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A Notation

Symbol Meaning

⇥all Set of all bandit problems
A Set of arms
⇥ The structure (a subset of ⇥all) available to the algorithm
✓⇤ The true model
n The learning horizon

⌫i(✓) The distribution of arm i of model ✓
µi(✓) The mean of arm i of model ✓
µ⇤(✓) The optimal mean of model ✓
i⇤(✓) The (unique) optimal arm of model ✓
�i(✓) The sub-optimality gap of arm i in model ✓
�i(✓, ✓0) The model gap of arm i between models ✓ and ✓0

 (⇥0,A0) The maximum (over arms in A
0) model gap between ✓⇤ and the most similar model ✓ 2 ⇥0

 (⇥0,A0) The hardest model in ⇥0 using arms in A
0

A
⇤(⇥) Set of arms which are optimal for at least one model in ⇥
⇥⇤

i Set of models with i as optimal arm
⇥+

i Set of optimistic models w.r.t. ✓⇤ with i as optimal arm
R⇡

n(✓,⇥) Expected regret of strategy ⇡ in bandit ✓ under structure ⇥
⇥̃h Confidence set in phase h
Ãh Active arms in phase h
Ti(h) Number of pulls of arm i at the end of phase h
µ̂i,h Empirical mean of arm i at the end of phase h
Āh Set of arms which are, with high probability, discarded no later than phase h
Ah Set of arms which are, with high probability, active in phase h
Ah Set of arms which are, with high probability, potentially active in phase h
h̄i The last phase at which i is, with high probability, potentially active
A

⇤
i Set of arms which are, with high probability, active for discarding i
�⇤ Minimum model gap of i⇤ between the true model and any other with a di↵erent optimal arm
⇥̃k

h Confidence set in phase h of period k
Ã

k
h Active arms in phase h of period k

Ti(k, h) Number of pulls of arm i at the end of phase h of period k
µ̂k
i,h Empirical mean of arm i at the end of phase h of period k
⌦gen General structure (all sets containing ✓⇤)
⌦wc Worst-case structure
⌦opt Optimistic structure
⌦cr Worst-case constant-regret structure
⌦conf Confusing structure

Table 1: The notation adopted in this paper.
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B Proof of Theorem 1

We analyze the SUCB version of Lattimore and Munos (2014) (called UCB-S by the authors) using ideas from
Azar et al. (2013). We recall that, at each time step t, the algorithm builds a confidence set

⇥̃t =

(
✓ 2 ⇥ | 8i 2 A : |µi(✓)� µ̂i,t| <

s
2↵�2 log t

Ti(t� 1)

)
,

where the distribution of each arm is assumed sub-Gaussian with variance factor �2. Then, the algorithm pulls
the optimistic arm according to the models in this set,

It  argmax
i2A

sup
✓2⇥̃t

µi(✓).

The regret bound proved by Lattimore and Munos (2014) (see their Theorem 2) has the same form as the one
of UCB. That is, for a suitable choice of ↵, there exist constants c, c0 such that

RSUCB
n (✓⇤,⇥) 

X

i 6=i⇤

c log n

�i(✓⇤)
+ c0.

This bound, however, does not fully reflect how the algorithm exploits the given structures. The bound in
Theorem 1 of Azar et al. (2013), on the other hand, has the same form as the one we prove here, but it holds
only for a finite set of models, while the one of Lattimore and Munos (2014) does not have such restriction. We
now prove Theorem 1, which straightforwardly combines the analyses of these two papers, thus providing a regret
bound that scales with the model gaps rather than the sub-optimality gaps and that holds for any structure.

Theorem 1. There exist constants c, c0 > 0 such that for any model ✓⇤ 2 ⇥all and any structure ⇥ 2 ⌦, the
expected regret at time n of the SUCB algorithm (Lattimore and Munos, 2014) is upper-bounded as

RSUCB
n (✓⇤,⇥) 

X

i2A⇤\{i⇤}

c�i(✓⇤) log n

 (⇥+
i , {i})

+ c0.

Proof. Let Ft := 1
n
✓⇤ 2 ⇥̃t

o
. Consider any sub-optimal arm i and suppose It = i and Ft = 1. Since i is pulled,

there exists some ✓̄ 2 ⇥̃t such that ✓̄ 2 ⇥+
i . These facts imply

�i(✓̄, ✓
⇤) = |µi(✓̄)� µi(✓

⇤)|  |µi(✓̄)� µ̂i,t|+ |µ̂i,t � µi(✓
⇤)|  2

s
2↵�2 log t

Ti(t� 1)
. (3)

Therefore,

Ti(t� 1) 
8↵�2 log t

�2i (✓̄, ✓
⇤)


&
8↵�2 log n

inf✓2⇥+
i
�2i (✓, ✓

⇤)

'
=: ui(n).

Then,

E[Ti(n)] = E

"
nX

t=1

1{It = i}

#
= E

"
nX

t=1

1{It = i ^ Ti(t)  ui(n)}

#
+ E

"
nX

t=1

1{It = i ^ Ti(t) > ui(n)}

#

 ui(n) + E

2

4
nX

t=ui(n)+1

1{It = i ^ Ti(t) > ui(n)}

3

5  ui(n) + E

2

4
nX

t=ui(n)+1

1{It = i ^ Ft = 0}

3

5 ,

where the last inequality follows since pulling arm i at time step t implies that either Ti(t)  ui(n) or the true
parameter is not in the confidence set (i.e., Ft = 0). Then,

Rn
(a)
=

X

i2A⇤(⇥)

�i(✓
⇤)E[Ti(n)]

(b)


X

i2A⇤(⇥)

�i(✓
⇤)

0

@ui(n) + E

2

4
nX

t=ui(n)+1

1{It = i ^ Ft = 0}

3

5

1

A

(c)


X

i2A⇤(⇥)

�i(✓
⇤)ui(n) +�max

nX

t=1

P{Ft = 0}.
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where (a) holds since arms that are sub-optimal for all models in ⇥ are never pulled, (b) follows from the bound
on the number of pulls derived above, and (c) follows from the definition of �max = maxi2A⇤(⇥)�i(✓⇤) and the
fact that at each time only one arm is pulled. The second term can be bounded using Lemma 5 of Lattimore
and Munos (2014) (by taking the union bound only over A⇤(⇥)) by

nX

t=1

P{Ft = 0}  2|A⇤(⇥)|
nX

t=1

t1�↵


2|A⇤(⇥)|(↵� 1)

↵� 2
.

