condition, under
which our main result in Theorem 1 will be immediate.

Condition 1. For all n ∈ [N ], we have supp IJ\n =

supp NS\n = supp θ̂\n = S.

Theorem 1. Assume Condition 1 holds. Then for all
n, θ̂\n and IJ\n are (1) zero outside the dimensions
S and (2) equal to their restricted counterparts from
Eq. (6):

θ̂\n =

(
θ̂\n,S

0

)
=

(
φ̂\n
0

)
,

IJ\n =

(
IJ\n,S

0

)
=

(
RIJ\n

0

)
. (7)

It follows that the error is the same in the full problem
as in the low-dimensional restricted problem: ‖θ̂\n −
IJ\n‖2 = ‖φ̂\n − RIJ\n‖2. The same results hold for
IJ\n and RIJ\n replaced by NS\n and RNS\n.

Taking Condition 1 as a given, Theorem 1 tells us that
for `1 regularized problems, IJ\n and NS\n inherit the

fixed-dimensional accuracy of ĨJ\n(R) and ÑS\n(R)
shown empirically in Fig. 1 and described theoreti-
cally in the references from Section 1. Taking a step
further, one could show that IJ\n and NS\n are ac-
curate for model assessment tasks by using results on
the accuracy of exact CV for assessment (e.g., [Abou-
Moustafa and Szepesvári, 2018, Steinberger and Leeb,
2018, Barber et al., 2019]).

Again, Theorem 1 is immediate if one is willing to as-
sume Condition 1, but when does Condition 1 hold?
There exist assumptions in the `1 literature under
which supp θ̂ = S [Lee et al., 2014, Li et al., 2015].
If one took these assumptions to hold for all F \n :=
(1/N)

∑
m:m6=n fm, then Condition 1 would directly

follow. However, it is not immediate that any mod-
els of interest meet such assumptions. Rather than
taking such uninterpretable assumptions or just tak-
ing Condition 1 as an assumption directly, we will give
a set of more interpretable assumptions under which
Condition 1 holds.

In fact, we need just four principal assumptions in
the case of linear and logistic regression; we conjec-
ture that similar results hold for other GLMs. The
first assumption arises from the intuition that, if indi-
vidual data points are very extreme, the support will
certainly change for some n. To avoid these extremes
with high probability, we assume that the covariates
follow a sub-Gaussian distribution:

Definition 1. [e.g., Vershynin [2018]] For cx >
0, a random variable V is cx-sub-Gaussian if
E
[
exp

(
V 2/c2x

)]
≤ 2.
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Assumption 1. Each xn ∈ RD has zero-mean i.i.d.
cx-sub-Gaussian entries with E[x2

nd] = 1.

We conjecture that the unit-variance part of the as-
sumption is unnecessary. Conditions on the distri-
butions of the responses yn will be specific to linear
and logistic regression and will be given in Assump-
tions 5 and 6, respectively. Our results below will hold
with high probability under these distributions. Note
there are reasons to expect we cannot do better than
high-probability results. In particular, Xu et al. [2012]
show that there exist worst-case training datasets for
which sparsity-inducing methods like `1 regularization
are not stable as each datapoint is left out.

Our second principal assumption is an incoherence
condition.

Assumption 2. The incoherence condition holds with
high probability over the full dataset:

Pr
[∥∥∥∇F (θ∗)Sc,S

(
∇2F (θ∗)SS

)−1
∥∥∥
∞
< 1− α

]
≤ e−25,

Authors in the `1 literature often assume that inco-
herence holds deterministically for a given design ma-
trix X – starting from the introduction of incoherence
by Zhao and Yu [2006] and continuing in more recent
work [Lee et al., 2014, Li et al., 2015]. Similarly, we
will take our high probability version in Assumption 2
as given. But we note that Assumption 2 is at least
known to hold for the case of linear regression with an
i.i.d. Gaussian design matrix (e.g., see Exercise 11.5 of
Hastie et al. [2015]). We next place some restrictions
on how quickly D and Deff grow as functions of N .

Assumption 3. As functions of N , D and Deff sat-
isfy: (1) D = o(eN ), (2) Deff = o([N/ logN ]2/5), and

(3) D
3/2
eff

√
logD = o(N).

The constraints on D here are particularly loose.
While those on Deff are tighter, we still allow poly-
nomial growth of Deff in N for some lower powers of
N . Our final assumption is on the smallest entry of
θ∗S . Such conditions – typically called beta-min con-
ditions – are frequently used in the `1 literature to
ensure Ŝ = S [Wainwright, 2009, Lee et al., 2014, Li
et al., 2015].

Assumption 4. θ∗ satisfies mins∈S |θ∗s | >√
DeffTminλ, where Tmin is some constant relat-

ing to the objective function f ; see Assumption 15 in
Appendix I.1 for an exact description.

4.1 Linear regression

We now give the distributional assumption on the re-
sponses yn in the case of linear regression and then
show that Condition 1 holds.

Assumption 5. ∀n, yn = xTnθ
∗+εn, where the εn are

i.i.d. cε-sub-Gaussian random variables.

