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8.1 Proof of Theorem 1

Our proof of Theorem 1 uses techniques from Gurvits
and Koiran (1997).

Theorem. Let F be a class of real-valued, continuous

functions over a set X , with a finite co-VC-dimension

D. Let g(x) be a function in the convex hull of F :

g(x) =
P

N

i=1 wifi(x), with
P

N

i=1 wi = 1 and fi 2 F .

Assume that functions fi(x) are upper-bounded by M

and that the quantity
R
fi(x)dx is lower-bounded by B

for all fi. Let P be the probability measure over func-

tions {f1, . . . , fN} such that P (fi) = wi. A sampling

operation is taken to draw K functions {h1, . . . , hK}

independently from P . Then, for any x 2 X ,
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Proof. Given a function f 2 F , denote the expected
value of f over X as P (f) =

R
f(x)dx. As the distri-

bution of x is usually unknown, in practice, an i.i.d.
sample of K inputs, xi 2 X , 1  i  K, is usually
used to approximate P (f). Denote the approximation

as v(f) = 1
K

P
K

i=1 f(xi). In Section 8.4, we provide an
inequality that bounds the relative di↵erence between
the two quantities P (f) and v(f), using the pseudo-
dimension of the function class F :
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where B is a lower bound of P (f) and M is an upper
bound of f(x); ⇧(2K) is a quantity called the “growth
function” that satisfies ⇧(2K)  (2K)H where H is
the pseudo-dimension of F .

As we aim to bound
P

K

i=1 hi(x) instead of
P

K

i=1 h(xi),
we make use of co-VC-dimension in the dual, instead of
pseudo-dimension. By the sampling operation in our
assumption, we have that for every x 2 X and each hi,
E[hi(x)] = g(x). Following techniques in Gurvits and
Koiran (1997), we make the substitutions: f(xi)  
hi(x), P (f) g(x), and ⇧(2K)  (2K)D where D is
the co-VC-dimension, into the inequality (9). Then,

for any x 2 X , we have
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8.2 Max-Norm Reweighting Scheme

While multiplying two weighted sums of Gaussians,
we make use of the max-norm reweighting scheme in
Wrigley et al. (2017) to make multiplications more
e↵ective. Specifically, the term M/B in the con-
vergence rate expression (6) suggests that its min-
imization will lead to a faster convergence. For a
weighted sum of functions �(x) =

P
K

i=1 wi i(x) and a

reweighted representation �
0(x) =

P
K

i=1 w
0
i
 
0
i
(x), the

max-norm scheme to minimize the M/B ratio is to
set w0

i
/ wi maxx  i(x). For a weighted sum of Gaus-

sians, �(x) =
P

K

i=1 wiN (x;µ
i
,⌃i), to minimize the

ratio, we set

w
0
i
= wi max

x
N (x;µ,⌃) =

wi

(2⇡)d/2
p
det⌃

 
0
i
(x) =

wi

w
0
i

 i(x) = exp (x;µ,⌃)
(10)

where we note that the maximum of a Gaussian is

achieved at x = µ and equal to
⇣
(2⇡)d/2

p
det⌃

⌘�1
.

The resulting sum of functions is in e↵ect a weighted
sum of Gaussian exponential components. Multiplying
two Gaussian exponentials yields another exponential,
with a constant factor s di↵erent from c in (7).

s = exp

✓
�
1

2
(µ1 � µ2)

T (⌃1 +⌃2)
�1(µ1 � µ2)

◆

(11)

8.3 Closed-Form Transition Update

In this section, we derive the closed-form transition
formula previously presented in Section 4.2. To fa-
cilitate integration over product of Gaussians, we re-
express Gaussians in a di↵erent form. We use results
stated in Koller and Friedman (2009).

Definition 7 (Canonical Form). A canonical form

C(x;K,h, g) where x 2 Rd
, K 2 Rd⇥d

, h 2 Rd
and g

is a scalar, is defined as

C(x;K,h, g) = exp

✓
�
1

2
x
T
Kx+ h

T
x+ g

◆
(12)
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A Gaussian function, N (x;µ,⌃) over x 2 Rd, can be
equivalently expressed in canonical form C(x;K,h, g)
with K = ⌃

�1, h = ⌃
�1µ, and

g = �
1

2
µT

⌃
�1µ�

d

2
log 2⇡ �

1

2
log det⌃

The product of two canonical forms over the same x:

C(x;K1,h1, g1) · C(x;K2,h2, g2)

= C(x;K1 +K2,h1 + h2, g1 + g2)

When we have two canonical forms over di↵erent
scopes x and y, we extend the scopes of both to make
them match and then perform the above multiplica-
tion. The extension of scope is by adding zero entries
to both the K matrices and the h vectors.