The theorem follows by combining the last two displays and renaming the constants.

C Proofs of Section 3

C.1 Proof of Theorem 3

We begin by showing that, with high probability, the true model ✓⇤ is always contained in the confidence set by
a certain margin (which depends on �). Unlike previous works, we need this to guarantee that sub-optimal arms
are not eliminated too early.

Lemma 1. Let ↵ > 0, � � 1, and E = {8h = 0, . . . , dlog2 ne : Eh holds}, with Eh denoting the following event:

Eh :=

(
8i 2 A : |µ̂i,h�1 � µi(✓

⇤)| <
1

�

s
↵ log n

Ti(h� 1)

)
.

Then, the probability that E does not hold can be upper bounded by

P {Ec
}  |A

⇤(⇥)|n
�2 ↵

�2 (log2 n+ 2)2.

Proof. Using the union bound, we have

P {Ec
} = P

(
9h = 1, . . . , dlog2 ne, 9i 2 A : |µ̂i,h�1 � µi(✓

⇤)| �
1

�

s
↵ log n

Ti(h� 1)
^ Ti(h� 1) > 0

)



dlog2 neX

h=1

X

i2A⇤(⇥)

P

(
|µ̂i,h�1 � µi(✓

⇤)| �
1

�

s
↵ log n

Ti(h� 1)
^ Ti(h� 1) > 0

)
,

where the sum starts from h = 1 since in phase 0 no arm has been pulled and all models are therefore contained
in the confidence set. Furthermore, A can be replaced by A

⇤(⇥) since arms that are sub-optimal for all models
are never pulled and so the corresponding event above never holds. Let us now consider the inner term for a
fixed phase h and arm i. Notice that, at the end of phase h� 1, the possible number of pulls of arm i are

ks :=

&
↵ log n

�̃2s

✓
1 +

1

�

◆2
'

for s = 0, 1, . . . , h � 1. Thus, by taking a further union bound on the possible values of Ti(h � 1) and using
Cherno↵-Hoe↵ding inequality, we obtain

P

(
|µ̂i,h�1 � µi(✓

⇤)| �
1

�

s
↵ log n

Ti(h� 1)

)
= P

(
h�1[

s=0

|µ̂i,h�1 � µi(✓
⇤)| �

1

�

s
↵ log n

Ti(h� 1)
^ Ti(h� 1) = ks

)



h�1X

s=0

P

(
|µ̂i,ks � µi(✓

⇤)| �
1

�

r
↵ log n

ks

)



h�1X

s=0

2e
�2ks

↵ log n

�2ks = 2hn
�2 ↵

�2 .
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Notice that, with some abuse of notation, we define µ̂i,ks as the empirical mean of arm i after ks pulls of such
arm. Putting everything together,

P {Ec
} 

dlog2 neX

h=1

X

i2A⇤(⇥)

2hn
�2 ↵

�2 = 2|A⇤(⇥)|n
�2 ↵

�2

dlog2 neX

h=1

h  |A
⇤(⇥)|n

�2 ↵
�2 (log2 n+ 2)2,

which concludes the proof.

Next, we show a su�cient condition for eliminating a model from the confidence set.

Lemma 2. Suppose there exists an arm i 2 A, a model ✓ 2 ⇥, and a phase h � 0 such that Ti(h) �⇣
1 + 1

�

⌘2
↵ logn
�2
i (✓,✓

⇤)
. Then, under event E, ✓ /2 ⇥̃h0 for all h0 > h.

Proof. Suppose there exists a phase h0 > h such that ✓ 2 ⇥̃h0 . Then,

�i(✓, ✓
⇤) = |µi(✓)� µi(✓

⇤)|
(a)
 |µi(✓)� µ̂i,h0 |+ |µ̂i,h0 � µi(✓

⇤)|

(b)
<

✓
1 +

1

�

◆s
↵ log n

Ti(h0 � 1)

(c)


✓
1 +

1

�

◆s
↵ log n

Ti(h)
,

where (a) follows from the triangle inequality, (b) from the fact that ✓ is in the confidence set and E holds, and
(c) from h0 > h and the monotonicity of the number of pulls. Therefore, it must be that

Ti(h) <

✓
1 +

1

�

◆2 ↵ log n

�2i (✓, ✓
⇤)
,

which is a contradiction. Thus, we must have ✓ /2 ⇥̃h0 .

We now show a condition on the number of pulls such that, under the ’good’ event E, an arm is discarded.

Lemma 3. Let h � 0, i 2 A, and suppose that, for any model ✓ 2 ⇥⇤
i there exists an arm j 2 A such that

Tj(h) �
⇣
1 + 1

�

⌘2
↵ logn
�2
j (✓,✓

⇤)
. Then, under event E, i /2 Ãh0 for all h0 > h.

