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8 Supplementary Material

8.1 Proof of Theorem [I

Our proof of Theorem [I| uses techniques from |Gurvits
and Koiran (1997).

Theorem. Let F be a class of real-valued, continuous
functions over a set X, with a finite co-VC-dimension
D. Let g(x) be a function in the convex hull of F:
g(x) = Zil w; fi(x), with Zil w; =1 and f; € F.
Assume that functions f;(x) are upper-bounded by M
and that the quantity [ f;(x)dx is lower-bounded by B
for all f;. Let P be the probability measure over func-
tions {f1,..., N} such that P(f;) = w;. A sampling
operation is taken to draw K functions {h1,...,hk}
independently from P. Then, for any x € X,

K
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< 8(2K)P exp (—iﬁK)

Proof. Given a function f € F, denote the expected
value of f over X as P(f) = [ f(x)dx. As the distri-
bution of x is usually unknown, in practice, an i.i.d.
sample of K inputs, x; € X, 1 < ¢ < K, is usually
used to approximate P(f). Denote the approximation
asv(f) = % Zfil f(x;). In Section we provide an
inequality that bounds the relative difference between
the two quantities P(f) and v(f), using the pseudo-
dimension of the function class F:
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where B is a lower bound of P(f) and M is an upper
bound of f(x); II(2K) is a quantity called the “growth
function” that satisfies I1(2K) < (2K)¥ where H is
the pseudo-dimension of F.

As we aim to bound Zszl hi(x) instead of Zfil h(xi),
we make use of co-VC-dimension in the dual, instead of
pseudo-dimension. By the sampling operation in our
assumption, we have that for every x € X and each h;,
E[h;(x)] = g(x). Following techniques in |Gurvits and
Koiran| (1997)), we make the substitutions: f(x;) «
hi(x), P(f) + g(x), and TI(2K) < (2K)P where D is
the co-VC-dimension, into the inequality @D Then,

for any x € X', we have
| X
Py % Zhi(X) ¢ [(1=Q)g(x), (1+¢)g(x)]

< 8(2K)P exp (—Q:AB4K>

8.2 Max-Norm Reweighting Scheme

While multiplying two weighted sums of Gaussians,
we make use of the max-norm reweighting scheme in
Wrigley et al.| (2017) to make multiplications more
effective. ~ Specifically, the term M/B in the con-
vergence rate expression @ suggests that its min-
imization will lead to a faster convergence. For a
weighted sum of functions ¢(x) = Zfil w;;(x) and a
reweighted representation ¢’(x) = Zfil wil(x), the
max-norm scheme to minimize the M/B ratio is to
set w] oc w; maxy 1;(x). For a weighted sum of Gaus-
sians, ¢(x) = SO0 w; N(x; p;, 2:), to minimize the
ratio, we set

w;
(2m)4/2+/det &

w;

) = exp (1, )

i

w; = w; mf,x/\/'(x; w,X) =
(10)
Vi) =

where we note that the maximum of a Gaussian is

-1
achieved at x = p and equal to ((27r)d/2\/ det E) :
The resulting sum of functions is in effect a weighted
sum of Gaussian exponential components. Multiplying

two Gaussian exponentials yields another exponential,
with a constant factor s different from ¢ in .

s = exp (= 5lom ) (B4 2 s ) )
)

8.3 Closed-Form Transition Update

In this section, we derive the closed-form transition
formula previously presented in Section To fa-
cilitate integration over product of Gaussians, we re-
express Gaussians in a different form. We use results
stated in [Koller and Friedman (2009)).

Definition 7 (Canonical Form). A canonical form
C(x;K,h,g) where x € R4, K € R4 h e R? and g
s a scalar, is defined as

1
C(x;K,h,g) =exp (—QXTKX +hTx + g) (12)
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A Gaussian function, N'(x; u, 2) over x € R?, can be
equivalently expressed in canonical form C(x;K,h, g)
with K=3"! h=X"1y, and

1
g=—zpn"S""u—

d 1
oM log 2m — 3 log det 32

The product of two canonical forms over the same x:

C(x;Ki,hi,91) - C(x; Ko, hy, g2)
=C(x; K1 + Kz, hy + hy, g1 + 92)

When we have two canonical forms over different
scopes x and y, we extend the scopes of both to make
them match and then perform the above multiplica-
tion. The extension of scope is by adding zero entries
to both the K matrices and the h vectors.

