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Supplementary Material

A The Nonparametric Bellman Equation

This section contains the proofs of Theorem [1| and Theorem

Proposition 1. In the limit of infinite samples the NPBE defined in Definition [ with a data-set lim,, ., Dy,
collected under distribution 8 on the state-action space and MDP M converges to

Vi(s) = /S Asﬂ(s,z,b) (sz + ’y/SVTr(s')gb(s’,z’z,b) ds’)ﬁ(z,b) dzdb,
X
with R,n ~ R(z,b) V(z,b) € S x A,

with 2, ~ P(:]z,b) V(z,b) €S x A (12)
and
_ (s, z)p(a, b) L _
er(s,z,b) = fA f&A?//(S,Z)SO(a, b)3(z.b) dz dbw(a|s) da if w is stochastic,
) Y(s, z)p(n(s), b) .
T Vs 0o (r(s). )3z b) dzdb oiheruise
Proof.
A St (5)ei(a) (17 [ V() s
Vi = 1l - d
o=, ST 8 @) rlas)da
limy, o0 = Doi g ¥i(s)pi(a) (ri +7 /s $i(s) Vi () ds)
= d
/. i & S0 055025 rlals)da
fo.A ¥(s,z)p(a,b) (R(z, b) + v fs o(s',2)p(z'|b, z)f/ﬂ(s’) ds> B(z,b)dzdb
B /A Jsx 495, 2)¢(a, b)5(2, b) dz db rlas)da
Analogously we can derive the deterministic policy case. O

Proposition 2. Both for finite samples and infinite samples, when R is bounded by —Rpap and Riee (where

Rynaz 18 non-negative defined), then the solution of the NPBE if exists it is bounded between _f}_%’;"” and 2?_7";-1.

Proof. Starting with the finite samples case. Suppose by absurd proposition that if the NPBE admits a solution

Vi then sup |Vy(s)| = R"—“‘VX + € with € > 0 strictly positive (and eventually 4+00). It immediately follows that

1—
SUDg, s, [Vi(s1) — Vi (s2)| = 213;% + 2e. Expanding this term

(EZ;(sl) - ef(sﬁ) <r + 7/3 PV () ds/) ‘

sup |Vﬂ(sl) - V,,(SQ)| = sup
< sup |el(sy) — X (sy) r—l—’y/ qb(s’)f/ﬂ(s')ds’
S1,S2 S
< sup (}ETTr(sl)| + |€Z;(52)|> r+7/ (s )V (s') ds'|.
S1,S2 S
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Notice that €L (s) is a stochastic vector (non-negative definite and sums up to 0),

sup ([eF(s0)| + <550 ) e+ [ 606725 0
S1,82 S
< 2Rpax + 7y sup <|€Z(sl)| + |€£(52)|> ‘ /S qj(s')ffﬁ(s/)ds/
< 2Rmax —l—v(fma; + e) sup (!sz(sﬂ‘ + ]sf(sﬁ}) /qu(s')ds’
= 2Riax +fy<f/n_mj; + e) sup (’sTTr(sl)| + |EZ(52)}>1
<

2Rmax
2Rmax + ’V( + 26) )
-~

which implies that

% 2Rmax
sup [V (s1) — V(s2)] < 2Rmax+7( 7+2e>

S1,S2 1-—
Rm x 2Rmax
= 21 1 9¢ < 2Rmax+fy<—|—26>
1—7 1—7
= 0<e(y(1—7)-1). (13)

Since (1 —~) — 1 is always negative (we defined 0 < v < 1), then there are no positive values for e which satisfy
the inequality, which is in clear contradiction with the absurd premise. For the infinite samples case we can do
similar reasoning noting that ¢, 8, P are probability measures. O

Proposition 3. If R is bounded by R, and if f*: S — R satisfies the NPBE, then there is no other function
f:8 =R for which 3z € S and |f*(z) — f(z)| > 0.