Proof. All models with i as optimal arm are discarded in phase h by Lemma 2. Therefore, 8✓ 2 ⇥⇤
i : ✓ /2 ⇥̃h+1,

which also implies that i /2 Ãh0 for all h0 > h.

Next, we show that, when all arms have not been pulled too much, some models can be guaranteed to lie in the
confidence set.

Lemma 4. Let h � 0, ✓ 2 ⇥, and suppose Ti(h) 
⇣
1� 1

�

⌘2
↵ logn
�2
i (✓,✓

⇤)
for all arms i 2 A. Then, under event E,

✓ 2 ⇥̃h+1.

Proof. Notice that, for all arms i 2 A, �i(✓, ✓⇤) 
⇣
1� 1

�

⌘q
↵ logn
Ti(h)

. Therefore,

|µ̂i,h � µi(✓)|
(a)
 |µ̂i,h � µi(✓

⇤)|+ |µi(✓
⇤)� µi(✓)| = |µ̂i,h � µi(✓

⇤)|+ �i(✓, ✓
⇤)

(b)
<

1

�

s
↵ log n

Ti(h)
+ �i(✓, ✓

⇤)
(c)


s
↵ log n

Ti(h)
,

where (a) follows from the triangle inequality, (b) from the fact that E holds, and (c) from the condition on the
number of pulls above. This implies that ✓ 2 ⇥̃h+1.

The following lemma states a condition on �̃h�1 under which a model ✓ 6= ✓⇤ can be guaranteed to belong to ⇥̃h.
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Lemma 5. Let h � 1, ✓ 2 ⇥, and ↵ � �2. For all i 2 A
⇤(⇥), let h̃i  h � 1 be such that either i /2 Ãh̃i+1 or

h̃i = h� 1. Suppose the following condition holds

�̃h�1 � k� max
j2A⇤(⇥)

�j(✓, ✓⇤)

2h�h̃j�1
. (4)

Then, under event E, ✓ 2 ⇥̃h.

Proof. Fix any arm i 2 A
⇤(⇥). By assumption i is pulled at most in phase h̃i. Therefore, its number of pulls at

the end of phase h� 1 can be bounded by

Ti(h� 1) =

&
↵ log n

�̃2
h̃i

✓
1 +

1

�

◆2
'
=

&
↵ log n

4h�h̃i�1�̃2h�1

✓
1 +

1

�

◆2
'


↵ log n

4h�h̃i�1�̃2h�1

✓
1 +

1

�

◆2

+ 1,

where the second equality is from �̃h̃i
= 1

2h̃i
= 2h�1

2h̃i2h�1
= 2h�h̃i�1�̃h�1. The constant term can be upper bounded

by

1 =
(� + 1)2 log n

(� + 1)2 log n

(a)


↵(� + 1)2 log n

�2(� + 1)2 log n
4h̃i

4h�1

4h�1

(b)
=

1

(� + 1)2 log n

↵ log n

4h�h̃i�1�̃2h�1

✓
1 +

1

�

◆2

,

where (a) follows from ↵ � �2 and (b) from the definition of �̃h�1. Hence,

Ti(h� 1)
(a)


✓
1 +

1

(� + 1)2 log n

◆
↵ log n

4h�h̃i�1�̃2h�1

✓
1 +

1

�

◆2

(b)


✓
1�

1

�

◆2 ↵ log n

4h�h̃i�1 maxj2A⇤(⇥)
�2
j (✓,✓

⇤)

4h�h̃j�1



✓
1�

1

�

◆2 ↵ log n

�2i (✓, ✓
⇤)
,

where in (a) we applied the two inequalities derived above and in (b) we used the condition (4) on �̃h�1. This
argument can be repeated for all other arms in A

⇤(⇥). Therefore, Lemma 4 together with the fact that arms
not in A

⇤(⇥) are never pulled, implies ✓ 2 ⇥̃h.

The following theorem is the key result that will be used to prove the final regret bound. It shows that the sets
Āh and Ah defined in Section 3 have the intended meaning.

Theorem 7. Let � � 1 and ↵ = �2. Then, under event E, the following two statements are true for all h � 0:

8i 2 Āh : i /2 Ãh0 8h0 > h, (5)

8i 2 Ah : i 2 Ãh. (6)

Proof. We prove the theorem by induction on h.

1) Base case (h = 0, 1) We show both h = 0 and h = 1 as base cases since the recursive definition of the sets
Ah starts from h = 1 and depends on Āh. The recursive definition of the latter, on the other hand, starts from
h = 0.

1.1) First phase (h = 0) Since Ã0 = A
⇤(⇥) by the initialization step of Algorithm 1, (6) trivially holds. If Ā0

is empty, (5) trivially holds as well. Suppose Ā0 is not empty and fix any arm i 2 Ā0. For all arms j 2 A
⇤(⇥),

Tj(0)
(a)
=

&
↵ log n

�̃20

✓
1 +

1

�

◆2
'

(b)
�

&
↵ log n

inf✓2⇥⇤
i
maxl2A⇤(⇥) �2l (✓, ✓

⇤)

✓
1 +

1

�

◆2
'
,
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where (a) is from the number of pulls in Algorithm 1 and the fact that all arms in A
⇤(⇥) are active, and (b)

follows from the definition of Ā0. Therefore, for all ✓ 2 ⇥⇤
i there exists some arm j 2 A

⇤(⇥) whose number of
pulls at the end of phase 0 is at least

Tj(0) �

&
↵ log n

�2j (✓, ✓
⇤)

✓
1 +

1

�

◆2
'
.

Hence, Lemma 3 ensures that i /2 Ãh0 for all h0 > 0, which in turn implies that (5) holds.

