
Christopher Tosh, Daniel Hsu

A Experiments continued

In this section, we discuss our experimental setup more thoroughly and present more results. Each plot depicts
� 50 independent simulations, and the error bands depict 68% bootstrap confidence intervals. For the ndbal
query selection algorithm, we used the heuristic suggested in Section 6: we sampled m = 500 candidate atoms
from D and n = 300 pairs of structures from ⇡t and chose the atom that empirically minimized equation (5).

A.1 Models, sampling, and evaluation

In our experiments, we used the posterior update in equation (4) with `(z, y) as the logistic loss, i.e.

`(z, y) = log
�
1 + e

�zy
�
.

In this setting, it is not possible to express ⇡t in closed form. However, we can still approximately sample from
⇡t using the Metropolis-adjusted Langevin Algorithm (MALA) (Dwivedi et al., 2018). If we let

f(w) = �

tX

i=1

�`(hw, xii, yi)�
1

2�2
kwk

2

then MALA is a Markov chain in which we maintain a vector Wt 2 Rd and transition to Wt+1 according to the
following process.

(i) Sample V ⇠ N (Wt � ⌘rf(Wt), 2⌘Id).

(ii) Calculate ↵ = min
n
1, exp

⇣
f(Wt)� f(V ) + 1

4⌘

�
kV �WT + ⌘rf(Wt)k2 � kWt � V + ⌘rf(V )k2

�⌘o
.

(iii) With probability ↵, Wt+1 = V . Otherwise, set Wt+1 = Wt.

The only hyper-parameter that needs to be set is ⌘ > 0. This parameter should be carefully chosen: if ⌘ is too
large then the walk may never accept the proposed state, and if ⌘ is too small then the walk may not move far
enough to get to a large probability region. The best choice of ⌘ ultimately depends on the distribution we are
sampling from, and unfortunately for us, our distributions are changing. Our fix is to adjust ⌘ on the fly so that
the average number of times that step (iii) rejects is not too close to 0 or to 1. A reasonable rejection rate is
about 0.4 (Roberts and Rosenthal, 1998).

Finally, in all of our evaluations we recorded an approximation of the average error of the posterior distribution
⇡t. This consists of sampling structures g1, . . . , gn ⇠ ⇡t and calculating

[error(⇡t) =
1

n

nX

i=1

d(gi, g
⇤)

where d(·, ·) is the distance function for the task at hand. In our experiments, this distance takes the following
forms.

• Classification error: d(w,w0) = Prx⇠unif(Sd�1)(sign(hw, xi) 6= sign(hw⇤
, xi)) = 1

⇡ arccos
⇣

hw,w0
i

kwkkw0k

⌘
.

• Best item identification: d(w,w0) = [iw 6= iw0 ].

• Approximate best item identification: d(w,w0) = kxiw � xiw0 k.

In the above, iw = argmaxihw, xii is the top item under w in the choice model setting. We used n = 300 in our
experiments.

A.2 Classification experiments

In Figure 2, we have classification experiments under logistic noise across di↵erent dimensions d and standard
deviations �. In all of the experiments, we used the logistic loss update on the posterior with � = 1 and a prior
distribution of N (0,�2

Id).
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Figure 2: Logistic noise experiments. Top to bottom: d = 5, 10. Left to right : � = 1, 5, 10.

A.3 Logit choice model experiments

In Figure 3, we have logit choice model experiments across di↵erent dimensions d, numbers of items n, and
standard deviations �. In all of the experiments, we used the logistic loss update on the posterior with � = 1
and a prior distribution of N (0,�2

Id).

B Dasgupta’s splitting index

We will make use of the original splitting index of Dasgupta (2005) and its multiclass extension in Balcan and
Hanneke (2012). Let E = ((g1, g01), . . . , (gn, g

0

n)) be a sequence of structure pairs. We say that an atom a ⇢-splits
E if

max
y

|E
y
a |  (1� ⇢)|E|.

G has splitting index (⇢, ✏, ⌧) if for any edge sequence E such that d(g, g0) > ✏ for all (g, g0) 2 E, we have

Pra⇠D(a ⇢-splits E) � ⌧.

The following theorem, which we will use heavily, demonstrates that the average splitting index can be bounded
by the splitting index. It is analogous to Lemma 3 of Tosh and Dasgupta (2017).

Theorem 14. Fix G, D, and ⇡. If G has splitting index index (⇢, ✏, ⌧) then it has average splitting index
( ⇢
4dlog2 1/✏e , 2✏, ⌧).

From the proof of Lemma 3 by Tosh and Dasgupta (2017), it is easy to see that so long as d(·, ·) is symmetric
and takes values in [0, 1], the same arguments imply Theorem 14.

C Proofs from Section 3

C.1 Proof of Lemma 2

To prove Lemma 2, we will appeal to the following multiplicative Cherno↵-Hoe↵ding bound (Angluin and Valiant,
1977).
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Figure 3: Logit choice model experiments with d = 10. Top to bottom: n = 10, 50, 100. Left to right : � = 1, 5.

Lemma 15. Let X1, . . . , Xn be i.i.d. random variables taking values in [0, 1] and let X =
P

Xi and µ = E[X].
Then for 0 < � < 1,

(i) Pr(X  (1� �)µ)  exp
⇣
�

�2µ
2

⌘
and

(ii) Pr(X � (1 + �)µ)  exp
⇣
�

�2µ
3

⌘
.

The key observation in proving Lemma 2 is that if a ⇢-average splits ⇡, then for all y 2 Y we have

avg-diam(⇡)� ⇡(Gy
a)

2avg-diam(⇡|Gy
a
) � ⇢ avg-diam(⇡).