Theorem 2 (Linear Regression). Take Assumptions 1
to 5. Suppose the regularization parameter λ satisfies

λ ≥ C

α−Mlin

(√
c2xc

2
ε logD

N
+

25c2xc
2
ε

N

+
4cxcε(log(ND) + 26)

N

)
, (8)

where C > 0 is a constant in N,D,Deff , cx, and cε,
and Mlin is a scalar given by Eq. (36) in Appendix I
that satisfies, as N → ∞, Mlin = o(1). Then for N
sufficiently large, Condition 1 holds with probability at
least 1− 26e−25.

A full statement and proof of Theorem 2, including the
exact value of Mlin, appears in Appendix I. A corollary
of Theorem 1 and Theorem 2 together is that, under
Assumptions 1 to 5, the LOOCV approximations IJ\n
and NS\n have accuracy that depends on (the ideally
small) Deff rather than (the potentially large) D.

It is worth considering how the allowed values of λ in
Eq. (8) compare to previous results in the `1 literature

for the support recovery of θ̂. We will talk about a
sequence of choices of λ scaling with N denoted by
λN . Theorem 11.3 of Hastie et al. [2015] shows that
λN ≥ c

√
log(D)/N (for some constant c in D and N)

is sufficient for ensuring that supp θ̂ ⊆ S with high
probability in the case of linear regression. Thus, we
ought to set λN ≥ c

√
log(D)/N to ensure support

recovery of θ̂. Compare this constraint on λN to the
constraint implied by Eq. (8). We have that Mlin =
o(1) as N → ∞, so that, for large N , the bound in
Eq. (8) becomes λN ≥ c′

√
log(D)/N for some constant

c′. Thus, the sequence of λN satisfying Eq. (8) scales

at exactly the same rate as those that ensure supp θ̂ ⊆
S. The scaling of λN is important, as the error in θ̂,
‖θ̂ − θ∗‖22, is typically proportional to λN . The fact
that we have not increased the asymptotic scaling of
λN therefore means that we can enjoy the same decay
of ‖θ̂ − θ∗‖22 while ensuring supp θ̂\n = S for all n.

4.2 Logistic regression

We now give the distributional assumption on the re-
sponses yn in the case of logistic regression.

Assumption 6. ∀n, we have yn ∈ {±1} with

Pr [yn = 1] = 1/(1 + e−x
T
nθ

∗
).

We will also need a condition on the minimum eigen-
value of the Hessian.

Assumption 7. Assume for some scalar Lmin that
may depend on N,Deff , and cx, we have

Pr
[
λmin

(
∇2
θF (θ∗)SS

)
≤ Lmin

]
≤ e−25.
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Furthermore, assume the scaling of Lmin in N and
Deff is such that, under Assumption 3 and for suffi-
ciently large N , Lmin ≥ CN for some constant C that
may depend on cx.

In the case of linear regression, we did not need an ana-
logue of Assumption 7, as standard matrix concentra-
tion results tell us that its Hessian satisfies Assump-
tion 7 with Lmin = N − Cc2x

√
NDeff (see Lemma 2

in Appendix I). The Hessian for logistic regression is
significantly more complicated, and it is typical in the
`1 literature to make some kind of assumption about
its eigenvalues [Bach, 2010, Li et al., 2015]. Empiri-
cally, Assumption 7 is satisfied when Assumptions 1
and 6 hold; however we are unaware of any results in
the literature showing this is the case.

Theorem 3 (Logistic Regression). Take Assump-
tions 1 to 4, 6 and 7. Suppose the regularization pa-
rameter λ satisfies:

λ ≥ C

α−Mlogr

(√
c2x

25 + logD

N

+

√
2c2x log(ND) +

√
50c2x

N

)
, (9)

where C,C ′ are constants in N,D,Deff , and cx, and
Mlogr is a scalar given by Eq. (67), that, as N → ∞,
satisfies Mlogr = o(1). Then for N sufficiently large,
Condition 1 is satisfied with probability at least 1 −
43e−25.

A restatement and proof of Theorem 3 are given as
Theorem 5 in Appendix I. Similar to the remarks after
Theorem 2, Theorem 3 implies that when applied to
logistic regression, IJ\n and NS\n have accuracy that
depends on (the ideally small) Deff rather than (the
potentially large) D, even when D = o(eN ).

Theorem 3 has implications for the work of Obuchi and
Kabashima [2018], who conjecture that, as N → ∞,
the change in support of `1 regularized logistic regres-
sion becomes negligible as each datapoint is left out;
this assumption is used to derive a version of NS\n for
logistic regression. Our Theorem 3 confirms this con-
jecture by proving the stronger fact that the support
is unchanged with high probability for finite data.