1.2) Second phase (h = 1) Let us start from (6). Take any arm i 2 A1 := A
⇤(⇥) \ Ā0 and suppose

�̃0 > k� inf
✓2⇥⇤

i

max
j2A⇤(⇥)

�j(✓, ✓⇤)

2max{�h̄j ,0}
(7)

holds. Since 2max{�h̄j ,0} = 1 for all j 2 A
⇤(⇥), (7) implies that there exists some model ✓̄ 2 ⇥⇤

i such that
�̃0 � k� maxj2A⇤(⇥) �j(✓̄, ✓

⇤). Thus, we can directly apply Lemma 5 using h̃j = 0 for all j 2 A
⇤(⇥) and obtain

✓̄ 2 ⇥̃1. This implies i 2 Ã1, from which (6) holds.

The proof of (5) proceeds similarly as for h = 0. Take any arm i 2 Ā1 (assuming the set is not empty). We
have just proved that all arms j 2 A1 are pulled in phase h = 1. If arm i has already been removed, (5) trivially
holds. Hence, we can safely assume that i 2 Ã1. Therefore, arms in A1 [ {i} are active and the number of pulls
is su�cient to apply Lemma 3, which implies (5).

2) Inductive step (h > 1) Now assume the two statements hold for h0 = 0, 1, . . . , h � 1. This implies, in
particular, that an arm i 2 Āh0 , h0

 h � 1, is not pulled after h0. Once again, take any arm i 2 Ah. The
definition of Ah implies

�̃h�1 � k� max
j2A⇤(⇥)

�j(✓̄, ✓⇤)

2max{h�h̄j�1,0}

for some ✓̄ 2 ⇥⇤
i . Notice that, by the inductive assumption, all arms j 2 A

⇤(⇥) \ Ah are not pulled after
h̄j  h � 1. On the other hand, for all arms j 2 Ah, it must be that h̄j � h. Thus, we can apply Lemma 5 by
setting h̃j = h̄j for arms j 2 A

⇤(⇥) \ Ah and h̃j = h� 1 for arms j 2 Ah. Hence, ✓̄ 2 ⇥̃h and (6) holds.

Finally, since all arms in Ah are pulled in phase h, we can show that (5) holds using exactly the same argument
as for the second base case (h = 1).

We are now ready to prove Theorem 3.

Proof. (Theorem 3) The expected regret can be written as

Rn

(a)


nX

t=1

E [�It(✓
⇤)|E] + nP {Ec

}
(b)
=
X

i2A
�i(✓

⇤)E [Ti(n)|E] + nP {Ec
} ,

where in (a) we upper bounded the gaps by 1 and used E [1 {Ec
}] = P

�
EC

 
, while in (b) we used the standard

rewriting in terms of the number of pulls.

We now upper bound the expected number of pulls of each sub-optimal arm i when conditioned on event E.
Since i 2 Āh̄i

, Theorem 7 ensures that arm i is not pulled after phase h̄i. Hence,

Ti(n)
(a)


&
↵ log n

�̃2
h̄i

✓
1 +

1

�

◆2
'

(b)
=

&
4↵ log n

�̃2
h̄i�1

✓
1 +

1

�

◆2
'

(c)


&
4(1 + �2) log n

inf✓2⇥⇤
i
maxj2A⇤

i
�2j (✓, ✓

⇤)

'
,
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where (a) follows immediately from Theorem 7 and Algorithm 1, while (b) from �̃h̄i
=

�̃h̄i�1

2 . To show (c),

notice that �̃h̄i�1 > inf✓2⇥⇤
i
maxj2A⇤

i
�j(✓, ✓⇤) from the definition of Āh̄i

(if this did not hold, arm i would be
eliminated in phase h̄i�1 since Ah̄i

✓ Ah̄i�1). Therefore, the regret conditioned on event E can be upper bound
by

X

i2A⇤(⇥)

4(1 + �2)�i(✓⇤) log n

inf✓2⇥⇤
i
maxj2A⇤

i
�2j (✓, ✓

⇤)
+ |A

⇤(⇥)|,

where we used dxe  x+ 1 and
P

i2A⇤(⇥)�i(✓⇤)  |A
⇤(⇥)|.

Let us now consider the probability of E not holding. Using Lemma 1 with ↵ = �2, together with (log2 n+2)2  n
for n � 64, we obtain

nP {Ec
}  |A

⇤(⇥)|
(log2 n+ 2)2

n
 |A

⇤(⇥)|,

which, combined with the previous bound, concludes the proof.

C.2 Proof of Proposition 1

Proposition 1. The SAE algorithm is always sub-UCB, in the sense that there exist constants c, c0 > 0 such
that its regret satisfies

RSAE
n (✓⇤,⇥) 

X

i2A\{i⇤}

c log n

�i(✓⇤)
+ c0.

Proof. First notice that each sub-optimal arm i is also in set of arms available to remove i itself. Consider now
any model ✓̄i 2 ⇥⇤

i that must be removed from the confidence set in order to eliminate i. We have two cases.

1) ✓̄i is an optimistic model w.r.t. ✓⇤ This implies that µ⇤(✓̄i) = µi(✓̄i) > µ⇤(✓⇤) which, in turns, implies
that �i(✓̄i, ✓⇤) > �i(✓⇤). Therefore, the regret for such arms can be upper bounded by

c�i(✓⇤) log n

maxj2Ah̄i
[{i} �2j (✓̄i, ✓

⇤)
+ c0 

c�i(✓⇤) log n

�2i (✓̄i, ✓
⇤)

+ c0 
c log n

�i(✓⇤)
+ c0.