Next, consider the marginalization operation. Let
C(x,y;K,h, g) be a canonical form over {x,y} where

K =

✓
K

xx
K

xy

K
yx

K
yy

◆
, h =

✓
h
x

h
y

◆

The marginalization of this canonical form onto the
variables x is the integral over the variables y 2 Rd,R
C(x,y;K,h, g)dy. The result of the integration is a

canonical form C(x;K0
,h

0
, g

0) given by:

K
0 = K

xx
�K

xy(Kyy)�1
K
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h
0 = h

x
�K

xy(Kyy)�1
h
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h
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⌘

Moreover, according to Petersen et al., the inverse of
a matrix in block representation can be expressed as,
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We are now ready to derive the closed-form transition
formula. Consider a Gaussian function over x and x

0:
N (x,x0;µ,⌃), expressed in its corresponding canon-
ical form C(x,x0;K,h, g). Assume that parameters

K 2 R(2d)2 and h 2 R2d are given by:

K =

 
K

xx
K

xx
0

K
x
0
x

K
x
0
x
0

!
, h =

 
h
x

h
x
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!

Denote belief and transition as weighted sums of Gaus-
sians.

belt�1(x) =
K1X

i=1

wiN (x;ai,Ai)

=
K1X

i=1

wi C(x;Ji,mi, ni)

=
K1X

i=1

wi C(x,x
0;

✓
Ji 0

0 0

◆
,

✓
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0

◆
, ni)

p(x | u,x
0) =

K2X

j=1

vj N (x,x0; bj ,Bj)

=
K2X

j=1

vj C(x,x
0;Kj ,hj , gj)

=
K2X

j=1

vj C(x,x
0;
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, gj)

Following these notations, by the multiplication and
marginalization formulae, the transition update

b̄elt(x)

=

Z
p(x | u,x

0) belt�1(x
0)dx0

=

Z K1X

i=1

K2X

j=1

wivj

C(x,x0;

 
Ji +K
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0
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K
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0
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x
0
x
0
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!
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mi + h

x

j

h
x
0

j

!
, ni + gj) dx

0

=
K1X

i=1

K2X

j=1

wivj C(x;Lij ,qij ,mij)

with parameters

Lij = Ji +K
xx

j
�K

xx
0

j
(Kx

0
x
0

j
)�1

K
xx

0

j

qij = mi + h
x

j
�K
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0

j
(Kx

0
x
0

j
)�1

h
x
0

j

mij = ni + gj+

1

2

⇣
d log 2⇡ � log detKx

0
x
0

j
+ (hx

0

j
)TKx

0
x
0

j
h
x
0

j

⌘

Next, we seek to express above parameters back in the
moments parameterization. By our representation of
belt�1(x) and p(x | u,x

0):

Ji = A
�1
i

, mi = A
�1
i

ai,

Kj = B
�1
j

, hj = B
�1
j

bj

Matching the above parameters with the block inver-
sion formula, it is easy to see

Cij = L
�1
ij

=
⇣
A

�1
i

+ (Bxx

j
)�1

⌘�1
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cij = Cij

⇣
A

�1
i

ai + (Bxx

j
)�1bx

j

⌘

A Gaussian with mean cij and covariance Cij is asso-
ciated with scalar cij in its canonical form,

cij = �
1

2
c
T

ij
(Cij)

�1
cij �

d

2
log 2⇡ �

1

2
log detCij

Calculation of the leading constant zij requires match-
ing the following condition

log zij = mij � cij

With algebraic manipulations, it is easy to see zij is
given by the following expression

zij =

✓
det

⇣
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xx

j
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·
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8.4 Multiplicative Bounds for Expected and

Empirical Values of Real-Valued

Functions

In this section, we provide our derivation of a bound
between the expected value and sampled, empirical
values of real-valued functions. A one-sided multi-
plicative inequality is provided in Vapnik (1998), while
we provide our derivation of the other sided inequal-
ity. We then combine these two relative bounds to
produce the inequality (9) which we previously used.
Our derivation closely follows theorems from Vapnik
(1998), especially Theorems 4.2, 4.2⇤, 5.2, 5.3 and 5.3⇤.