Proof. Suppose, by absurd assumption, that a function g : S — R exists such that f(s) + g(s) satisfies Equa-
tion for every s € S and a constant G € RT exists for which |g(z)| > G. Note that the existence of f : S — R
as a solution for the NPBE implies the existence of

/ e7(s)p(s)) * (') ds' € R, (14)
S
and similarly, the existence of f(s) € R with f(s) = f*(s) 4+ g(s) as a solution of the NPBE implies that
/3 eT(8)p() f*(8) + 9(s') s € R. (15)
Note that the existence of the integral in Equations and implies
/ ef(s)qb(s’)g(s’) ds’ € R. (16)
S
Note that
P - fE = |7e) -l ( 1 [ 976+ 965) ds') \
= |ezge) ( 4 [ 66)9(s) ds') s ( o [ o606+ 9(69) ds') \
S S
_ T / / d /
MEAS /S 3(s)g(s) ds
— g = [T / (5)g(s) ds'|.
S
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Using Jensen’s inequality

9s)| < el(s) /S S(s")\g()] ds'.

Note that since both f* and f are bounded by

I

I

I

=

l9(s)

IN

IN

IN

IN

<

<

Y

lf/‘jﬂx then [g(s)| < imax thus

1—~

T s S/ S/ S/
7el( )/qu( Jlg(s)]d

R
g maX T s/ s') ds’
veisers) [ o)

Rmax
2

1—7
2Rmax
1—nv
2Rmax .
217'& using
-

2Rmax .
317 using (17)
-

0,

(17)

which is in clear disagreement with the assumption made. Again here a similar procedure shows the same result

for the infinite case.

Proof of Theorem [1]

Proof. Saying that V;‘ is a solution for Equation is equivalent to saying

Vi(s) — €™ (s) (r + 'y/sqb(s’)V:(s') ds’> =0 VsesS.

We can verify that by simple algebraic manipulation

) - <L) (10 [0z () av)

= TEat -6y o)A s )

= el (At or o o6l v )
_ e:<s>((u / ¢<s’>ez<s'>ds/)A;rr>
= ez(s)<A7rA7r1rr>

= 0.

Since equation has (at least) one solution, Proposition [3| guarantees that the solution (V; ) is unique.

Proof of Theorem [3l

O

Proof. We perform the derivation for the stochastic policy, however the same derivation applies for the de-
terministic case almost identically. Expanding |Ep[V p(s)] — V*(s)| using the NPBE and the classic Bellman
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equation,

E[Vp(s)] - V*(s)| = Ig[/SXAsﬂ(s,z,b) (Rz,b+’Y/SVD(s’)¢>(s',z/z7b)ds)B(z,b) dzdb]

- [ (Rt [ v pislsaas ) atais) da

As can be easily verified, £,(s,z,b)3(z,b) is a density distribution over z,b. Hence Equation can be
rewritten

(19)

/ ex(s,2,b) (Rz,b + 7/ Vp(s')o(s', 2, 1,) ds’) B(z,b) dz db}
SxA S

—/A (R(s,a)—}—’y/V*(s) (s'|s,a) ds')ﬁ(as) da

B Jsxa (s, )( b — R(s,a))3(z,b) dzdb
- Ig[ 9 fSAw s.2)p(a, b)3(z,b) dz db m(als) da}

Jseat(s;2)p(a,b)( [sVD(s)d(s',2,4,) ds' — [ V*(s)p(s']s, a) ds') 5(z, b) dzdb (als) da
[ Tz 95 2)p(a )z, b) dudb Jtals)a

Jsxa¥(s,2)p(a,b)(R,p — R(s,a))3(z,b) dzdb
< |5\, Jo1¥(5,2)¢(a, b)B(z, b) dzdb rlas) do

A

fSXAw(s,z)go(a, b)(fs Vp(s')o(s', 2, ) ds’ — fs V*(s')p(s'|s, a) ds’)B(z,b) dzdb s da

v LB T A 95 2)o(a )3z, b) dudb [ e
B

< Agias + 7BBias- (20)

It is evident that the term A is the Nadaraya-Watson kernel regression, as it is possible to observe in the beginnin
of the proof at page twelve of [Tosatto et al.| (2020)), therefore Theorem [2| applies

21,2

L2h? Lihi
Lp 22:1 hk<Hf¢k e 2 (1 + erf (Tf;))) <\/127 + L,Bhk% (1 + erf <hf/gﬁ>>>

ABias = )