2) ✓̄i is not an optimistic model w.r.t. ✓⇤ This implies that µ⇤(✓̄i) = µi(✓̄i)  µ⇤(✓⇤). If µi(✓̄i) �
µ⇤(✓⇤) � �i

2 , then �i(✓̄i, ✓⇤) �
�i
2 . If, on the other hand, µi(✓̄i)  µ⇤(✓⇤) � �i

2 , then �i⇤(✓̄i, ✓⇤) �
�i
2 since

µi⇤(✓̄i) < µi(✓̄i). Furthermore, under event E, i⇤ 2 Ãh for all h � 0 (and thus i⇤ 2 Ah). Therefore,

c�i(✓⇤) log n

maxj2Ah̄i
[{i} �2j (✓̄i, ✓

⇤)
+ c0 

c�i(✓⇤) log n

max
�
�2i (✓̄i, ✓

⇤),�2i⇤(✓̄i, ✓
⇤)
 + c0 

2c log n

�i(✓⇤)
+ c0.

This concludes the proof.

C.3 Proof of Proposition 2

Proposition 2. If ⇥ 2 ⌦opt, SAE is sub-SUCB, in the sense that its regret can be upper bounded by the one of
Theorem 1.

Proof. In the proof of Proposition 1, we have already shown that the model gaps w.r.t. optimistic models are
always larger than the action gaps. Therefore,

inf
✓2⇥⇤

i \⇥
+
i

max
j2A⇤

i

�j(✓, ✓
⇤) � inf

✓2⇥+
i

max
j2A⇤

i

�j(✓, ✓
⇤) � �i(✓

⇤).

The proof follows straightforwardly.
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D Proofs of Section 4

Throughout this section, we override the notation of the previous results to account for the periods introduced
in Algorithm 2. We use Ti(k, h) to denote the number of pulls of arm i at the end of phase h in period k.
Furthermore, we define Ti,k as the number of pulls of i at the end of period k. Similarly, Ti,k(h) denotes the
number of pulls of i at end of phase h but counting only those pulls occurred in period k. For all other period-
and phase-dependent random variables, we shall use a superscript k to denote the period and a subscript h to
denote the phase. For variables depending only on the period, we shall move k to a subscript. We will make
these dependencies explicit whenever not clear from the context.

D.1 Proof of Theorem 4

We first extend Lemma 1 to bound the probability that the true model is not contained in the confidence set by
a margin in some phase of period k.

Lemma 6. Let ↵ > 0, � � 1, k � 0, and Ek denote the following event:

Ek :=
n
8h = 0, . . . , dlog2 ñke : ✓

⇤
2 ⇥̃k

h

o
. (8)

Then, the probability that Ek does not hold can be upper bounded by

P {Ec
k}  |A

⇤(⇥)|(log2 ñk + 3)2ñ
�2 ↵

�2

k

k�1X

k0=0

ñk0 .

Proof. First assume that k > 0. Using the union bound, we have

P {Ec
k} = P

(
9h = 0, . . . , dlog2 ñke, 9i 2 A : |µ̂k

i,h�1 � µi(✓
⇤)| �

1

�

s
↵ log ñk

Ti(k, h� 1)
^ Ti(k, h� 1) > 0

)



dlog2 ñkeX

h=0

X

i2A⇤(⇥)

P

(
|µ̂k

i,h�1 � µi(✓
⇤)| �

1

�

s
↵ log ñk

Ti(k, h� 1)
^ Ti(k, h� 1) > 0

)
,

where A can be replaced by A
⇤(⇥) since arms that are sub-optimal for all models are never pulled and so the

corresponding event above never holds. Let us now consider the inner term for a fixed phase h and arm i. The
number of pulls of i can be decomposed into Ti(k, h � 1) = Ti,k�1 + Ti,k(h � 1). Ti,k�1 could be any value s

between 1 and s̄k :=
Pk�1

k0=0 ñk0 . On the other hand, Ti,k(h� 1) can lead only to h+ 1 di↵erent number of pulls,

pu :=

&
↵ log ñk

�̃2u�1

✓
1 +

1

�

◆2
'

for u = 1, . . . , h and pu = 0 for u = 0. Therefore, the number of pulls of i given s pulls up to period k � 1 and
pu pulls in period k are qs,u = max{s, pu}. Thus, by taking a further union bound on the possible values of
Ti(k, h� 1) and using Cherno↵-Hoe↵ding inequality, we obtain

P

(
|µ̂k

i,h�1 � µi(✓
⇤)| �

1

�

s
↵ log ñk

Ti(k, h� 1)

)
= P

(
s̄k[

s=1

h[

u=0

|µ̂i,qs,u � µi(✓
⇤)| �

1

�

s
↵ log ñk

qs,u

)



s̄kX

s=1

hX

u=0

P

(
|µ̂i,qs,u � µi(✓

⇤)| �
1

�

s
↵ log ñk

qs,u

)



s̄kX

s=1

hX

u=0

2e
�2qs,u

↵ log ñk
�2qs,u = 2(h+ 1)ñ

�2 ↵
�2

k s̄k.

Notice that, with some abuse of notation, we define µ̂i,s as the empirical mean of arm i after s pulls of such arm.
Putting everything together,

P {Ec
k} 

dlog2 ñkeX

h=0

X

i2A⇤(⇥)

2(h+ 1)ñ
�2 ↵

�2

k s̄k = 2|A⇤(⇥)|ñ
�2 ↵

�2

k s̄k

dlog2 ñkeX

h=0

(h+ 1)  |A
⇤(⇥)|(log2 ñk + 3)2ñ

�2 ↵
�2

k s̄k.
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Notice that for k = 0 the bound is even smaller since we can avoid the union bound over the pulls in previous
periods. This concludes the proof.