On the other hand, if a does not ⇢-average split ⇡, then there is some y 2 Y such that

avg-diam(⇡)� ⇡(Gy
a)

2avg-diam(⇡|Gy
a
) < ⇢ avg-diam(⇡).

Moreover, if g, g0 ⇠ ⇡, then

E[d(g, g0)(1� [g(a) = y = h
0(a)])] = avg-diam(⇡)� ⇡(Gy

a)
2avg-diam(⇡|Gy

a
).

Using these facts, along with Lemma 15, we have the following result.

Lemma 2. Pick ↵, � > 0. If select is run with atoms a1, . . . , am, one of which ⇢-average splits ⇡, then with
probability 1� �, select returns a data point that (1� ↵)⇢-average splits ⇡ while sampling no more than

12

↵2(1� ↵)⇢ avg-diam(⇡)
log

m+ |Y|

�

pairs of structures in total.

Proof. Define K
a,y
N = inf{K : S

a,y
K � N}. Recalling that S

a,y
k =

Pk
i=1 d(gi, g

0

i)(1 � [gi(a) = y = g
0

i(a)]), we
have the following relationship between K

a,y
N and S

a,y
k .

Pr(Ka,y
N  k) = Pr(Sa,y

ko
� N for some ko  k)  Pr(Sa,y

k � N)

Pr(Ka,y
N > k) = Pr(Sa,y

ko
< N for all ko  k) = Pr(Sa,y

k < N)
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Now let a⇤ be the atom that ⇢-average splits ⇡. Then for all y 2 Y, we have

Pr

✓
K

a⇤,y
N >

N

(1 + ✏/2)(1� ✏)⇢ avg-diam(⇡)

◆
 exp

✓
�

N✏
2(1 + ✏)2

8(1� ✏(1 + ✏)/2)

◆
.

On the other hand we know for any data point a that does not (1� ✏)⇢-average split ⇡, there is some y 2 Y such
that

Pr

✓
K

a,y
N 

N

(1 + ✏/2)(1� ✏)⇢ avg-diam(⇡)

◆
 exp

✓
�

N✏
2

12(1� ✏/2)

◆
.

Taking a union bound over Y and all the a’s, we have

Pr (we choose ai that does not (1� ✏)⇢-average split ⇡)  |Y| exp

✓
�

N✏
2

4(2� ✏)

◆
+m exp

✓
�

N✏
2

6(2 + ✏)

◆
.

By our choice of N , this is less than �.

D Proofs from Section 4

D.1 Proof of Lemma 3

Lemma 3. Pick k � 2. Suppose Assumption 2 holds and �  �/(2+2k2). If we query an atom at that ⇢-average
splits ⇡t�1, then in expectation over the randomness of the response yt, we have

E

avg-diam(⇡t)

⇡t(g⇤)k

����Ft�1, at

�
= (1��)

avg-diam(⇡t�1)

⇡t�1(g⇤)k

where � � ⇢��/2.

Proof. To simplify notation, take ⇡ = ⇡t�1. Suppose that we query a 2 A. Enumerate the potential responses
as Y = {y1, y2, . . . , ym}. The definition of average splitting implies that there exists a symmetric matrix R 2

[0, 1]m⇥m satisfying

• Rii  1� ⇢ for all i,

•
P

i,j Rij = 1, and

• Rij avg-diam(⇡) =
P

g2G
yi
a ,g02G

yj
a

⇡(g)⇡(g0)d(g, g0).

Let us assume w.l.o.g. that g⇤(a) = y1. Define the quantity

Q
i
a := ⇡(Gyi

a ) + e
��
X

j 6=i

⇡(Gyj
a ) = ⇡(Gyi

a ) + e
��(1� ⇡(Gyi

a ))  1.

We now derive the form of avg-diam(⇡t). In the event that yt = i, we have

avg-diam(⇡t) =
X

h,h02H

⇡t(h)⇡t(h
0)d(h, h0)

=

✓
1

Qi
a

◆2
0

@
X

g,g02G
yi
a

⇡(g)⇡(g0)d(g, g0) + 2e��
X

j 6=i

X

g2G
y1
a ,g02G

yj
a

⇡(g)⇡(g0)d(g, g0)

+e
�2�

X

j 6=i,k 6=i

X

g2G
yj
a ,g02G

yk
a

⇡(g)⇡(g0)d(g, g0)

1

A

=

✓
1

Qi
a

◆2
0

@Rii + 2e��
X

j 6=i

Rij + e
�2�

X

j 6=i,k 6=i

Rjk

1

A avg-diam(⇡)
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=

✓
1

Qi
a

◆2
0

@Rii + 2e��
X

j 6=i

Rij + e
�2�

0

@1�Rii � 2
X

j 6=i

Rij

1

A

1

A avg-diam(⇡)

=

✓
1

Qi
a

◆2
0

@e
�2� + (1� e

�2�)Rii + 2(e��
� e

�2�)
X

j 6=i

Rij

1

A avg-diam(⇡).

We can also derive the form of 1
⇡t(g⇤)k :

1

⇡t(g⇤)k
=

8
><

>:

⇣
Q1

a
⇡(g⇤)

⌘k
if yt = y1

⇣
Qi

a

e��⇡(g⇤)

⌘k
if yt = yi 6= y1

Define

�t :=
⇡(g⇤)k

avg-diam(⇡)
· E

avg-diam(⇡t)

⇡t(g⇤)k

�
.