Lshi hiL
Hf’:l e 2 |l—erf (\@[’)

where h = [hy, h,] and d = d, + d,.
Returning to the estimate of Bgjas

m(als)da

/ 5 [fSXAz/J(s,z) o(a,b) (fs Vp(s')o(s', 2, ,) ds’ — [ V*(s")p(s'|s, a) ds’)ﬁ(z,b)dzdb}

4D Js.4¥(s,2)¢p(a,b)B(z,b) dzdb

/ Jsua (s, 2)p(a,b)( [SE[Vb(s)o(s' 2, )] ds’ — [s V*(s')p(s']s,a) ds') 3(z, b) dzdb
Js.4¥(s,2)¢(a,b)B(z,b) dzdb

m(als)da

One my ask whether the terms in E[Vp(s')¢(s', z; ;)] are uncorrelated. The answer it is affirmative, since, even
if Vp depends by z,p, (integral in Equation )7 this corresponds only in the variation of a single point in the
integral, and therefore the overall estimate does not change. This argument, however, does not immediately hold
for the case of an infinitesimal bandwidth, and therefore we provide the results for that case separately.
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For Finite Bandwidth:
/ f‘SXAz/)(s,z)ap(a7 b)(fSE [VD<S/>QI)(S/,Z/Z7b)] ds’ — fs V*(s")p(s'|s, a) ds’),@’(z,b) dzdb
fs,A¢(S’Z) (a,b)3(z,b)dzdb
a0t ) fs V)00 0, 2) b s’ — [ V(5 )p(s s, ) ) s )zl
s.a fS’Aq/) s,z)p(a, b)3(z,b) dzdb
Lo Jssa ¥(s,2)¢(a, b)(fs Is (V(z')¢(2',s") — V*(s'))p(s'|s,a) ds’ dz’) B(z, b) dz db
s,a fS,Aw(s,z)cp(a, b)3(z,b) dz db

max fS><.A w(s’ Z)<p(aa b) ( fs V(Z/)gf)(zl, S/) -V (S/) dz/)ﬂ(z7 b) dzdb
s,a,s’ fs’Ad)(s,z)go(a, b)5(z,b) dzdb

et 2o b)Bab)dadb p
= |7, L 0. 99(a b)i(s b) dadb ([ 7eew.s) v ar)

m(als)da

IN

IN

= max /SV(Z/)d)(Z/,S/)—V*(S/)dZ/

s,a,s’

s,a,s’

= max /V(s’+1)¢(s—|—1,s’)—V*(s’)dl’. (21)
s

Note that .
l'i
2]L i

ds
e b,
(s’ +1,8)
,1;[1,/27Th2

thus

max
s,a,s’

/SV(S' o5+ 1) — V(s dl‘

2
i

< max V(s') = V*(s) /LV(Z|Z|)H\/_27:%¢1

Using Proposition 7?7

2
B ds ds ng,
s,a,s S T

2
. +oo #ﬁb 672h¢k
= gr;a;g V(S/)—V*(S’) +va (H/ e )/ |lk|72dlk
s 1 Nitk 1/271'h 1/27Th¢7k

. +o0 e 2’7'3;,1@
= max V(S/) — V*(S/) + Lv22/ Iy ———=dl,
s,a,s el 0 /27Th357k
= max|V(s') = V*(s")| + Ly i Dok
s,a,s’ 1 2

which means that when h not infinitesimal

V() = V*(s)

s,a,s’

LCREC

S ABiaS + Y < max
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It is however known that [V (s) — V*(s)| < 28maxthus
v

_ . de he.k
T(s) = V*(5)| < Aias + W(max ns m) (23)

s,a,s’

V(s) = V*(s)

Y7 max h
V(o) = V)] < Amt (22 + VZ nek )

d
Evd max - h . .
= V(S) -V (S) < ABldb + V(ABlas + ’Y( . + LV E ) + LV E \;%) using Equatlon ‘)
k=1

[e%S) ds
— Ve -vie)| <>y (ABM Ly > ) using Equation
t=0 k=1

1-—

_ 1 ds
= Vi(s) - V*(s)| < —— (ABHS + 7Ly Z F)

For Infinitesimal Bandwidth: In the case of an infinitesimal bandwidth note that, even if Vp and ¢ are
correlated the overall integral reduces only on a single point, and the same argument made in the case of finite
bandwidth applies,

/SlE [Vb(s)(s' 2, )] ds’ = E |:/SVD(S/)¢(S/7Z/Z,I) dS’)dS'} =E[Vp(z,p)] = /SVD(S/)ZD(S/|573) ds'.