Theorem 4. Let ⌘ = 1, ↵ = 2, and � = 1. Then,

RASAE
n (✓⇤,⇥) 

X

i2A⇤\{i⇤}

192�i(✓⇤) log n

 (⇥⇤
i , {i, i

⇤})
+ 6|A⇤(⇥)|.

Proof. Let Lk :=
Pñk

t=s̄k+1�It(✓
⇤), with s̄k :=

Pk�1
k0=0 ñk0 , be the regret incurred in period k. Then,

Rn = E

"
nX

t=1

�It(✓
⇤)

#
(a)
 E

2

4
k̄X

k=0

Lk

3

5 = E

2

4
k̄X

k=0

Lk1 {Ek = 1}

3

5+ E

2

4
k̄X

k=0

Lk1 {Ek = 0}

3

5

(b)


k̄X

k=0

E [Lk|Ek = 1]

| {z }
(i)

+
k̄X

k=0

P {Ek = 0} ñk

| {z }
(ii)

,

where (a) follows from the definition of the maximum period k̄ = mink2N+{k|ñk � n} and (b) by bounding the
regret of each period by ñk. We now bound the two terms separately.

Let us start from (i). Fix a period k. We have

E [Lk|Ek = 1] =
X

i2A⇤(⇥)

�i(✓
⇤)E [Ti,k � Ti,k�1|Ek = 1] ,

where we recall Ti,k is the total number of pulls of i at the end of period k (not necessarily only in period k), so
that Ti,k � Ti,k�1 is the total number of pulls occurred in period k. Fix a sub-optimal arm i. Let

h̄i := min
h2N+

⇢
h | �̃h  inf

✓2⇥⇤
i

max
j2{i,i⇤}

�j(✓, ✓
⇤)

�
.

Lemma 3, together with the fact that i⇤ is pulled in all phases, ensures that if i 2 Ã
k
h̄i
, i will not be pulled again

in period k. Therefore,

Ti,k � Ti,k�1

(a)


&
↵ log ñk

�̃2
h̄i

✓
1 +

1

�

◆2
'

(b)
=

&
4↵ log n

�̃2
h̄i�1

✓
1 +

1

�

◆2
'

(c)


&
4↵ log ñk

inf✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)

✓
1 +

1

�

◆2
'

(d)


16↵ log ñk

inf✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)
+ 1

(e)


24↵ log ñk

inf✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)
,

where (a) follows from the previous comments, (b) from �̃h = �̃h�1

2 , (c) from the definition of h̄i, (d) after setting
� = 1, and (e) by noticing that 1  3

2 log ñk for all k � 0. This allows us to bound the expected regret due to
arms in A

⇤(⇥) by

(i) 
X

i2A⇤(⇥)

24↵�i(✓⇤)
Pk̄

k=0 log ñk

inf✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)


X

i2A⇤(⇥)

96↵�i(✓⇤) log n

inf✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)
.

To understand the second inequality, notice that ñk = 22
k

for all k � 0 since ⌘ = 1. Furthermore, since

k̄ < log2 log2 n+ 1,
Pk̄

k=0 log ñk = (log 2)
Pk̄

k=0 2
k
 2k̄+1 log 2  4 log n.

Let us now consider (ii). We have
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(ii)
(a)
 |A

⇤(⇥)|
k̄X

k=0

ñ
2�2 ↵

�2

k (log2 ñk + 3)2
(b)
= |A

⇤(⇥)|
k̄X

k=0

2
2k(2�2 ↵

�2 )
(2k + 3)2

(c)
 |A

⇤(⇥)|
2X

k=0

2
2k(2�2 ↵

�2 )
(2k + 3)2 + |A

⇤(⇥)|
1X

k=3

1

2
2k(2 ↵

�2 �3)

(d)
 5.76|A⇤(⇥)|+ 0.026|A⇤(⇥)|  6|A⇤(⇥)|,

where (a) follows from Lemma 6 and
Pk�1

k0=0 ñk0  ñk, (b) from the definition of ñk, (c) from the fact that for

k � 3 we have (2k + 3)2  22
k

, and (d) after setting ↵ = 2, � = 1, and some numerical calculations.

Combining (i) and (ii), we obtain the stated bound on Rn.

D.2 Proof of Theorem 5

Theorem 5. Let ⌘ = 1, ↵ = 5
2 , � = 1, t̄ := 20|A⇤(⇥)| log 2

�2
⇤

+ 2|A⇤(⇥)|, and suppose Assumption 1 holds. Then,

RASAE
n (✓⇤,⇥) 

X

i2A⇤\{i⇤}

480�i(✓⇤) log t̄

 (⇥⇤
i , {i, i

⇤})
+ 9|A⇤(⇥)|.

Proof. As for Theorem 4, we define Lk :=
Pñk

t=s̄k+1�It(✓
⇤) to be the regret incurred in period k. Similarly to

Lattimore and Munos (2014), we decompose the expected regret into that incurred up to a fixed (constant in n)
period k and that incurred in the remaining periods. Let Ok := {9i 6= i⇤ : i 2 Ã

k
0} be the event under which

some sub-optimal arm is pulled in period k. Then,

Rn = E

"
nX

t=1

�It(✓
⇤)

#
(a)
 E

2

4
k̄X

k=0

Lk

3

5
(b)


k̄X

k=0

E [Lk|Ek = 1] +
k̄X

k=0

P {Ek = 0} ñk

(c)
=

kX

k=0

E [Lk|Ek = 1] +
k̄X

k=k+1

E [Lk|Ek = 1] +
k̄X

k=0

P {Ek = 0} ñk

(d)


kX

k=0

E [Lk|Ek = 1]

| {z }
(i)

+
k̄X

k=k+1

ñkP {Ok = 1|Ek = 1}

| {z }
(ii)

+
k̄X

k=0

P {Ek = 0} ñk

| {z }
(iii)

,

where (a) and (b) are as in the proof of Theorem 4, (c) is trivial, and (d) follows since if Ok = 0 then only the
optimal arm is pulled in period k and thus no regret is incurred.