If we take ⌘(yi|a) = �i and assume w.l.o.g. that �1 > �2 � �3 � · · · , then

�t = �1(Q
1
a)

k�2

0

@e
�2� + (1� e

�2�)R11 + 2(e��
� e

�2�)
X

j 6=1

R1j

1

A

+
X

i�2

�i(Q
1
a)

k�2
e
k�

0

@e
�2� + (1� e

�2�)Rii + 2(e��
� e

�2�)
X

j 6=i

Rij

1

A

 (1� �1)e
(k�2)� + �1

0

@e
�2� + (1� e

�2�)R11 + 2(e��
� e

�2�)
X

j 6=1

R1j

1

A

+ �2

0

@(ek� � e
(k�2)�)

X

i�2

Rii + 2(e(k�1)�
� e

(k�2)�)
X

i�2

X

j 6=i

Rij

1

A

 (1� �1)e
(k�2)� + �1(1� e

�2�)R11 + �2(e
k�

� e
(k�2)�)

X

i�2

Rii

+
⇣
�1(e

��
� e

�2�) + �2(e
(k�1)�

� e
(k�2)�)

⌘
0

@1�
X

i�1

Rii

1

A

Using the inequalities 1 + x  e
x
 1 + x + x

2 for |x|  1 and Assumption 2, we can verify that the following
inequalities hold for our choice of �:

�2(e
k�

� e
(k�2)�)  �1(e

��
� e

�2�) + �2(e
(k�1)�

� e
(k�2)�)  �1(1� e

�2�)

(1� �1)e
(k�2)� + �1(1� e

�2�)  1

�1(1� e
��) + �2(e

(k�1)�
� e

(k�2)�)  ���/2

Using our restrictions on the structure of R, the above inequalities imply

�t  (1� �1)e
(k�2)� + (1� ⇢)�1(1� e

�2�) + ⇢

⇣
�1(e

��
� e

�2�) + �2(e
(k�1)�

� e
(k�2)�)

⌘

= (1� �1)e
(k�2)� + �1(1� e

�2�) + ⇢

⇣
�1(1� e

��) + �2(e
(k�1)�

� e
(k�2)�)

⌘

 1 + ⇢

⇣
�1(1� e

��) + �2(e
(k�1)�

� e
(k�2)�)

⌘

 1� ⇢��/2.
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D.2 Proof of Lemma 4

Lemma 4. Pick k � 1. Suppose Assumption 2 holds and �  �/k. Then for any query at, we have
E
⇥
1/⇡t(g⇤)k | Ft�1, at

⇤
 1/⇡t�1(g⇤)k.

Proof. Suppose we query a at step t. Denote by �i = ⌘(yi | a) and ⇡i = ⇡t�1(Gyi
a ), and assume w.l.o.g that

g
⇤(a) = y1 and �1 > �2 � �3 � · · · . Then we have

E


1

⇡t(g⇤)k
| ⇡t�1(g

⇤)

�
=

�1(⇡1 + e
��(1� ⇡1))k

⇡t�1(g⇤)k
+
X

i�2

�i(e�⇡i + 1� ⇡i)k

⇡t�1(g⇤)k

=
1

⇡t�1(g⇤)k

0

@�1(⇡1 + e
��(1� ⇡1))

k +
X

i�2

�i(e
�
⇡i + 1� ⇡i)

k

1

A

Denote the term in parenthesis by �t. Using the inequalities 1 + x  e
x
 1 + x+ x

2 for |x|  1, for our choice
of � we have

�t  �1(⇡1 + (1� � + �
2)(1� ⇡1))

k +
X

i�2

�i((1 + � + �
2)⇡i + 1� ⇡i)

k

= �1(1� �(1� �)(1� ⇡1))
k +

X

i�2

�i(1 + ⇡i�(1 + �))k

 �1 exp(�k�(1� �)(1� ⇡1)) +
X

i�2

�i exp(k⇡i�(1 + �))

 �1(1� k�(1� �)(1� ⇡1) + (k�(1� �)(1� ⇡1))
2) +

X

i�2

�i(1 + k⇡i�(1 + �) + (k⇡i�(1 + �))2)

= 1 + k�

0

@(1 + �)
X

i�2

�i⇡i � �1(1� �)(1� ⇡1)

1

A+ k
2
�
2

0

@(1 + �)2
X

i�2

�i⇡
2
i + �1(1� �)2(1� ⇡1)

2

1

A

 1 + k�(1� ⇡1) (�2(1 + �)� �1(1� �)) + k
2
�
2(1� ⇡1)

2
�
�2(1 + �)2 + �1(1� �)2

�

= 1 + k�(1� ⇡1)
�
� (�1 + �2)

�
1 + k(1� ⇡1) + �

2
k(1� ⇡1)

�
� (�1 � �2)(1 + 2�2

k(1� ⇡1)
�

 1 + k�(1� ⇡1) (�k � �)  1.

D.3 Proof of Lemma 5

Recall our definitions of the splitting index. Let E = ((g1, g01), . . . , (gn, g
0

n)) be a sequence of structure pairs. We
say that an atom a ⇢-splits E if

max
y

|E
y
a |  (1� ⇢)|E|.

G has splitting index (⇢, ✏, ⌧) if for any edge sequence E such that d(g, g0) > ✏ for all (g, g0) 2 E, we have

Pra⇠D(a ⇢-splits E) � ⌧.

Lemma 16. Pick �, ✏ > 0. If G is finite and Assumption 1 holds, then there exists a constant p > 0 such that
G has splitting index ((1� �)p, ✏, �p)

Proof. Given Assumption 1 and the finiteness of G, we know that there is some p > 0 such that for any g, g
0
2 G

satisfying d(g, g0) > 0, we have Pra⇠D(g(a) 6= g
0(a)) � p. Now suppose that we have a collection of edges

E ⇢
�
G

2

�
such that d(g, g0) > ✏ for all (g, g0) 2 E. A random atom a ⇠ D will split some random number Z of

these edges. Note that EZ � p|E|. Moreover, by Markov’s inequality, we have

Pr(Z � (1� �)p|E|)|E| � EZ � (1� �)p|E| � p|E|� (1� �)p|E| = �p|E|.