Next, consider the marginalization operation. Let
C(x,y;K,h, g) be a canonical form over {x,y} where

<= (o xer) =)

Kv®
The marginalization of this canonical form onto the
variables x is the integral over the variables y € R?,
JC(x,y;K,h,g)dy. The result of the integration is a
canonical form C(x; K’, h’, ¢') given by:
K' = K" — K"(K") 'K¥*
h' = h® — Kwy(Kyy)*lhy

g =g+= (dlog 21 — log det K¥Y + (hy)TKyyhy)

Moreover, according to |Petersen et al.| the inverse of
a matrix in block representation can be expressed as,

N\ -1
KII KfljfL’
K:E/:E Kz'z'

_ ( M

_ (Ka:x)flea:' M2—1
M2—1Kx’m (Kzz)fl
where

M, *

M1 — K** _ Kmm'(Kx/x’)—le'm
1\/_[2 —_ Kz'z' o Km'm(Kzz)flea:/

We are now ready to derive the closed-form transition
formula. Consider a Gaussian function over x and x':
N(x,x'; u, 2), expressed in its corresponding canon-
ical form C(x,x’;K,h,g). Assume that parameters
K € R2D” and h € R are given by:

Kz ch’ h*
K - ’ i h - ’

Denote belief and transition as weighted sums of Gaus-
sians.

bels—1 ( sz x;a;, A;)
Kl
:szc(X,J“m“nl)
i=1
K1
o ) /. Jl 0 m; )
—szc(xx,(O o) (75 m
p(x | u,x’) Z’UJ (x,x';b;,B;)

:Zvj x,x;K;,h;, g;)

< Ki* K7\ (b7
= Z Uj C(X’ / ‘7/ ’
=1 J
Following these notations, by the multiplication and
marginalization formulae, the transition update

bel;(x)
= [ ploc ) b ()i
88

i=1 j=1

Ji+ K K\ (m;+h?
/. v J J o . . /
C(x,x'; < K;"’", K”—’,”’,> , < h? ) ,n + gj) dx

J
K1 Ko

= Z Z w;v; C(x; Lij, qij, mij)

i=1j=1

with parameters

Li; =J; + Kj* - K" (K} © ) 'K}®
q;; = m; +h? — K& (K¥'*)~'h?’
Mij = N + gj+

1 "L'/"L'/ J,'l .'L'/.'L'/ "L'/
5 (dlog2r — logdet K7™’ + (h")"K;"*'ny’)

Next, we seek to express above parameters back in the
moments parameterization. By our representation of
bel;—1(x) and p(x | u,x’):
Ji=A7", =A;"a;,
-1 -1
K;=B;", h;=B;"b,

Matching the above parameters with the block inver-
sion formula, it is easy to see

Cy =L = (A7 + (Bf"”)*l)_l

95)
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Cij = Cij (A;lai + (Bfw)ilb;)

A Gaussian with mean c;; and covariance C;; is asso-
ciated with scalar ¢;; in its canonical form,

1 _
Cij = QCZ; (Cz]) 1(3”

Calculation of the leading constant z;; requires match-
ing the following condition

d 1
—3 log 27w — 3 log det Cy;

10g Zij = mij — Cij

With algebraic manipulations, it is easy to see z;; is
given by the following expression

—1/2
_ (det (Ai +B§w>> .

L 7a21 1 rn1

exp <2ai A a; — ibj B, b+
1 ' \NTyrz'z' .2’ 1 T —1
i(hj) K7 * hj +§Cij(cij) Cij

8.4 Multiplicative Bounds for Expected and
Empirical Values of Real-Valued
Functions

In this section, we provide our derivation of a bound
between the expected value and sampled, empirical
values of real-valued functions. A one-sided multi-
plicative inequality is provided in |[Vapnik| (1998, while
we provide our derivation of the other sided inequal-
ity. We then combine these two relative bounds to
produce the inequality @D which we previously used.
Our derivation closely follows theorems from [Vapnik
(1998)), especially Theorems 4.2, 4.2*, 5.2, 5.3 and 5.3*.