5 Experiments

We now empirically verify the good behavior of NS\n
and IJ\n (i.e. proposal #4) and show that it far out-
performs #2 (smoothing `1) and #3 (subsampling) in
our high-dimensional regime of interest. All the code
to run our experiments here is available online.6 We

6https://bitbucket.org/wtstephe/sparse_appx_cv/
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Figure 2: Error (Eq. (10)) across approximations for
`1 LOOCV (legend shared with Fig. 3). The error for
IJ\n (black dashed) is too small to see, but nonzero; it
varies between −0.06% and 0.04%.
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Figure 3: Runtimes for the experiments in Fig. 2 with
exact CV (red) included for comparison. The D ×D
matrix inversion in the smoothed problem is so slow
that even exact CV with an efficient `1 solver is faster.
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Figure 4: Log percent accuracy (Eq. (10)) for real
data experiments. For each dataset, we give the accu-
racy of approximate CV compared to exact CV using
both a smoothed approximation to `1 and the IJ\n,
NS\n approximations. For the bcTCGA dataset (lin-
ear regression), the nearly quadratic objective seems
to be extremely well approximated by one Newton
step, making ÑS\n(Rη) significantly more accurate

than ĨJ\n(Rη); see the note at the end of Appendix D.4

about the exactness of ÑS\n(R) on quadratic objec-
tives.

https://bitbucket.org/wtstephe/sparse_appx_cv/
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focus comparisons in this section on proposals #2–
#4, as they all directly address `1-regularized prob-
lems. For an illustration of the failings of proposal
#1, see Appendix C. To illustrate #2, we consider
the smooth approximation given by Rad and Maleki
[2020]: Rη(θ) :=

∑D
d=1

1
η

(
log(1 + eηθd) + log(1 +

e−ηθd)
)
. While limη→∞Rη(θ) = ‖θ‖1, we found that

this approximation became numerically unstable for
optimization when η was much larger than 100, so we
set η = 100 in our experiments.

Simulated experiments. First, we trained logistic
regression models on twenty-five random datasets in

which xnd
i.i.d.∼ N(0, 1) with N = 500 and D = 40,000.

We set λ = 1.5
√

log(D)/N to mimic our condition
in Eq. (9). The true θ∗ was supported on its first five
entries. We evaluate our approximations by comparing
the CV estimate of out-of-sample error (“LOO”) to

the approximation ALOO := 1
N

∑N
n=1 f(xTn IJ\n, yn).

We report percent error:

|ALOO− LOO|/LOO. (10)

Fig. 2 compares the accuracy and run times of pro-
posals #2 and #3 versus IJ\n. We chose the num-
ber of subsamples so that subsampling CV would have
about the same runtime as computing IJ\n for all n.7

We see that subsampling usually has much worse ac-
curacy than IJ\n. Using ĨJ\n(R) with R100(θ) as a
regularizer is even worse, as we approximate over all
D dimensions; the resulting approximation is slower
and less accurate – by multiple orders of magnitude –
across all trials.

The importance of setting λ. Our theoretical re-
sults heavily depend on particular settings of λ to ob-
tain the fixed-dimensional error scaling shown in blue
in Fig. 1. One might wonder if such a condition on λ
is necessary for approximate CV to be accurate. We
offer evidence in Appendix F that this scaling is neces-
sary by empirically showing that when λ violates our
condition, the error in IJ\n grows with N .

Real data experiments. We next study how depen-
dent our results are on the particular distributional
assumptions in Theorems 2 and 3. We explore this
question with a number of publicly available datasets
[bcTCGA, 2018, Lewis et al., 2004, Guyon et al., 2004].
We chose these datasets because they have a high
enough dimension to observe the effect of our results,
yet are not so large that running exact CV for com-
parison is prohibitively expensive; see Appendix G for
details (including our settings of λ). For each dataset,

7Specifically, we computed 41 different θ̂\n for each trial
in order to roughly match the time cost of computing IJ\n
for all N = 500 datapoints.
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Figure 5: Log runtimes for experiments in Fig. 4, with
exact CV included for comparison.

we approximate CV for the `1 regularized model using
IJ\n and NS\n. For comparison, we report the accu-

racy of ĨJ\n(Rη) and ÑS\n(Rη) with η = 100. Our
results in Fig. 4 show that IJ\n is significantly faster
and more accurate than exact CV or smoothing.

To demonstrate the scalability of our approximations,
we re-ran our RCV1 experiment on a larger version of
the dataset with N = 20,242 and D = 30,000. Based
on the time to compute exact LOOCV for twenty dat-
apoints, we estimate exact LOOCV would have taken
over two weeks to complete, whereas computing both
NS\n and IJ\n for all n took three minutes.

6 Conclusions and future work

We have provided the first analysis of when CV
can be approximated quickly and accurately in high
dimensions with guarantees on quality. We have seen
that, out of a number of proposals in the literature,
running approximate CV on the recovered support
(i.e., NS\n and IJ\n) forms the only proposal that
reaches these goals both theoretically and empirically.
We hope this analysis will serve as a starting point
for further understanding of when approximate CV
methods work for high-dimensional problems.

We see three interesting directions for future work.
First, this work has focused entirely on approximate
CV for model assessment. In Appendix H, we show
that approximate CV for model selection can have
unexpected and undesirable behavior; we believe
understanding this behavior is one of the most
important future directions in this area. Second,
one could extend our results to results to the higher
order infinitesimal jackknife presented in Giordano
et al. [2019a]. Finally, it would be interesting to
consider our approximations as a starting point for
subsampling estimators, as proposed in Magnusson
et al. [2019].
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