Simplifying the above, and substituting our definition of splitting gives us

Pra⇠D(a (1� �)p-splits E) � �p.
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Lemma 16 and Theorem 14 together imply the following corollary.

Corollary 17. If G is finite and Assumption 1 holds, then there exists a constant p > 0 such that G has average

splitting index
⇣

p
8(log2(1/✏)+2) , ✏, p/2

⌘
.

Given this result, we can now prove the following claim.

Lemma 5. If Assumption 1 holds and ndbal is run with constants ↵, � 2 (0, 1), then there is a constant c > 0,
depending on ↵, �, d(·, ·),G and D, such that for every round t, ndbal queries a point that ⇢t-average split ⇡t

satisfying E[⇢t | Ft�1] �
c

1�log(avg-diam(⇡t))
.

Proof. By Corollary 17, there is some constant p > 0 such that every distribution ⇡t is (⇢, ⌧)-average splittable
with

⇢ :=
p

8
⇣
log2

1
avg-diam(⇡t)

+ 2
⌘ and ⌧ := p/2.

Suppose that ndbal draws mt � 1 candidate queries at round t. By the definition of average splittability, we
have

Pr(at least one of mt draws ⇢-average splits ⇡t�1) � 1� (1� ⌧)mt � ⌧ � p/2.

Conditioned on both of this happening, Lemma 2 tells us that select will choose a point that (1�↵)⇢-average
splits ⇡t with probability 1 � �. Putting these together, along with the fact that ⇢t � 0 always, gives us the
lemma.

D.4 Proof of Theorem 6

Theorem 6. If Assumptions 1 and 2 hold, �  �/10, and ⇡o(g⇤) > 0, then Eg⇠⇡t [d(g, g
⇤)] ! 0 a.s.

Proof. LetXt = avg-diam(⇡t) and Yt = 1/⇡t(g⇤)2. Since �  �/10, Lemmas 3 and 5, together with the inequality
x/(1 + log(1/x)) � x

2 for x 2 (0, 1), imply

E[XtYt | Ft�1]  Xt�1Yt�1 � cX
2
t�1Yt�1 (6)

for some constant c > 0. Since XtYt and Yt are positive supermartingales, we have that XtYt ! Z and Yt ! Y

for some random variables Z, Y almost surely. Moreover, since Yt, Y � 1 almost surely, we have X
2
t Yt ! W for

some random variable W almost surely.

Iterating expectations in equation (6) and using the fact that XtYt � 0, we have

0  E[XtYt] 
avg-diam(⇡o)

⇡o(g⇤)2
� c

t�1X

i=1

E[X2
i Yi].

In particular, we know limt!1 E[X2
t Yt] = 0. By Fatou’s lemma, this implies

0  E
h
lim
t!1

X
2
t Yt

i
 lim

t!1

E[X2
t Yt] = 0.

Thus, we have

lim
t!1

avg-diam(⇡t)2

⇡t(g⇤)2
= lim

t!1

X
2
t Yt = 0

almost surely. By the Continuous Mapping Theorem, this implies avg-diam(⇡t)
⇡t(g⇤) ! 0 almost surely. The inequality

0  Eg⇠⇡t [d(g, g
⇤)] 

avg-diam(⇡t)

⇡t(g⇤)

finishes the proof.
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D.5 Proof of Theorem 7

Theorem 7. Let ✏, � > 0 and ✏o = ✏�⇡(g⇤)/4. If Assumption 2 holds, G has average splitting index (⇢, ✏o, ⌧)
and ndbal is run with �  �/10 and ↵ = 1/2, then with probability 1� �, ndbal encounters a distribution ⇡t

satisfying Eg⇠⇡t [d(g, g
⇤)]  ✏ while the resources used satisfy:

(a) T 
2

⇢��(1��) max
⇣
ln 1

✏⇡(g⇤)2 ,
2e2�

⇢��(1��) ln
1
�

⌘
rounds, with one query per round,

(b) mt 
1
⌧ log 4t(t+1)

� atoms drawn per round, and

(c) nt  O

⇣
1

⇢✏o
log (mt+|Y|)t(t+1)

�

⌘
structures sampled per round.

Proof. We will show that for some round t, ndbal must encounter a posterior distribution ⇡t satisfying
avg-diam(⇡t)/⇡(g⇤)2  ✏ while using the resources described in the theorem statement. By Lemma 1, this
will imply that Eg⇠⇡t [d(g, g

⇤)]  ✏ for the same round t.

Lemma 4 implies that 1/⇡t(g⇤)2 is a positive supermartingale for our choice of �. From standard martingale
theory (Resnick, 2013), we have ⇡t(g⇤)2 � �⇡(g⇤)2/4 for t = 1, . . . , T with probability at least 1� �/4.

Conditioned on this event, we have by a union bound that if we sample mt =
1
⌧ log 4t(t+1)

� data points at every
round t, then with probability 1� �/4, one of those data points will ⇢-average split ⇡t for every round in which
avg-diam(⇡t)/⇡t(g⇤)2 > ✏. Conditioned on drawing such points, Lemma 2 tells us that for all rounds t, select
terminates with a data point that ⇢/2-average splits ⇡t with probability 1� �/4 after drawing nt hypotheses, for
the value of nt given in the statement.