Let F denote a function class of indicator or real-
valued functions. Given a set of [ data points z1, ..., z;
from the distribution Z, the averaged empirical value
v over a function f € F is defined as

l
o) = %wa

while the expected value P(f

/f

In the following, for Theorem|[5 F consists of indicator
functions. For Theorems [6] and [7} F is a set of real-
valued functions. Let II(I) denote the growth function
that satisfies the inequality

) < it

where h is the VC-dimension or pseudo-dimension of
F.

Theorem 5. (c¢f. Theorem 4.2 and 4.2% in |Vapnik
(1998)) The inequality

o O=PU) of
P{?EB ZOI }<4H<21)ep< 4)
(13

holds true.

Proof. Consider two events constructed from a ran-
dom and independent sample of size 2I:

Q1 =< z:sup
fer

Q>

vi(Ag) = P(Ay) }
P(Ay) ’

Ar) —vy(A
z:supvl( 7) — va( f)>6 7

fe}_ ’U(Af) + ﬁgl

where Ay is the event

Ap={z: f(z) = 1)

P(Ay) is the probability of event Ay:

Pay) = [ 1)z

v1(Ay) is the frequency of event A; computed from the
first half-sample z1, ..., z; of the sample zq,..., zo:

and vy(Ay) is the frequency of event Ay computed
from the second half-sample z;41, ..., 2o

12
=7 Z f(z:)

i=l+1

Denote v(Ay) = 3(vi(Ay) + v2(Ay)). Note that in
the case [ < 6*2, the assertion of the theorem is triv-
ial as the right-hand side of the inequality exceeds
one. Accordingly we shall prove the theorem as fol-
lows: First we show that for [ > €2 the inequality
P(Q;) < 4P(Q5) is valid (Lemma [5.1), and then we
bound P(Q>) (Lemma [5.2). O

Lemma 5.1. (¢f. Lemma 4.1 in|Vapnik (1998)) For
> Inax{exp(—ive;*‘\/i“), [1—Y(—e+ V122 1},
the probability

P(Q)) < iP(Qz)

1s valid.
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Proof. Assume that Q; has occurred. This means that
there exists event A* such that for the first half-sample
the equality

vl (A*) — P(A*) > ey/P(A%)

is fulfilled. Since v1(A*) < 1, this implies that
ey/P(A%) + P(A*) < 1,

Let f(x) = 22 + ex — 1 with x € [0,1]. Then f'(z) =
2z+¢€ > 0 for all . Hence f(z) is strictly increasing on
[0,1]. Notice f(0) = —1 < 0, f(1) = € > 0. Thus there
exists a root for f(z) = 0 on the interval [0, 1]. There
are two solutions to f(z) = 0: z1 = 3(—e—Ve2 +4) <
0 (rejected), zo = 1(—e+ Ve +4) € [0,1].
e/ P(A*) + P(A*) < 1 implies /P(A*) <

€2 +4).

Assume that for the second half-sample the frequency
of the event A* is less than the probability P(A*):

Hence

va(A*) < P(A™)

Under these conditions, we prove that event Qo will
definitely occur. To do this, we bound the quantity

(A - w(A*)
v(A*) +

210g,l
under the conditions
v1(A*) > P(A*) + e/ P(A¥)
va(A*) < P(A")
P(A*) < %( e+Ve2+4)

For this purpose, we find the minimum of the function
r—y
VT+y+c

inthe domain 0 < a<z<1,0<y<b c>0 We
have

T =

or 1 x+3y+2c
o 2(x+y+c)3?
or 1 3x+y+2c
W 2ty

>0

Consequently, T" attains its minimum in the admissible
domain at the boundary points z = a and y = b.

Specific to the quantity u, the above boundary points
are equivalent to the conditions when & = v1(4*) =
P(A*) 4+ e/P(A*) and y = vy(A*) = P(A*). Thus,
the quantity p is bounded from below,

= ‘
V2P(4) + ¢

Li—e + nw>
el \/QP(A*) + se(—e+Ve2 +4) —

From the given conditions, observe that

> Ve +44¢€
wp [ Y TETE
P 2v/2¢

Ve +4+e

2logl > ———F+— &

V2e
V2

244
2logl <t )

1
< _56(

Since /P(A*) < 3(—€ + V€2 +4) and W\/Zl <
—3e(—€+ Ve + 4), we have:

2P(A%)

se(—e+Ve2 +4)
Thus, if Q; occurs and the condition vo(A*) < P(A*)
is satisfied, then Q5 occurs as well.