It follows that, proceeding similarly to Equation , we obtain

|E[Vp(s)] ~ V*(s)] < max V(&) ~ V(&) (24)

which yields
’V(S) -V (S) < i ABias~ (25)
O

B Empirical Evaluation Detail

B.1 Linear Quadratic Regulator Experiment

Here we detail the experiment presented in Figure We use a discrete infinite-horizon discounted Linear
Quadratic Regulator system of the form

1 (o]
maxJ = — th (Z] Q@ + u] Rity)
23
Tir1 = A% + By Vi,
where #; € R% i € R%, Q € R%=*dz R € R%uXdu A € R%Xde B¢ R¥%*du ~ € [0,1) and & given.

In this example we use consider a 2-dimensional problem with the following quantities

12 0 01 O
A__ 0 1.1} B_[ 0 0.2}
[ —0.5 0 0.01 0
Q__ 0 0.25] R_{ 0 0.01]
L |1 B
()—_1:| ’7—09
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For this LQR problem we impose a linear controller as a diagonal matrix

K:{%l ]?2} (26)

B.1.1 Deterministic Experiment

For each dataset we run 100 trajectories of 30 steps. Each trajectory is generated by following the dynamics of
the described LQR and using at each time step a fixed policy initialized as

| ki+e €
K_[ € k2+5}’€NN(0’1)’

where k1 = 0.7 and ks = —0.7.

NOPG-D optimized for each dataset a policy encoded as in with: learning rate 0.5 with ADAM optimizer;
bandwidths (on average) for the state space hy, = [0.03,0.05] and for the action space h, = [0.33,0.27]; discount
factor v = 0.9; and keeping 5 elements per row after sparsification of the P matrix.

DPG optimized for each dataset a policy encoded as in with: learning rate 0.5 with ADAM optimizer;
Q-function encoded as Q(&,4) = ¥’ Q7 + @' Ra (with Q and R to be learned); discount factor v = 0.9; two
target networks are kept to stabilize learning and soft-updated using 7 = 0.01 (similar to DDPG).

B.1.2 Stochastic Experiment

For each dataset we run 100 trajectories of 30 steps. Each trajectory is generated by following the dynamics of
the described LQR, and using at each time step a stochastic policy as

T =K@ +& E~ N (ﬁ — 0, = diag(0.01, 0.01)) : (27)

where K = diag(0.35, —0.35).

NOPG-S optimized for each dataset a policy encoded as in with: learning rate 0.25 with ADAM optimizer;
bandwidths (on average) for the state space h, = [0.008,0.003] and for the action space h, = [0.02,0.02];
discount factor v = 0.9; and keeping 10 elements per row after sparsification of the P matrix.

PWIS optimized for each dataset a policy encoded as in with: learning rate 2.5x10~% with ADAM optimizer;

and discount factor v = 0.9.

B.2 Other Experiments Configurations

We use a policy encoded as neural network with parameters . A deterministic policy is encoded with a neural
network a = fz(s). The stochastic policy is encoded as a Gaussian distribution with parameters determined by
a neural network with two outputs, the mean and covariance. In this case we represent by fz(s) the slice of the
output corresponding to the mean and by gz(s) the part of the output corresponding to the covariance.