Let us condition on all of these events happening. For round t define the random variable

�t = 1�
avg-diam(⇡t)

⇡t(g⇤)2
·

⇡t�1(g⇤)2

avg-diam(⇡t�1)
.

If ⇡t�1 satisfies avg-diam(⇡t)/⇡t(g⇤)2 > ✏, then the query xt ⇢/2-average splits ⇡t�1. By Lemma 3,

E[�t | Ft�1] �
1

2
⇢��(1� �).

Now suppose by contradiction that avg-diam(⇡t)/⇡t(g⇤)2 > ✏ for t = 1, . . . , T . Then we have E[�1+ . . .+�T ] �
T
2 ⇢��(1� �). To see that this sum is concentrated about its expectation, we notice that �t 2 [1� e

2�
, 1] since

e
��

⇡t�1(g)  ⇡t(g)  e
�
⇡t�1(g)

for all g 2 G which implies

e
�2�


avg-diam(⇡t)

⇡t(g⇤)2
·

⇡t�1(g⇤)2

avg-diam(⇡t�1)
 e

2�
.

By the Azuma-Hoe↵ding inequality (Azuma, 1967; Hoe↵ding, 1963), if T achieves the value in the theorem
statement, then with probability 1� �,

�1 + · · ·+�T >
1

2
E[�1 + · · ·+�T ] �

T

8
⇢��(1� �) � ln

1

✏⇡(g⇤)2
.

However, this is a contradiction since

✏ <
avg-diam(⇡T )

⇡T (g⇤)2
= (1��1) · · · (1��T )

avg-diam(⇡)

⇡(g⇤)2
 exp (�(�1 + · · ·+�T ))

1

⇡(g⇤)2
.

Thus, with probability 1� �, we must have encountered a distribution ⇡t in some round t = 1, . . . , T satisfying
avg-diam(⇡t)/⇡t(g⇤)2  ✏.

D.6 Proof of Theorem 9

To begin, we will utilize the following result on our stopping criterion.
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Lemma 18. Pick ✏, � > 0 and let nt = 48
✏ log t(t+1)

� . If at the beginning of each round t, we draw E =
({g1, g01}, . . . , {gnt , g

0

nt
}) ⇠ ⇡t, then with probability 1� �

1

nt

ntX

i=1

d(gi, g
0

i) >
3✏

4
if avg-diam(⇡t) > ✏

1

nt

ntX

i=1

d(gi, g
0

i) 
3✏

4
if avg-diam(⇡t)  ✏/2

for all rounds t � 1.

The proof of Lemma 18 follows from applying a union bound to Lemma 7 of Tosh and Dasgupta (2017).

For a round t, let Vt denote the version space, i.e. the set of structures consistent with the responses seen so far.
Then we may write

⇡t(g) =
⇡(g) [g 2 Vt]

⇡(Vt)
and ⌫t(g) =

⌫(g) [g 2 Vt]

⌫(Vt)
.

Assumption 3 tells us that we have the following upper bound.

D(⇡t, ⌫t)  �
2avg-diam(⇡t).

Thus, the average diameter of avg-diam(⇡t) is a meaningful surrogate for the objective D(⇡t, ⌫t) in this setting.

Recalling the definition of average splitting, we know that if we always query points that ⇢-average the current
posterior, then after t rounds we will have

⇡(Vt)
2avg-diam(⇡t)  (1� ⇢)t⇡(V0)

2avg-diam(⇡)  e
�⇢t

.

While this demonstrates that the potential function ⇡(Vt)2avg-diam(⇡t) is decreasing exponentially quickly, it
does not by itself guarantee that avg-diam(⇡t) is itself decreasing. What is needed is a lower bound on the factor
⇡(Vt). The following lemma, which is a generalization of a result due to Freund et al. (1997), provides us with
just that, provided that G has bounded graph dimension.

Lemma 19. Suppose g
⇤
⇠ ⌫ where ⌫ is a prior distribution over a hypothesis class G with graph dimension

dG, and say |Y|  k. Let c > 0 and a1, . . . , am be any atomic questions, and let V
⇤ = {g 2 G : g(ai) =

g
⇤(ai) for all i}, then

Pr

✓
log

✓
1

⌫(V ⇤)

◆
� c+ dG log

em(k + 1)

dG

◆
 e

�c
.

To prove this, we need the following generalization of Sauer’s lemma.

Lemma 20 (Corollary 3 of Haussler and Long (1995)). Let d,m, k be s.t. d  m. Let F ⇢ {1, . . . , k}m s.t. F

has graph dimension less than d. Then,

|F | 

dX

i=0

✓
m

i

◆
(k + 1)i 

✓
em(k + 1)

d

◆d

.

Proof of Lemma 19. Let V1, . . . , VN ⇢ G denote the partition of G induced by our atomic questions. Note that
if g⇤ ⇠ ⌫, then the probability V

⇤ = Vi is exactly ⌫(Vi). Let S ⇢ {1, . . . N} consist of all indices i satisfying
log 1

⌫(Vi)
� c+ logN . Rearranging, we have

X

i2S

⌫(Vi)  e
�c

·
|S|

N
 e

�c
.

From Lemma 20, we have logN  dG log em(k+1)
dG

, which finishes the proof.

Given the above, we are now ready to prove Theorem 9.
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Theorem 9. Suppose G has average splitting index (⇢, ✏/(2�2), ⌧) and graph dimension dG. If Assumptions 3
and 4 hold, then with probability 1� �, modified ndbal terminates with a distribution ⇡t satisfying D(⇡t, ⌫t)  ✏

while using the following resources:

(a) T  O

⇣
dG
⇢

⇣
log |Y|�

✏⌧� + log2 dG
⇢

⌘⌘
rounds with one query per round,

(b) mt  O
�
1
⌧ log t

�

�
atoms drawn per round, and

(c) nt  O

⇣⇣
�2

✏⇢

⌘
log (mt+|Y|)t

�

⌘
structures sampled per round.