Let F denote a function class of indicator or real-
valued functions. Given a set of l data points z1, . . . , zl
from the distribution Z, the averaged empirical value
v over a function f 2 F is defined as

v(f) =
1

l

lX

i=1

f(zi)

while the expected value P (f) is

P (f) =

Z
f(z)dz

In the following, for Theorem 5, F consists of indicator
functions. For Theorems 6 and 7, F is a set of real-
valued functions. Let ⇧(l) denote the growth function
that satisfies the inequality

⇧(l)  l
h

where h is the VC-dimension or pseudo-dimension of
F .

Theorem 5. (cf. Theorem 4.2 and 4.2* in Vapnik

(1998)) The inequality

P

(
sup
f2F

v(f)� P (f)p
P (f)

> ✏

)
< 4⇧(2l) exp

 
�
✏
2
l

4

!

(13)
holds true.

Proof. Consider two events constructed from a ran-
dom and independent sample of size 2l:

Q1 =

(
z : sup

f2F

v1(Af )� P (Af )p
P (Af )

> ✏

)
,

Q2 =

8
><

>:
z : sup

f2F

v1(Af )� v2(Af )q
v(Af ) +

1
2 log l

> ✏

9
>=

>;
,

where Af is the event

Af = {z : f(z) = 1}

P (Af ) is the probability of event Af :

P (Af ) =

Z
f(z)dz

v1(Af ) is the frequency of event Af computed from the
first half-sample z1, . . . , zl of the sample z1, . . . , z2l:

v1(Af ) =
1

l

lX

i=1

f(zi)

and v2(Af ) is the frequency of event Af computed
from the second half-sample zl+1, . . . , z2l:

v2(Af ) =
1

l

2lX

i=l+1

f(zi)

Denote v(Af ) = 1
2 (v1(Af ) + v2(Af )). Note that in

the case l  ✏
�2, the assertion of the theorem is triv-

ial as the right-hand side of the inequality exceeds
one. Accordingly we shall prove the theorem as fol-
lows: First we show that for l > ✏

�2 the inequality
P (Q1) < 4P (Q2) is valid (Lemma 5.1), and then we
bound P (Q2) (Lemma 5.2).

Lemma 5.1. (cf. Lemma 4.1 in Vapnik (1998)) For

l > max{exp (�
p
✏2+4+✏

2
p
2✏

), [1 � 1
4 (�✏ +

p
✏2 + 4)2]�1

},

the probability

P (Q1) <
1

4
P (Q2)

is valid.
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Proof. Assume that Q1 has occurred. This means that
there exists event A⇤ such that for the first half-sample
the equality

v1(A
⇤)� P (A⇤) > ✏

p
P (A⇤)

is fulfilled. Since v1(A⇤) < 1, this implies that
✏

p
P (A⇤) + P (A⇤) < 1.

Let f(x) = x
2 + ✏x � 1 with x 2 [0, 1]. Then f

0(x) =
2x+✏ > 0 for all x. Hence f(x) is strictly increasing on
[0, 1]. Notice f(0) = �1 < 0, f(1) = ✏ > 0. Thus there
exists a root for f(x) = 0 on the interval [0, 1]. There
are two solutions to f(x) = 0: x1 = 1

2 (�✏�
p
✏2 + 4) <

0 (rejected), x2 = 1
2 (�✏ +

p
✏2 + 4) 2 [0, 1]. Hence

✏

p
P (A⇤) + P (A⇤) < 1 implies

p
P (A⇤) <

1
2 (�✏ +p

✏2 + 4).

