A Supplementary Results

A. 1 Proof of Lemma 1

Proof. Note that

$$
R(P)=\mathbb{E}\|(I-P) k(\cdot, X)\|_{\mathcal{H}}^{2}=\mathbb{E}\langle(I-P) k(\cdot, X),(I-P) k(\cdot, X)\rangle_{\mathcal{H}},
$$

which in turn is equivalent to

$$
\mathbb{E}\langle(I-P) k(\cdot, X), k(\cdot, X)\rangle_{\mathcal{H}}=\mathbb{E}\left\langle(I-P), k(\cdot, X) \otimes_{\mathcal{H}} k(\cdot, X)\right\rangle_{\mathcal{L}^{2}(\mathcal{H})},
$$

where we used $\langle B f, g\rangle_{\mathcal{H}}=\left\langle B, f \otimes_{\mathcal{H}} g\right\rangle_{\mathcal{L}^{2}(\mathcal{H})}$ and $(I-P)^{2}=(I-P)$ in the above equivalence. Since k is bounded, it follows that

$$
\mathbb{E}\left\langle(I-P), k(\cdot, X) \otimes_{\mathcal{H}} k(\cdot, X)\right\rangle_{\mathcal{L}^{2}(\mathcal{H})}=\left\langle(I-P), \mathbb{E}\left[k(\cdot, X) \otimes_{\mathcal{H}} k(\cdot, X)\right]\right\rangle_{\mathcal{L}^{2}(\mathcal{H})} .
$$

The result follows by using the above in $R(P)$ and noting that

$$
\langle(I-P), C\rangle_{\mathcal{L}^{2}(\mathcal{H})}=\operatorname{tr}((I-P) C)=\operatorname{tr}\left(C^{1 / 2}(I-P)(I-P) C^{1 / 2}\right)=\left\|(I-P) C^{1 / 2}\right\|_{\mathcal{L}^{2}(\mathcal{H})}^{2},
$$

where we have used the invariance of trace under cyclic permutations.
Lemma A.1. For $\delta>0$, suppose $\frac{9 \kappa}{n} \log \frac{n}{\delta} \leq t \leq \lambda_{1}$. Then the following hold:
(i) $\mathbb{P}^{n}\left\{\sqrt{\frac{2}{3}} \leq\left\|(C+t I)^{1 / 2}\left(C_{n}+t I\right)^{-1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})} \leq \sqrt{2}\right\} \geq 1-\delta$;
(ii) $\mathbb{P}^{n}\left\{\left\|(C+t I)^{-1 / 2}\left(C_{n}+t I\right)^{1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})} \leq \sqrt{\frac{3}{2}}\right\} \geq 1-\delta$;
(iii) $\mathbb{P}^{n}\left\{\hat{\lambda}_{\ell}+t \leq \frac{3}{2}\left(\lambda_{\ell}+t\right)\right\} \geq 1-\delta$.
(iv) $\mathbb{P}^{n}\left\{\lambda_{\ell}+t \leq 2\left(\hat{\lambda}_{\ell}+t\right)\right\} \geq 1-\delta$.

Proof. (i) The result is quoted from Lemma 3.6 of (Rudi et al., 2013) with $\alpha=\frac{1}{2}$.
(ii) This is a slight variation of (i) and the proof idea follows that of Lemma 3.6 of (Rudi et al., 2013) with $\alpha=\frac{1}{2}$. Note that

$$
\left\|(C+t I)^{-1 / 2}\left(C_{n}+t I\right)^{1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}=\left\|(C+t I)^{-1 / 2}\left(C_{n}+t I\right)(C+t I)^{-1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^{1 / 2} .
$$

By defining $B_{n}=(C+t I)^{-1 / 2}\left(C-C_{n}\right)(C+t I)^{-1 / 2}$, we have

$$
I-B_{n}=(C+t I)^{-1 / 2}\left((C+t I)-C+C_{n}\right)(C+t I)^{-1 / 2}=(C+t I)^{-1 / 2}\left(C_{n}+t I\right)(C+t I)^{-1 / 2}
$$

and therefore

$$
\begin{equation*}
\left\|(C+t I)^{-1 / 2}\left(C_{n}+t I\right)^{1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}=\left\|I-B_{n}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^{1 / 2} \leq\left(1+\left\|B_{n}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}\right)^{1 / 2} . \tag{18}
\end{equation*}
$$

It follow from the proof of Lemma 3.6 of (Rudi et al., 2013) that for $\frac{9 \kappa}{n} \log \frac{n}{\delta} \leq t$,

$$
\begin{equation*}
\mathbb{P}^{n}\left\{\left\|B_{n}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})} \leq \frac{1}{2}\right\} \geq 1-\delta \tag{19}
\end{equation*}
$$