Using exactly the same argument as done in the proof of Theorem 4,

(i) 
X

i2A⇤(⇥)

24↵�i(✓⇤)
Pk

k=0 log ñk

inf✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)
.

Similarly, we obtain (iii)  3|A⇤(⇥)|, where the smaller constant is due to the fact that we increased ↵.

Let us now deal with (ii). First, we define k as

k := min
k2N+

⇢
k
���
�

ñk

|A⇤(⇥)|

⌫
�

10 log ñk+1

�2⇤

�
.
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By the union bound,

(ii) 
k̄X

k=k+1

ñkP {Ok = 1 ^ Ek�1 = 1|Ek = 1}+
k̄X

k=k+1

ñkP {Ok = 1 ^ Ek�1 = 0|Ek = 1}



k̄X

k=k+1

ñkP {Ok = 1|Ek = 1 ^ Ek�1 = 1}

| {z }
(iv)

+
k̄X

k=k+1

ñkP {Ek�1 = 0|Ek = 1}

| {z }
(v)

.

By recalling that ñk = ñ2
k�1 and that ↵ was increased to 5

2 , (v) can be bounded by 6|A⇤(⇥)| as done for (iii) in
Theorem 4. It only remains to bound (iv). Fix a period k � k + 1. We have

P {Ok = 1|Ek = 1 ^ Ek�1 = 1} = P
n
9i 6= i⇤ : i 2 Ã

k
0 |Ek = 1 ^ Ek�1 = 1

o

(a)
= P

n
9i 6= i⇤ : i 2 A

⇤(⇥̃k
0)|Ek = 1 ^ Ek�1 = 1

o

(b)
 P

(
Ti⇤,k�1 <

↵ log ñk

�2⇤

✓
1 +

1

�

◆2

|Ek = 1 ^ Ek�1 = 1

)

(c)
 P

⇢
Ti⇤,k�1 <

�
ñk�1

|A⇤(⇥)|

⌫
|Ek = 1 ^ Ek�1 = 1

�
(d)
 0,

where (a) follows from the definition of Ãk
0 . In (b) we exploit the fact that, under event Ek, if i⇤ is pulled more

than that quantity at the end of period k � 1 then no model with a di↵erent optimal arm than i⇤ belongs to
⇥̃k

0 . (c) is from the definition of k and k � 1 � k. (d) holds since, under Ek�1, i⇤ is pulled in all phases in
period k � 1. Therefore, even if all other arms are pulled as well, the round robin schedule of the pulls ensures

Ti⇤,k�1 �

j
ñk�1

|A⇤(⇥)|

k
.

Therefore, (ii)  6|A⇤(⇥)|. Combining (i), (ii), and (iii) we obtain

Rn 

X

i2A⇤(⇥)

24↵�i(✓⇤)
Pk

k=0 log ñk

min✓2⇥⇤
i
maxj2{i,i⇤} �2j (✓, ✓

⇤)
+ 9|A⇤(⇥)|.

Since
Pk

k=0 log ñk = log 2
Pk

k=0 2
k
 2k+1 log 2, let us finally bound k. From its definition,

$
22

k�1

|A⇤(⇥)|

%
<

20 log 22
k�1

�2⇤
=)

22
k�1

2k�1


20|A⇤(⇥)| log 2

�2⇤
+ 2|A⇤(⇥)|.

Since k � 1  2k�2, we obtain

k  log2 log2

✓
20|A⇤(⇥)| log 2

�2⇤
+ 2|A⇤(⇥)|

◆
+ 2.

Therefore,

kX

k=0

log ñk  2k+1 log 2  8 log

✓
20|A⇤(⇥)| log 2

�2⇤
+ 2|A⇤(⇥)|

◆
,

which concludes the proof.

E Proof of the Lower Bound

Theorem 6. Let ⇥ 2 ⌦cr and n � 1
�2
⇤
. Then, for su�ciently small �⇤, the expected regret of any super-fast

convergent strategy ⇡ can be lower bounded by

R⇡
n(✓

⇤,⇥) �
X

i2A⇤\{i⇤}

�i(✓⇤)

2 (⇥⇤
i , {i})

log
�2

4e2c�2⇤ log
1
�2
⇤

,
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where � := inf✓02⇥\⇥⇤
i⇤
�i⇤(✓0).

Proof. Throughout the proof, we consider Gaussian bandits with �2 = 1
2 , i.e., ⌫i(✓) = N (µi(✓),

1
2 ) for all arms i

and models ✓. Let us fix the true model ✓⇤ with optimal arm i⇤ and a sub-optimal arm i (such that �i(✓⇤) > 0).
We build an alternative model ✓ as follows; for some ✏ with 0 < ✏ < �min(✓⇤), we set the mean return of i⇤ to
either µi⇤(✓⇤) + ✏ or µi⇤(✓⇤)� ✏. This implies �i⇤(✓, ✓⇤) = ✏. Furthermore, we make arm i become optimal, i.e.,
µi(✓) > µi⇤(✓). Any other arm di↵erent than i and i⇤ remains unchanged. Note that, by definition of ✏, i⇤ is the
second best arm in ✓.