Assume that for the second half-sample the frequency
of the event A⇤ is less than the probability P (A⇤):

v2(A
⇤) < P (A⇤)

Under these conditions, we prove that event Q2 will
definitely occur. To do this, we bound the quantity

µ =
v1(A⇤)� v2(A⇤)q

v(A⇤) + 1
2 log l

under the conditions

v1(A
⇤) > P (A⇤) + ✏

p
P (A⇤)

v2(A
⇤) < P (A⇤)

p
P (A⇤) <

1

2
(�✏+

p
✏2 + 4)

For this purpose, we find the minimum of the function

T =
x� y

p
x+ y + c

in the domain 0 < a  x  1, 0 < y  b, c > 0. We
have

@T

@x
=

1

2

x+ 3y + 2c

(x+ y + c)3/2
> 0

@T

@y
= �

1

2

3x+ y + 2c

(x+ y + c)3/2
< 0

Consequently, T attains its minimum in the admissible
domain at the boundary points x = a and y = b.

Specific to the quantity µ, the above boundary points
are equivalent to the conditions when x = v1(A⇤) =
P (A⇤) + ✏

p
P (A⇤) and y = v2(A⇤) = P (A⇤). Thus,

the quantity µ is bounded from below,

µ �
✏

p
2P (A⇤)q

2P (A⇤) + ✏

p
P (A⇤) +

p
2

2 log l

From the given conditions, observe that

l > exp

 
�

p
✏2 + 4 + ✏

2
p
2✏

!
,

2 log l > �

p
✏2 + 4 + ✏
p
2✏

,

p
2

2 log l
< �

1

2
✏(
p
✏2 + 4� ✏)

Since
p

P (A⇤) <
1
2 (�✏ +

p
✏2 + 4) and

p
2

2 log l
<

�
1
2✏(�✏+

p
✏2 + 4), we have:

µ �
✏

p
2P (A⇤)q

2P (A⇤) + 1
2✏(�✏+

p
✏2 + 4)� 1

2✏(�✏+
p
✏2 + 4)

= ✏

Thus, if Q1 occurs and the condition v2(A⇤) < P (A⇤)
is satisfied, then Q2 occurs as well.

The second half-sample is chosen independently of the
first one. By Corollary 3 in Greenberg and Mohri
(2014), the event

v2(A
⇤) < P (A⇤)

occurs with probability exceeding 1/4 if

P (A⇤) <
1

4
(�✏+

p
✏2 + 4)2 < 1�

1

l
)

l > [1�
1

4
(�✏+

p
✏2 + 4)2]�1

This is fulfilled by the condition of the lemma. Thus,
we have

P (Q2) >
1

4
P (Q1)

Lemma 5.2. (cf. Lemma 4.2 in Vapnik (1998)) For

l > exp
⇣
�

p
✏2+4+✏p

2✏

⌘
, the bound

P (Q2) < ⇧(2l) exp

 
�
✏
2
l

4

!

is valid.

Proof. Denote by RA(Z2l) the quantity

RA(Z
2l) =

v1(A)� v2(A)p
v(A) + 1/(2 log l)

then the estimated probability equals

P (Q2) =

Z

Z(2l)
✓

"
sup
A2S

RA(Z
2l)� ✏

#
dF (Z2l)
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where ✓ is the sign function. Here the integration is
carried out over the space of all possible samples of
size 2l.

Consider now all possible permutations Ti, i =
1, 2, . . . , (2l)! of the sequence z1, . . . , z2l. For each such
permutation the equality

Z

Z(2l)
✓

"
sup
A2S

RA(Z
2l)� ✏

#
dF (Z2l) =

Z

Z(2l)
✓

"
sup
A2S

RA(TiZ
2l)� ✏

#
dF (Z2l)

is valid. Therefore the equality

P (Q2) =

Z

Z(2l)
✓

"
sup
A2S

RA(Z
2l)� ✏

#
dF (Z2l)

=

Z

Z(2l)

1

(2l)!

(2l)!X

i=1

✓

"
sup
A2S

RA(TiZ
2l)� ✏

#
dF (Z2l)

(14)

is valid.

Now consider the integrand. Since the sample
z1, . . . , z2l is fixed, instead of the system of events S

one can consider a finite system of events S
⇤ which

contains one representative for each one of the equiv-
alence classes. Thus the equality

1

(2l)!

(2l)!X

i=1

✓

"
sup
A2S

RA(TiZ
2l)� ✏

#
=

1

(2l)!

(2l)!X

i=1

✓

"
sup
A2S⇤

RA(TiZ
2l)� ✏

#

is valid. Furthermore,

1

(2l)!

(2l)!X

i=1

✓

"
sup
A2S

RA(TiZ
2l)� ✏

#

<
1

(2l)!