Proof. If we use the stopping criterion from Lemma 18 with the threshold 3✏/4�2, then at the expense of drawing

an extra 48�2

✏ log t(t+1)
� hypotheses for each round t, we are guaranteed that with probability 1 � � if we ever

encounter a round t in which avg-diam(⇡t)  ✏/(2�2) then we terminate and we also never terminate whenever
avg-diam(⇡K) > ✏. Thus if we do ever terminate at some round t, then with high probability

D(⇡t, ⌫t)  �
2avg-diam(⇡t)  ✏.

It remains to be shown that we will encounter such a posterior. Note that if we draw mt �
1
⌧ log t(t+1)

� atoms
per round, then with probability 1�� one of them will ⇢-average split ⇡t if avg-diam(⇡t) > ✏/(2�2). Conditioned
on this happening, Lemma 2 guarantees that that with probability 1� � select finds a point that ⇢/2-average

splits ⇡t while drawing at most O
⇣

�2

✏⇢ log (mt+|Y|)t(t+1)
�

⌘
.

If after T rounds we still have not terminated, then avg-diam(⇡T ) > ✏/(2�2). However, we also know

⇡(VT )
2avg-diam(⇡T )  e

�⇢T/2
.

Now suppose that in each round t, we have seen mt atoms x(t)
1 , . . . , x

(t)
mt , and define

VT⇤ = {h 2 H : h(x(t)
i ) = h

⇤(x(t)
i ) for t = 1, . . . , T, i = 1, . . . ,mt}.

Clearly, VT⇤ ⇢ VT . By Lemma 19, we have with probability 1� �,

⇡(VT ) � ⇡(VT⇤) �
1

�
⌫(VT⇤) �

1

�
·

�

T (T + 1)

✓
dG

em(T )(|Y|+ 1)

◆dG

for all rounds T � 1, where m
(T ) =

PT
t=1 mt.

Plugging this in with the above, we have

avg-diam(⇡T ) 
e
�⇢T/2

⇡(VT )2
 �

2 exp

✓
2dG log

em
(T )(|Y|+ 1)

dG
+ 2 log

T (T + 1)

�
�

⇢T

2

◆
.

Suppose mt =
1
⌧ log t(t+1)

� . Then we can upper bound m
(T ) as

m
(T ) =

TX

t=1

mt 
T

⌧
log

T (T + 1)

�
.

Putting everything together, we have

✏

2�2
 avg-diam(⇡T )  �

2 exp

✓
2 log

T (T + 1)

�
+ 2dG log

✓
e(|Y|+ 1)

dG
·
T

⌧
log

T (T + 1)

�

◆
�

⇢T

2

◆
.

Letting C = 2dG log e(|Y|+1)
dG⌧ and b = 1

� , the right-hand side is less than ✏/(2�2), whenever

T �
2

⇢
max

⇢
C + log

2�4

✏
+ 6(dG + 1) log T,C + log

2�4

✏
+ log b+ 2dG log (3b log(b))

�
.

Additionally, note that T �
2
⇢

�
C + log 1

✏ + 6(dG + 1) log T
�
, whenever

T �
4

⇢
max

⇢
C + log

2�4

✏
, 24(dG + 1) log2

✓
96(dG + 1)

⇢

◆�
.

The value of T provided in the theorem statement, satisfies all of these inequalities. Thus, with probability
1� 4�, we must have encountered a round in which avg-diam(⇡t) < ✏/(2�2) and terminated.
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D.7 Proof of Theorem 10

The following result is analogous to Theorem 2 of Dasgupta (2005).

Theorem 21. Fix G and D. Suppose that G does not have splitting index (⇢, ✏, ⌧) for some ⇢, ✏ 2 (0, 1) and
⌧ 2 (0, 1/2). Then any interactive learning strategy which with probability > 3/4 over the random sampling from
D finds a structure g 2 G within distance ✏/2 of any target in G must draw at least 1/⌧ atoms from D or must
make at least 1/⇢ queries.

From the proof of Theorem 2 of Dasgupta (2005), it is easy to see that so long as d(·, ·) is symmetric, the same
arguments imply Theorem 21. For completeness, we include its proof here.

Proof. Since G does not have splitting index (⇢, ✏, ⌧), there is some set of edges E ⇢
�
G

2

�
such that d(g, g0) > ✏

for all (g, g0) 2 E and
Pra⇠D(a ⇢-splits E) < ⌧.

Let V denote the vertices of E. Then distinguishing between structures in V requires at least 1/⇢ queries or at
least 1/⌧ atoms.

To see this, suppose we draw less than 1/⌧ atoms. Then with probability at least (1� ⌧)1/⌧ � 1/4 none of these
atoms ⇢-splits E, i.e. for each of these atoms there is some response y 2 Y such that less than ⇢|E| edges are
eliminated. Thus, there is some g

⇤
2 V such that requires us to query at least 1/⇢ atoms to distinguish it from

the rest of the structures in V .

Combining the above with Theorem 14, we have the following corollary.

Theorem 10. Fix G, D and d(·, ·). If G does not have average splitting index ( ⇢
4dlog 1/✏e , 2✏, ⌧) for some ⇢, ✏ 2

(0, 1) and ⌧ 2 (0, 1/2), then any interactive learning strategy which with probability > 3/4 over the random
sampling from D finds a structure g 2 G within distance ✏/2 of any target in G must draw at least 1/⌧ atoms
from D or must make at least 1/⇢ queries.