The second half-sample is chosen independently of the
first one. By Corollary 3 in |Greenberg and Mohri
(2014), the event

va(A*) < P(AY)

occurs with probability exceeding 1/4 if

1
<l—--=

1
P(A") < Z(_6+ €2 4 4)? i

1
l>[1—1(—6+

This is fulfilled by the condition of the lemma. Thus,
we have

€2 —|—4)2]*1

P(Q2)> 1P(Q)

O

Lemma 5.2. (¢f. Lemma 4.2 in|Vapnik (1998)) For
[ > exp (,7v6i;£+-e>7 the bound

2
P(Qs) < TI(20) exp ( 4l>
1is valid.

Proof. Denote by R(Z?) the quantity

Ul(A) — ’UQ(A)
Vu(A) +1/(2logl)

then the estimated probability equals

P(Q2) - é(?l) ’

R (Z2l)

sup Ra(Z?) — ¢
AeS

dF(Z*)
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where 6 is the sign function. Here the integration is
carried out over the space of all possible samples of
size 21.

Consider now all possible permutations 7;, ¢
1,2,...,(20)! of the sequence z1, ..., z9,. For each such
permutation the equality

sup Ra(Z?) — ¢

/ A
Z(Zl) es
/Z 21
( )

is valid. Therefore the equality

dF (2% =

sup RA(TiZQZ) —€
AeS

dF(Z*)

P(QQ):/ 0 | sup Ra(Z*) — | dF(Z%)
Z(21) |Aes
1 (2!
= 0 |sup RA(T;Z%) — ¢| dF (Z*
/z(zz) (21)!; Acs Al ) (Z7)

(14)
is valid.

Now consider the integrand. Since the sample
21,--.,29; is fixed, instead of the system of events S
one can consider a finite system of events S* which
contains one representative for each one of the equiv-
alence classes. Thus the equality

(20!

1
i 2’

=1

21.29

=1

sup Ra(T; 2% — ] =

AeS
ZQI) _ €‘|

sup Ra(T; Z%) — ]

sup Ra(T,
AeS*

is valid. Furthermore,

@)!

1,29

=1

AeS

2l ' ;Ag*e [RA Z2l) _ 6}
>

1 (20)!
PIRTerP MU L
es* i=1
The expression in braces is the probability of greater
than e deviation of the frequencies in two half-samples
for a fixed event A and a given composition of a com-
plete sample. This probability equals

Ck Cl k

-y g

where m is the number of occurrences of event A in
a complete sample; k is the number of occurrences of
the event in the first half-sample and runs over these
values:

max(0,m — 1) < k < min(m,1)
k m—k> m+ 1
> 2
l l 20 2logl

Denote by €* the quantity

w1
2 " 2loglt T

Using this notation the constraints become

max (0,m — 1) < k < min (m,1)
Eom—k_ . (15)

l l

It can be show that the following bound on the quan-
tity I' under constraints is valid:

(1 +1)(e")2i2
' <exp <_(m+1)(21—m—|—1)> (16)

Substituting in €*,
(14 1)e? m 1 )>

1B _

<eXp< D@ —m+1) 2 " 2logl
< exp [ — (1+1)€%? m+1
Ty D@ —m+ 1) 2

The second inequality is derived by noting - g

(D
(m+1D)(2l—m+1)
the right-hand side reaches its maximum at m
Thus,

For the inequality, I' < exp(

> 1

I
z)
= 0.

(17)

Substituting into the right-hand side of and
integrating, we have

2

P(Q,) = o N5 (Z%) exp <—€4dF(Z2l)>

€%l
< I1(21) exp ( 1 )

The above theorems are for indicator functions. We
next consider the case of real-valued functions, whose
probability bounds are directly dependent on the

O

above binary bounds.