Combining (18) and (19) completes the proof.
(iii) Since $\sqrt{\frac{2}{3}} \leq\left\|(C+t I)^{1 / 2}\left(C_{n}+t I\right)^{-1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}$ as obtained in (i), it is equivalent (see (Rudi et al., 2013, Lemmas B. 2 and 3.5)) to $C_{n}+t I \preceq \frac{3}{2}(C+t I)$. This implies (see Gohberg et al., 2003) that $\widehat{\lambda}_{k}+t \leq \frac{3}{2}\left(\lambda_{k}+t\right)$ for all $k \geq 1$. (iv) follows similarly.

Lemma $\underset{\tilde{X}}{\mathbf{A} .2}$ (Rudi et al. (2015), Lemma 6). Suppose Assumption 1 holds, and suppose for some $m<n$, the set $\left\{\tilde{X}_{j}\right\}_{j=1}^{m}$ is drawn uniformly from the set of all partitions of size m of the training data, $\left\{X_{i}\right\}_{i=1}^{n}$. For $t>0$ and any $\delta>0$ such that $m \geq\left(67 \vee 5 \mathcal{N}_{C, \infty}(t)\right) \log \frac{4 \kappa}{t \delta}$, we have

$$
\mathbb{P}^{n}\left\{\left\|\left(I-P_{m}\right)(C+t I)^{1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^{2} \leq 3 t\right\} \geq 1-\delta
$$

where P_{m} is the orthogonal projector onto $\mathcal{H}_{m}=\operatorname{span}\left\{k\left(\cdot, \tilde{X}_{j}\right) \mid j \in[m]\right\}$.
Lemma A. 3 (Rudi et al. (2015), Lemma 7). Suppose Assumption 1 holds. Let $\left(\hat{l}_{i}(s)\right)_{i=1}^{n}$ be the collection of approximate leverage scores. Letting $N:=\{1, \ldots, n\}$, for $t>0$ define p_{t} as the distribution over N with probabilities $p_{t}(i)=\hat{l}_{i}(t) / \sum_{j=1}^{n} \hat{l}_{j}(t)$. Let $\mathcal{I}_{m}=\left\{i_{1}, \ldots, i_{m}\right\} \subset N$ be a collection of indices independently sampled from p_{t} with replacement. Let P_{m} be the orthogonal projector onto $\mathcal{H}_{m}=\operatorname{span}\left\{k\left(\cdot, \tilde{X}_{j}\right) \mid j \in \mathcal{I}_{m}\right\}$. Additionally, for any $\delta>0$, suppose the following hold:

1. There exists $T \geq 1$ and $t_{0}>0$ such that for any $s \geq t_{0},\left(\hat{l}_{i}(s)\right)_{i=1}^{n}$ are T-approximate leverage scores with confidence δ,
2. $n \geq 1655 \kappa+223 \kappa \log \frac{2 \kappa}{\delta}$,
3. $t_{0} \vee \frac{19 \kappa}{n} \log \frac{2 n}{\delta} \leq t \leq \lambda_{1}$,
4. $m \geq 334 \log \frac{8 n}{\delta} \vee 78 T^{2} \mathcal{N}_{C}(t) \log \frac{8 n}{\delta}$.

Then

$$
\mathbb{P}^{n}\left\{\left\|\left(I-P_{m}\right)(C+t I)^{1 / 2}\right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^{2} \leq 3 t\right\} \geq 1-2 \delta
$$

B Technical Results

Proposition B.1. Suppose $\underline{A} i^{-\alpha} \leq \lambda_{i} \leq \bar{A} i^{-\alpha}$ for $\alpha>1$ and $\underline{A}, \bar{A} \in(0, \infty)$. The following holds:

$$
\mathcal{N}_{C}(t) \lesssim t^{-1 / \alpha}
$$

Proof. We have

$$
\mathcal{N}_{C}(t)=\operatorname{tr}\left((C+t I)^{-1} C\right)=\sum_{i \geq 1} \frac{\lambda_{i}}{\lambda_{i}+t} \leq \sum_{i \geq 1} \frac{\bar{A} i^{-\alpha}}{\underline{\mathrm{A}} i^{-\alpha}+t}=\frac{\bar{A}}{\underline{\mathrm{~A}}} \sum_{i \geq 1} \frac{i^{-\alpha}}{i^{-\alpha}+t \underline{\mathrm{~A}}^{-1}} .
$$