E Proofs from Section 5

E.1 Proof of Theorem 11

We will utilize the following result from Dasgupta (2005).

Lemma 22 (Lemma 11 from Dasgupta (2005)). For any d � 2, let x, y be vectors in Rd separated by an angle
of ✓ 2 [0,⇡]. Let x̃, ỹ be their projections into a randomly chosen two-dimensional subspace. There is an absolute
constant co > 0 (which does not depend on d) such that with probability at least 3/4 over the choice of subspace,
the angle between x̃ and ỹ is at least co✓.

Given the above, we prove Theorem 11.

Theorem 11. Suppose µ is spherically symmetric. Under distance dr(·, ·), G has average splitting index
( 1
16dlog(2/✏)e , ✏, c✏) for some absolute constant c > 0.

The proof of Theorem 11 closely mirrors that of Theorem 10 Dasgupta (2005). For completeness, we produce
its proof here.

Proof. We make two key observations here.

• A weight vector w 2 G ranks x over y if and only if hw, x� yi > 0.

• If x, y are drawn from a spherically symmetric distribution, then z = x�y also follows a spherically symmetric
distribution.

From these two observations, we know that if w,w0
2 G, then d(w,w0) = ✓/⇡ where ✓ is the angle lying between

w and w
0.
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Suppose w1, w
0

1, . . . , wn, w
0

n are a sequence of edges such that d(wi, w
0

i) � ✏, which implies their corresponding an-
gles satisfy ✓i � ✏⇡. Suppose we project the pairs onto a randomly drawn 2-d subspace, to get w̃1, w̃

0

1, . . . , w̃n, w̃
0

n.
Let co be the absolute constant from Lemma 22. Call an edge w̃i, w̃

0

i good if the resulting angle satisfies ✓̃i � co✏⇡.

By Lemma 22, the expected number of good edges for a randomly chosen 2-d subspace is n/2. By Markov’s
inequality, with probability 1/2, at least n/2 edges are good.

Let us suppose that we have chosen a 2-d subspace/plane that results in at least n/2 good edges. Call these
projected edges w̃1, w̃

0

1, . . . , w̃m, w̃
0

m. Without loss of generality, assume that the clockwise angle ✓̃i from w̃i to
w̃

0

i satisfies co✏⇡ � ✓̃i  ⇡. Notice that if zo is in our plane and satisfies hw̃i, zoi � 0 for at least n/2 edges and
hw̃

0

i, zoi  0 for at least n/2 edges, then querying any points xo, yo such that xo � yo = zo will eliminate at least
half of the w̃i. Moreover, it is enough to query any pair x, y such that x�y = z satisfies that x’s counterclockwise
angle is in the range [0, co✏⇡] or [⇡,⇡ + co✏⇡], since such a pair will eliminate either w̃i or w̃

0

i. Thus, querying
such an x, y pair will result in eliminating at least 1/2 of the good edges, which is at least 1/4 of all the edges.

Since z = x � y follows a spherically symmetric distribution, the probability of drawing such a pair is at least
co✏⇡/2. Thus, the splitting index here is (1/4, ✏, co✏⇡/2), and Theorem 11 follows by applying Theorem 14.

E.2 Proof of Lemma 13

Lemma 13. Let µ(I) = ↵. Under distance dI(·, ·), Gk,I has average splitting index ( 1
16dlog(2/✏)e , ✏,

✏↵
2 ).

Proof. We will first bound the splitting index and then invoke Theorem 14. Suppose that g1, g01, . . . , gn, g
0

n 2 Gk,↵

are a sequence of edges satisfying dI(gi, g0i) � ✏ for all i = 1, . . . , n. Note that for each gi, g
0

i there are associated
reals `i < ui and `

0

i < u
0

i such that
`i, `

0

i  I  ui, u
0

i.

From the definition of dI(gi, g0i), we have

✏  dI(gi, g
0

i) = µ(`i, `
0

i) + µ(ui, u
0

i)

where µ(a, b) is the probability mass of the interval bounded by a and b. Call an edge left-leaning if µ(`i, `0i) � ✏/2
and right-leaning if µ(ui, u

0

i) � ✏/2.

Suppose without loss of generality that at least half of the edges are right-leaning (the case where half are
left-leaning can be handled symmetrically), and order them as g1, g01, . . . , gm, g

0

m such that u1  u2  · · ·  um.
Moreover, let us also assume without loss of generality that ui < u

0

i. Let r denote the point ui < r  u
0

i such
that µ(ui, r) = ✏/2. Suppose we query a pair x, y where x 2 I and y 2 (um/2, r), notice that such a pair satisfies.

x < u1  · · ·  um/2 < y < u
0

m/2  · · ·  u
0

m.

If we query this pair and the result is that they should belong to the same cluster, then we may eliminate at
least one endpoint of edges g1, g01, . . . , gm/2, g

0

m/2. On the other hand, if the result is that they should belong to

di↵erent clusters, then we may eliminate at least one endpoint of edges gm/2, g
0

m/2, . . . , gm, g
0

m. In either case,
we eliminate at least half of these m edges. Since this is only the right-leaning edges, at least one quarter of the
original edges are eliminated. Finally, the probability of drawing such a pair x, y is ↵ · ✏.

Thus, Gk,I has splitting index (1/4, ✏,↵✏). Theorem 14 finishes the proof.

E.3 Proof of Theorem 12

We will make use of the following result from Dasgupta (2005).