By applying Equation 6 of Garivier et al. (2018) together with the closed-form of the KL-divergence between
Gaussians, we obtain

E✓⇤ [Ti(n)]KL(⌫i(✓
⇤), ⌫i(✓)) + E✓⇤ [Ti⇤(n)]KL(⌫i⇤(✓

⇤), ⌫i⇤(✓))

= E✓⇤ [Ti(n)]�
2
i (✓, ✓

⇤) + E✓⇤ [Ti⇤(n)]✏
2
� kl(E✓⇤ [Z],E✓[Z]), (9)

where Z is any random variable (measurable with respect to the n-step history) taking values in [0, 1] and kl is

the KL divergence between Bernoulli distributions. Choosing Z = Ti⇤ (n)
n and using the super-fast convergence

of the chosen strategy,

E✓⇤ [Z] = E✓⇤


Ti⇤(n)

n

�
= 1�

1

n

X

i 6=i⇤

E✓⇤ [Ti(n)] � 1�
1

n

X

i 6=i⇤

c log n

�2
i (✓

⇤)
,

and

E✓[Z] = E✓


Ti⇤(n)

n

�


c log n

�2
i⇤(✓)n


c log n

�2n
.

Here we defined � := inf✓02⇥\⇥⇤
i⇤
�i⇤(✓0). Using kl(p, q) � p log 1

q � log 2,

kl(E✓⇤ [Z],E✓[Z]) �

0

@1�
1

n

X

i 6=i⇤

c log n

�2
i (✓

⇤)

1

A log
�2n

c log n
� log 2.

Combining this result with (9) and using the fact that the number of pulls is upper-bounded by n, we obtain

E✓⇤ [Ti(n)]�
2
i (✓, ✓

⇤) �

0

@1�
1

n

X

i 6=i⇤

c log n

�2
i (✓

⇤)

1

A log
�2n

c log n
� log 2

| {z }
fi(n)

�✏2n.

Rearranging and optimizing for ✓,

E✓⇤ [Ti(n)] �
fi(n)� ✏2n

inf✓2⇥✏
i
�2i (✓, ✓

⇤)
,

where ⇥✏
i := {✓ 2 ⇥⇤

i | �i⇤(✓, ✓⇤) = ✏}. Following Degenne et al. (2018), we use the intuition that, since the
strategy is super-fast convergent, this constraint should be valid for all t = 1, . . . , n rather than only n. Therefore,
since the number of pulls is monotone in t,

E✓⇤ [Ti(n)] � sup
1tn

fi(t)� ✏2t

inf✓2⇥✏
i
�2i (✓, ✓

⇤)
.

Let us now analyze the function fi(t)�✏2t for the particular value t =
1
✏2 . For ✏ 

q
1

!(2cd) , with d =
P

i 6=i⇤
1

�2
i (✓

⇤)
,

we have that

1� ✏2cd log
1

✏2
�

1

2
.

The function ! is the one defined by Lattimore and Munos (2014) as !(x) = miny2N{y | z � x log z 8z � y}.
Therefore,

fi

✓
1

✏2

◆
� 1 �

1

2
log

�2

4e2c✏2 log 1
✏2
.
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Figure 3: Expected number of pulls of each arm in the simulations on hand-coded structures. (a) The structure
of Figure 1(left). (b) The same structure with non-informative arm 2. (c) The structure of Figure 1(right). Only
sub-optimal arms are shown in this last plot due the imbalanced pull counts.

For n � 1
✏2 we have

E✓⇤ [Ti(n)] �
log �2

4e2c✏2 log 1
✏2

2 inf✓2⇥✏
i
�2i (✓, ✓

⇤)
.

Applying this argument for all other sub-optimal arms, we obtain the following lower bound on the expected
regret:

Rn(✓
⇤) �

X

i 6=i⇤

�i(✓⇤)

2 inf✓2⇥✏
i
�2i (✓, ✓

⇤)
log

�2

4e2c✏2 log 1
✏2
.

Note that this hold for all ✏ such that n � 1
✏2 , ✏ 

q
1

!(2cd) (which also imply ✏ < �min(✓⇤)), and for any set

⇥ containing ✓⇤. It only remains to build a su�ciently-hard structure. Let ⇥ be such that ✓⇤ 2 ⇥ and, for all
models ✓ with optimal arm di↵erent than i⇤, we have �i⇤(✓, ✓⇤) = �⇤, with su�ciently small �⇤ to satisfy the
assumptions above. Therefore, the display above holds for ✏ = �⇤ and ⇥�⇤

i = ⇥⇤
i . This concludes the proof.

F Additional Details on the Experiments

We first specify the values of the means of each arm in the hand-coded structured used in the experiments.

Figure 1(left)

• µ1(✓): from 0.85 to 0.8 in the first region, from 0.8 to 0.4 in the second, 0.4 in the third;

• µ2(✓): 0.8 in the first region, 0.2 in the second, 0.8 in the third;

• µ3(✓): from 0.6 to 0.8 in the first region, 0.86 in the second, from 0.8 to 0.6 in the third;

For the simulation with non-informative arm 2, µ2(✓) = 0.8 for all models.

Figure 1(right)

• µ1(✓): 0.8 in all models;

• µ2(✓): 0.7 in the first region, 0.7 in the second, 0.4 in the third, 0.2 in the fourth;

• µ3(✓): 0.6 in the first region, 0.84 in the second, 0.6 in the third, 0.6 in the fourth;

• µ4(✓): 0.5 in the first region, 0.1 in the second, 0.88 in the third, 0.5 in the fourth;

For completeness, we report in Figure 3 the average number of pulls of each arm in the simulation of Section 6.
In Figure 3a, we can notice that SAE significantly reduces the number of pulls of arm 3 by slightly increasing
those of arm 2 (as compared to SUCB). This does not hold anymore in Figure 3b, where arm 2 became non-
informative. Finally, Figure 3c shows that, as expected, SUCB never pulls arm 4, which however is used by SAE
to significantly reduces the number of pulls to arm 2.