(2l)!X

i=1

X

A2S⇤

✓

h
RA(TiZ

2l)� ✏
i

=
X

A2S⇤

8
<

:
1

(2l)!

(2l)!X

i=1

✓

h
RA(TiZ

2l)� ✏
i
9
=

;

The expression in braces is the probability of greater
than ✏ deviation of the frequencies in two half-samples
for a fixed event A and a given composition of a com-
plete sample. This probability equals

� =
X

k

C
k

m
C

l�k

2l�m

C
l

2l

where m is the number of occurrences of event A in
a complete sample; k is the number of occurrences of
the event in the first half-sample and runs over these
values:

max(0,m� l)  k  min(m, l)

k

l
�

m� k

l
> ✏

r
m

2l
+

1

2 log l

Denote by ✏⇤ the quantity
r

m

2l
+

1

2 log l
✏ = ✏

⇤

Using this notation the constraints become

max (0,m� l)  k  min (m, l)

k

l
�

m� k

l
> ✏

⇤ (15)

It can be shown2 that the following bound on the quan-
tity � under constraints (15) is valid:

� < exp

 
�

(l + 1)(✏⇤)2l2

(m+ 1)(2l �m+ 1)

!
(16)

Substituting in ✏⇤,

� < exp

 
�

(l + 1)✏2l2

(m+ 1)(2l �m+ 1)
(
m

2l
+

1

2 log l
)

!

< exp

 
�

(l + 1)✏2l2

(m+ 1)(2l �m+ 1)

m+ 1

2l

!

The second inequality is derived by noting 1
log l

>
1
l
.

For the inequality, � < exp
⇣
�

(l+1)✏2l2

(m+1)(2l�m+1)
m+1
2l

⌘
,

the right-hand side reaches its maximum at m = 0.
Thus,

� < exp

 
�
✏
2
l

4

!
(17)

Substituting (17) into the right-hand side of (14) and
integrating, we have

P (Q2) =

Z

Z(2l)
N

S(Z2l) exp

 
�
✏
2
l

4
dF (Z2l)

!

< ⇧(2l) exp

 
�
✏
2
l

4

!

The above theorems are for indicator functions. We
next consider the case of real-valued functions, whose
probability bounds are directly dependent on the
above binary bounds.

2
See Section 4.13 of Vapnik (1998).
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Theorem 6. (cf. Theorem 5.2 in Vapnik (1998))

Let F be a set of real-valued, non-negative func-

tions. Let ⇧(l) be the growth function of indica-

tors for this set of functions. Let auxiliary function

D(f) =
R1
0

p
P{f(z) > c}dc. Then, the inequality

P

(
sup
f2F

v(f)� P (f)

D(f)
> ✏

)
< 4⇧(2l) exp

 
�
✏
2
l

4

!

(18)
is valid.

Proof. Consider the expression

sup
f2F

v(f)� P (f)

D(f)

= sup
f2F

lim
n!1

P1
i=1

1
n
v

n
f(z) > i

n

o
�
P1

i=1
1
n
P

n
f(z) > i

n

o�

D(f)

(19)

We show that if inequality

sup
f2F

v

n
f(z) > i

n

o
� P

n
f(z) > i

n

o

r
P

n
f(z) > i

n

o  ✏ (20)

is fulfilled, then the inequality

sup
f2F

v(f)� P (f)

D(f)
 ✏ (21)

is fulfilled as well.

Indeed, equation (19) and inequality (20) imply that

sup
f2F

v(f)� P (f)

D(f)

 sup
f2F

✏ lim
n!1

P1
i=1

1
n

q
P{f(z) > i

n
}

D(f)
= sup

f2F

✏D(f)

D(f)
= ✏

Therefore probability of event (20) does not exceed
probability of event (21). This means that the prob-
ability of the complementary events are connected by
the inequality

P

(
sup
f2F

v(f)� P (f)

D(f)
> ✏

)

 P

8
><

>:
sup
f2F

v
�
f(z) > �

 
� P

�
f(z) > �

 
q
P
�
f(z) > �

 > ✏

9
>=

>;

In Theorem 5 we bounded the right-hand side of this
inequality. Using this bound we prove the theorem.