NOPG can be described with the following hyper-parameters

NOPG Parameters Meaning

dataset sizes number of samples contained in the dataset used for training

discount factor -y usual discount factor in infinite horizon MDP

state i_ifactor constant used to decide the bandwidths for the state-space

action Hfactor constant used to decide the bandwidths for the action-space

policy parametrization of the policy

policy output how is the output of the policy encoded

learning rate the learning rate and the gradient ascent algorithm used

NMC (NOPG-S) number of samples drawn to compute the integral e, (s) with MonteCarlo sampling
NMC number of samples drawn to compute the integral over the next state [ ¢(s’)ds’
Nﬁgc number of samples drawn to compute the integral over the initial

distribution [ Vi (s)uo(s) ds
policy updates number of policy updates before returning the optimized policy
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A few considerations about NOPG parameters. If NQ/IC = 1 we use the mean of the kernel ¢ as a sample to
approximate the integral over the next state. When optimizing a stochastic policy represented by a Gaussian
distribution, we set and linearly decay the variance over the policy optimization procedure. The kernel band-
widths are computed in two steps: first we find the best bandwidth for each dimension of the state and action
spaces using cross validation; second we multiply each bandwidth by an empirical constant factor (Efactor). This
second step is important to guarantee that the state and action spaces do not have a zero density. For instance,
in a continuous action environment, when sampling actions from a uniform grid we have to guarantee that the
space between the grid points have some density. The problem of estimating the bandwidth in kernel density
estimation is well studied, but needs to be adapted to the problem at hand, specially with a low number of
samples. We found this approach to work well for our experiments but it still can be improved.

B.2.1 Pendulum with Uniform Dataset

Tables [3 and [] describe the hyper-parameters used to run the experiment shown in the first plot of Figure 2]

Dataset Generation The dataset have been generated using a grid over the state-action space 0, 6‘, u, where
0 and 6 are respectively angle and angular velocity of the pendulum, and w is the torque applied. In Table [3| are
enumerated the different dataset used.

#60 #0 #u Sample size

10 10 2 200
15 15 2 450
20 20 2 800
25 25 2 1250
30 30 2 1800
40 40 2 3200

Table 3: Pendulum uniform grid dataset configurations This table shows the level of discretization for
each dimension of the state space (#6 and #6) and the action space (#u). Each line corresponds to a uniformly
sampled dataset, where 6 € [—m,7], § € [~8,8] and u € [~2,2]. The entries under the states’ dimensions
and action dimension correspond to how many linearly spaced states or actions are to be queried from the
corresponding intervals. The Cartesian product of states and actions dimensions is taken in order to generate
the state-action pairs to query the environment transitions. The rightmost column indicates the total number
of corresponding samples.

Algorithm details. The configuration used for NOPG-D and NOPG-S are listed in Table

NOPG
discount factor v 0.97
state Rgactor 1.0 1.0 1.0
action ﬁfactor 50.0
policy neural network parameterized by )
1 hidden layer, 50 units, ReLU activations
policy output 2tanh(fz(s)) (NOGP-D)
p = 2tanh(fz(s)), o = sigmoid(gz(s)) (NOGP-S)
learning rate 1072 with ADAM optimizer
NMC (NOPG-S) 15
NMC 1
N;I‘\;/éc (non applicable) fixed initial state

policy updates 1.5-103

Table 4: NOPG configurations for the Pendulum uniform grid experiment
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B.2.2 Pendulum with Random Agent

The following table shows the hyper-parameters used for generating the second plot starting from the left in
Figure [2]

NOPG

dataset sizes 102, 5102, 103, 1.5- 103, 2- 103, 3 - 103,
5-10%, 7-10%, 9102, 10*

discount factor -y 0.97

state Atactor 1.0 1.0 1.0
action Hfactor 25.0
policy neural network parameterized by 6
1 hidden layer, 50 units, ReLU activations
policy output 2tanh(f(s)) (NOGP-D)
p = 2tanh(fz(s)), o = sigmoid(gz(s)) (NOGP-S)
learning rate 10~2 with ADAM optimizer
NMC (NOPG-S) 10
NMe 1
Nﬁgc (non applicable) fixed initial state
policy updates 2-103
DDPG
discount factor 0.97
rollout steps 1000
actor neural network parameterized by 0;Ct0r
1 hidden layer, 50 units, ReLU activations
actor output 2tanh(fy (s))
actor learning rate 103 with ADAM optimizer
critic neural network parameterized by é;ritic
1 hidden layer, 50 units, ReLU activations
critic output fg.. (s,a)
critic learning rate  107¢ with ADAM optimizer
soft update =103
policy updates 3.10°