2See Section 4.13 of [Vapnik (1998).
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Theorem 6. (¢f. Theorem 5.2 in |Vapnik (1998))
Let F be a set of real-valued, mnon-negative func-
tions.  Let TI(l) be the growth function of indica-
tors for this set of functions. Let auxiliary function

Theorem 7. (¢f. Theorem 5.3 and 5.8% in |Vapnik
(1998)) Assume that functions f are bounded above by
M:0< f(z) < M, feF. Then, the inequality

is fulfilled as well.
Indeed, equation and inequality imply that

jer  D(f)
§ enli_{rgo Sy m/P{f(2) > £} - eD(f)
< sup D) TR D)

Therefore probability of event does not exceed

probability of event . This means that the prob-

ability of the complementary events are connected by
v(f) = P(f)

the inequality
> €
D(f) }

|
W {72) > 8) - PUIE) > 8) _

<P
VP {f(z) > B}

In Theorem |5 we bounded the right-hand side of this
inequality. Using this bound we prove the theorem.
O

sup
feF

sup
feF

D = [ /P{f(z) > cldc. Then, the inequalit _pP 2]
(f) fO {f( ) } q Y P sup U(f) (f) Sel < 4H(21) exp _cr
» 2 rer A/ P(f) M
P < sup ) = Pi) > € p < 411(21) exp _et (22)
fer D(f) 4 is valid.
(18)
is valid. Proof. The proof is based on Holder’s inequality for
p Consider th » two functions. We say that function f(z) belongs to
roof. Consider the expression space L,(a,b) if f:‘f(z)v) dz < oo. The values a, b
v(f) — P(f) are not necessarily finite. Holder’s inequality states
;gg D(f) that for functions f(z) € L,(a,b) and g(z) € Ly(a,b),
where
. o0 S ; 1 1
lim. [z W{re >t -ox ip{e) > ;}] Ll 50450
— sup B poq
feF ( ) then
(19)
b b ;] b i
We show that if inequality / ’f(z)g(z)‘dz < (/ ‘f(z)‘p dz) (/ ‘g(z)’qdz>
X . a a a
o{f(2)> 1} - P{f(x) > i}
sup . <e (20) Consider the function
e P{f(z)> i} N
D(f) :/ VP {f(z) > c}dc
is fulfilled, then the inequality 0
~w(f) = P(f) For a b'our}ded set of functions, we can rewrite this
sup ——~—————=> < ¢ (21)  expression in the form
feF D(f)

M
D(f):/o \VP{f(z) > clde
Now let us denote f(z) = /P {f(z) > ¢} and denote

g(z) = 1. Using these notations we utilize Holder’s
inequality. We obtain

D(f) = / VPG > e

1/2
< </OM P(2) > t}dt) M2

Taking into account this inequality, we obtain

o(f) = P(f)
SP{ Y TVPUG) > >€}

Using the bound on the right-hand side of this inequal-
ity given by Theorem [6] we obtain the desired inequal-

ity . O

- P(f) < M2
P(f)

su
fe
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8.4.1 Combining Inequalities

Under similar settings as Theorem |7} the following in-
equality is provided in the original book by |Vapnik

(1998):
P(f) —o(f) €2l
r {)Sflelgp(f) > e} < 4T1I(21) exp <_4]\4>

Combining the above inequality with Theorem [7] we
obtain the following two inequalities for a bounded,
real-valued function f: 0 < f(2) < M, f € F:

P(f) —o(f) el
P {;E_I;P(f) > 6} < 4TI(21) exp <—4]\/[>

v(f) = P(f) €%l
P{]SflelgP(f) > 6} < 4TI(21) exp <—4

Equivalently, for all f € F,

P{P(f)_”(f) < e} > 1 —4TI(20) exp (—f)

P(f)
o(f) = P(f) €l
P{P(f) < e} > 1—4T1I(2]) exp <_4]\4

Setting € = ¢4/ P(f) for a given ¢, we get

P{v(f)> (1 —=¢)P(f)} >1—4II(2]) exp <— @iﬁf)>

2
P{o(f) < (1+QP(f)} > 1 — 4T1(2l) exp (iﬂf))
Consequently
P{u(f) < (1= QP()} < 4TI exp (ﬁf&(n)

P{o(f) > (1+Q)P(f)} < 4T1(2l) exp <_<2ﬁ4(f)>

The two events Ey = {f : v(f) < (1 — )P(f)} and
Ey,={f:v(f) > (1+P(f)} are mutually exclusive.
Hence the probability of the union,
P(E1UEy) =P (v(f) € [(1 - QP(f), 1+ OP(f)])
= P(E1) + P(E»)

= 81I(2]) exp <— C2i];4(f)>

< 81I(2]) exp <—<42]\B4l>

This gives the desired inequality we used in Section
where B is a lower bound of the value P(f), and
M is an upper bound of functions f € F.