Theorem 7. (cf. Theorem 5.3 and 5.3* in Vapnik

(1998)) Assume that functions f are bounded above by

M : 0  f(z) M, f 2 F . Then, the inequality

P

(
sup
f2F

v(f)� P (f)p
P (f)

> ✏

)
< 4⇧(2l) exp

 
�
✏
2
l

4M

!

(22)
is valid.

Proof. The proof is based on Holder’s inequality for
two functions. We say that function f(z) belongs to

space Lp(a, b) if
R
b

a

��f(z)
��p dz  1. The values a, b

are not necessarily finite. Holder’s inequality states
that for functions f(z) 2 Lp(a, b) and g(z) 2 Lq(a, b),
where

1

p
+

1

q
= 1, p > 0, q > 0

then

Z
b

a

��f(z)g(z)
�� dz 

 Z
b

a

��f(z)
��p dz

! 1
p
 Z

b

a

��g(z)
��q dz

! 1
q

Consider the function

D(f) =

Z 1

0

q
P
�
f(z) > c

 
dc

For a bounded set of functions, we can rewrite this
expression in the form

D(f) =

Z
M

0

q
P
�
f(z) > c

 
dc

Now let us denote f(z) =
q
P
�
f(z) > c

 
and denote

g(z) = 1. Using these notations we utilize Holder’s
inequality. We obtain

D(f) =

Z
M

0

p
P{f(z) > t}dt

<

 Z
M

0
P{f(z) > t}dt

!1/2

M
1/2

Taking into account this inequality, we obtain

P

(
sup
f2F

v(f)� P (f)p
P (f)

> ✏M
1/2

)

 P

(
sup
f2F

v(f)� P (f)
R p

P{f(z) > t}dt
> ✏

)

Using the bound on the right-hand side of this inequal-
ity given by Theorem 6, we obtain the desired inequal-
ity (22).
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8.4.1 Combining Inequalities

Under similar settings as Theorem 7, the following in-
equality is provided in the original book by Vapnik
(1998):

P

(
sup
f2F

P (f)� v(f)p
P (f)

> ✏

)
< 4⇧(2l) exp

 
�
✏
2
l

4M

!

(23)

Combining the above inequality with Theorem 7, we
obtain the following two inequalities for a bounded,
real-valued function f : 0  f(z) M, f 2 F :

P

(
sup
f2F

P (f)� v(f)p
P (f)

> ✏

)
< 4⇧(2l) exp

 
�
✏
2
l

4M

!

P

(
sup
f2F

v(f)� P (f)p
P (f)

> ✏

)
< 4⇧(2l) exp

 
�
✏
2
l

4M

!

Equivalently, for all f 2 F ,

P

(
P (f)� v(f)p

P (f)
< ✏

)
> 1� 4⇧(2l) exp

 
�
✏
2
l

4M

!

P

(
v(f)� P (f)p

P (f)
< ✏

)
> 1� 4⇧(2l) exp

 
�
✏
2
l

4M

!

Setting ✏ = ⇣

p
P (f) for a given ⇣, we get

P
�
v(f) > (1� ⇣)P (f)

 
> 1� 4⇧(2l) exp

 
�
⇣
2
lP (f)

4M

!

P
�
v(f) < (1 + ⇣)P (f)

 
> 1� 4⇧(2l) exp

 
�
⇣
2
lP (f)

4M

!

Consequently

P
�
v(f) < (1� ⇣)P (f)

 
< 4⇧(2l) exp

 
�
⇣
2
lP (f)

4M

!

P
�
v(f) > (1 + ⇣)P (f)

 
< 4⇧(2l) exp

 
�
⇣
2
lP (f)

4M

!

The two events E1 = {f : v(f)  (1 � ⇣)P (f)} and
E2 = {f : v(f) � (1+ ⇣)P (f)} are mutually exclusive.
Hence the probability of the union,

P (E1 [ E2) = P
�
v(f) 62 [(1� ⇣)P (f), (1 + ⇣)P (f)]

�

= P (E1) + P (E2)

= 8⇧(2l) exp

 
�
⇣
2
lP (f)

4M

!

< 8⇧(2l) exp

 
�
⇣
2

4

B

M
l

!

This gives the desired inequality we used in Section
8.1, where B is a lower bound of the value P (f), and
M is an upper bound of functions f 2 F .