DDPG Offline

dataset sizes 102, 5-102%, 103, 2-103, 5- 103, 7.5 - 103,
104, 1.2-10%, 1.5-10%, 2- 104, 2.5 - 10*

discount factor -y 0.97

actor neural network parameterized by éactor
1 hidden layer, 50 units, ReLU activations
actor output 2tanh(fy  (s))
actor learning rate 1072 with ADAM optimizer
critic neural network parameterized by é;mic
1 hidden layer, 50 units, ReLU activations
critic output Jo (s,a)
critic learning rate 10‘5 with ADAM optimizer
soft update T=10"3
policy updates 2103

PWIS
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10%, 5- 102, 103, 2-103, 5- 103, 7.5 - 103,
104, 1.2-10%, 1.5 - 10%, 2- 10%, 2.5 - 10*
0.97

neural network parameterized by g

1 hidden layer, 50 units, ReLU activations
p = 2tanh(fz(s)), o = sigmoid(gz(s))
1072 with ADAM optimizer

2-10°

dataset sizes

discount factor ~y
policy

policy output
learning rate
policy updates

Table 5: Algorithms configurations for the Pendulum random data experiment

B.2.3 Cart-pole with Random Agent

The following tables show the hyper-parameters used to generate the third plot in Figure

NOPG

dataset sizes

discount factor ~
state Ractor
action Agactor

policy
policy output

learning rate

102, 2.5-10%, 5-10%, 103, 1.5 - 103, 2.5 - 103,
3-10%,5-10%, 6-102, 8102, 10*

0.99

1.01.0 1.0

20.0

neural network parameterized by g

1 hidden layer, 50 units, ReLU activations
5tanh(fz(s)) (NOGP-D)

p = 5tanh(fz(s)), o = sigmoid(gz(s)) (NOGP-S)
1072 with ADAM optimizer

NMC (NOPG-S) 10
N}C 1
Nﬁgc 15
policy updates 2-103
DDPG

discount factor -y 0.99
rollout steps 1000

actor

actor output
actor learning rate
critic

critic output

critic learning rate
soft update

policy updates

neural network parameterized by é;ctor
1 hidden layer, 50 units, ReLU activations

5tanh(fz  (s))
103 with ADAM optimizer

neural network parameterized by @critic

1 hidden layer, 50 units, ReLU activations
fgcriéic (S’ a)
10~° wit
=103
2-10°

ADAM optimizer

DDPG Offline

dataset sizes

discount factor -y

102, 5 - 102, 10, 2 - 10°, 3.5 - 105, 5 - 10°,
8103, 104, 1.5 10%, 2- 104, 2.5 - 10*
0.99
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actor

actor output
actor learning rate
critic

critic output

critic learning rate
soft update

policy updates

neural network parameterized by é;ctor
1 hidden layer, 50 units, ReLU activations

5tanh(fz  (s))
102 with ADAM optimizer

neural network parameterized by gcritic

1 hidden layer, 50 units, ReLU activations
fgcriéic (S’ a)
107° wit
=103
2-103

ADAM optimizer

PWIS

dataset sizes

discount factor ~
policy

policy output
learning rate
policy updates

102, 5-10%, 103, 2- 103, 3.5- 103, 5 - 10°,
8-10%, 104, 1.5-10%, 2- 104, 2.5 - 10*

0.99

neural network parameterized by 6

1 hidden layer, 50 units, ReLU activations
p = 5tanh(fz(s)), o = sigmoid(gz(s))
10~3 with ADAM optimizer

2-103

Table 6: Algorithms configurations for the CartPole random data experiment.

B.2.4 Mountain Car with Human Demonstrator

Here the detail of the experiment shown in Figure |4l The dataset in this experiment (10 trajectories) has been
generated by a human demonstrator. The dataset used is available in the source code provided.

NOPG

discount factor v 0.99
state Rfactor 1.0 1.0
action Efactor 50.0

neural network parameterized by )

1 hidden layer, 50 units, ReLU activations
Ltanh(fz(s)) (NOGP-D)

p = 1tanh(fz(s)), o = sigmoid(gz(s)) (NOGP-S)
10~2 with ADAM optimizer

policy
policy output

learning rate

NMC (NOPG-S) 15
NMC 1

thigc 15
policy updates 1.5-10%

Table 7: NOPG configurations for the MountainCar experiment.
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