Let $u=t^{1 / \alpha} \underline{\mathrm{A}}^{-1 / \alpha} x \Longrightarrow u^{\alpha}=t \underline{\mathrm{~A}}^{-1} x^{\alpha}$ and $d x=t^{-1 / \alpha} \underline{\mathrm{A}}^{1 / \alpha} d u$. Therefore,

$$
\sum_{i \geq 1} \frac{i^{-\alpha}}{i^{-\alpha}+t \underline{\mathrm{~A}}^{-1}} \leq \int_{0}^{\infty} \frac{x^{-\alpha}}{x^{-\alpha}+t \underline{\mathrm{~A}}^{-1}} d x=\int_{0}^{\infty} \frac{1}{1+t \underline{\mathrm{~A}}^{-1} x^{\alpha}} d x=\left(\frac{\underline{\mathrm{A}}}{t}\right)^{1 / \alpha} \int_{0}^{\infty} \frac{1}{1+u^{\alpha}} d u
$$

Since $\frac{1}{1+u^{\alpha}}$ is decreasing in α on $u \in(0, \infty)$, we have

$$
\frac{1}{1+u^{\alpha}} \leq \frac{1}{1+u^{2}}, \quad \text { if } \quad \alpha \geq 2
$$

So for $\alpha \geq 2$,

$$
\left(\frac{\mathrm{A}}{\bar{t}}\right)^{1 / \alpha} \int_{0}^{\infty} \frac{1}{1+u^{\alpha}} d u \lesssim t^{-1 / \alpha} \int_{0}^{\infty} \frac{1}{1+u^{2}} d u=t^{-1 / \alpha}\left[\left.\tan ^{-1}(u)\right|_{0} ^{\infty}\right]=\frac{\pi}{2} t^{-1 / \alpha}
$$

implying $\mathcal{N}_{C}(t) \lesssim t^{-1 / \alpha}$. For $1<\alpha<2$, we obtain

$$
t^{-1 / \alpha} \int_{0}^{\infty} \frac{1}{1+u^{\alpha}} d u \leq t^{-1 / \alpha} \sum_{k=0}^{\infty} \frac{1}{1+k^{\alpha}} \leq t^{-1 / \alpha}\left(1+\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}\right)
$$

Since $1+\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for $\alpha>1$, we obtain $\mathcal{N}_{C}(t) \lesssim t^{-1 / \alpha}$.

Proposition B.2. Suppose $\underline{B} e^{-\tau i} \leq \lambda_{i} \leq \bar{B} e^{-\tau i}$ for $\tau>0$ and $\underline{B}, \bar{B} \in(0, \infty)$. Let $\ell=\frac{1}{\tau} \log n^{\theta}, \theta>0$. Then

$$
\mathcal{N}_{C}(t) \lesssim \log \left(\frac{1}{t}\right) .
$$

Proof. We have

$$
\begin{aligned}
\mathcal{N}_{C}(t)= & \operatorname{tr}\left((C+t I)^{-1} C\right)=\sum_{i \geq 1} \frac{\lambda_{i}}{\lambda_{i}+t} \leq \frac{\overline{\mathrm{B}} e^{-\tau i}}{\underline{\mathrm{~B}} e^{-\tau i}+t}=\frac{\bar{B}}{\underline{\mathrm{~B}}} \sum_{i \geq 1} \frac{1}{1+t \underline{\mathrm{~B}}^{-1} e^{\tau i}} \\
& \lesssim \int_{0}^{\infty} \frac{1}{1+t \underline{\mathrm{~B}}^{-1} e^{\tau x}} d x=\left.\left[x-\frac{1}{\tau} \log \left(t \underline{\mathrm{~B}}^{-1} e^{\tau x}+1\right)\right]\right|_{0} ^{\infty} .
\end{aligned}
$$

Since

$$
x-\frac{1}{\tau} \log \left(t \underline{\mathrm{~B}}^{-1} e^{\tau x}+1\right)=\frac{1}{\tau}\left(\log \left(e^{\tau x}\right)-\log \left(t \underline{\mathrm{~B}}^{-1} e^{\tau x}+1\right)\right)=\frac{1}{\tau} \log \left(t^{-1} \underline{\mathrm{~B}} \frac{e^{\tau x}}{e^{\tau x}+t^{-1} \underline{\mathrm{~B}}}\right),
$$

evaluating

$$
\left.\frac{1}{\tau} \log \left(t^{-1} \underline{\mathrm{~B}} \frac{e^{\tau x}}{e^{\tau x}+t^{-1} \underline{\mathrm{~B}}}\right)\right|_{0} ^{\infty}
$$

yields the result.