Lemma 23 (Corollary 3 from Dasgupta (2005)). Suppose there are structures go, g1, . . . , gN 2 G such that

1. d(go, gi) > ✏ for all i = 1, . . . , N and

2. the sets {a : go(a) 6= gi(a)} are disjoint for all i = 1, . . . , N .

Then for any ⌧ > 0 and any ⇢ > 1/N , G is not (⇢, ✏, ⌧)-splittable. Thus, any active learning scheme that finds
g 2 G satisfying d(g, g⇤) < ✏/2 for any g

⇤
2 G must use at least N labels in the worst case.
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Figure 4: Viewing an interval-based clustering as a classifier over R2. The green regions correspond to ‘must-link’
constraints, and the red regions correspond to ‘cannot-link’ constraints.

Given this, we have the following lemma lower bounding the query complexity of a particular subset of Gk,I .

Lemma 24. Say µ(I)  1/2. There is a subset Go ⇢ Gk+2,I of N = min{k, 1
p
8✏
} + 1 clusterings such that

learning Go under distance dc(·, ·) requires at least N � 1 queries, no matter how many unlabeled data points are
drawn.

Proof. For ease of exposition, say that µ is uniform over the interval [0, 1] and that I = [0,↵] for some ↵  1/2.
We will consider the case where k 

1
p
8✏
, the other case can be proven symmetrically.

Define go as the clustering with dividing points

a1 = ↵, a2 = ↵+
1� ↵

k
, a3 = ↵+

2(1� ↵)

k
, . . . , ak = ↵+

(k � 1)(1� ↵)

k
.

We also define gi as the clustering with the same dividing points except it has an additional dividing point at
bi =

ai+ai+1

2 = ↵+ (2i�1)(1�↵)
2k for i = 1, . . . k, where we take ak+1 = 1. Then it can be seen that

d(go, gi) = 2 · Prx⇠µ(x 2 (ai, bi)) · Pry⇠µ(y 2 (bi, ai+1)) =
1

2

✓
1� ↵

k

◆2

� ✏.

Moreover, we also have that the sets {(x, y) : go(x, y) 6= gi(x, y)} are disjoint for all i = 1, . . . , N . This
is readily observed after making the transformation from an interval-based clustering to binary classifier over
[0, 1]2. Applying Lemma 23 finishes the proof.

Given Lemmas 13 and 24, we can now prove Theorem 12.

Theorem 12 (Formal statement) Let ✏ > 0. There is a setting of k = ⇥(1/
p
✏) and a subset G ✓ Gk+2,I that

is polynomially-sized in k such that any active learning algorithm that is guaranteed to find any target in G up
to distance ✏ in distance dc(·, ·) must make at least ⌦(k) queries, but ndbal with distance dI(·, ·) and prior ⇡

uniform over G requires O(log2(k/✏�)) queries.

Proof. Take k = ⇥(1/
p
✏) and let Go ⇢ Gk+2,I be the subset from Lemma 24. Take G to be any subset of Gk+2,I

such that (a) G has size polynomial in k and (b) Go ✓ G. By Lemma 24, we know that learning under distance
dc(·, ·) requires at least |Go| = ⇥(k) queries.

On the other hand, consider running ndbal with distance dI(·, ·) and prior ⇡ uniform over G. The results in
Theorem 7 and Lemma 13 tell us that ndbal requires O(log2(k/✏)) queries to find a posterior ⇡t over G such
that Eg⇠⇡t [dI(g, g

⇤)]  ✏. To turn this into a high probability result, simply apply Markov’s inequality to get
that ndbal requires O(log2(k/✏�)) queries in order to find a posterior ⇡t such that with probability 1 � � if
g ⇠ ⇡t then dI(g, g⇤)  ✏.
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F Noisy fast convergence

In this section, we give rates of convergence in the Bayesian setting under noise. We start by defining the quantity

Zt =
X

g2G

⇡(g) exp

 
��

tX

i=1

[g(xi) 6= yi]

!
.

The following lemma is analogous to Lemma 3.

Lemma 25. Pick �, ⇢ > 0. If at step t, our query ⇢-average splits ⇡t�1, then

Z
2
t �(⇡t) 

⇥
1� ⇢(1� e

��)
⇤
Z

2
t�1�(⇡t�1).

Proof. Suppose that we query atom at and receive label yt. Enumerate the potential responses as Y =
{y1, y2, . . . , ym}. The definition of average splitting implies that there exists a symmetric matrix R 2 [0, 1]m⇥m

satisfying

• Rii  1� ⇢ for all i,

•
P

i,j Rij = 1, and

• Rij avg-diam(⇡) =
P

g2G
yi
a ,g02G

yj
a

⇡(g)⇡(g0)d(g, g0).

Define the quantity

Q
i
a := ⇡(Gyi

a ) + e
��
X

j 6=i

⇡(Gyj
a ) = ⇡(Gyi

a ) + e
��(1� ⇡(Gyi

a ))  1.

Note that if yt = yi, we have

Q
i
a =

X

g

⇡t�1(g) exp (�� [g(at) 6= yt]) =
X

g

1

Zt�1
⇡(g) exp

0

@��

tX

j=1

[g(aj) 6= yj ]

1

A =
Zt

Zt�1

Thus, if we observe yt = yi, then

Z
2
t avg-diam(⇡t) = (Qi

aZt�1)
2
X

g,g0

1

(Qi
a)

2
⇡t�1(g)⇡t�1(g

0)d(g, g0) exp (��( [g(at) 6= yi] + [g(at) 6= yt]))

=

0

@Rii + e
�2�

X

j,k 6=i

Rjk + e
��

· 2
X

j 6=i

Rij

1

AZ
2
t�1avg-diam(⇡t�1)


�
(1� ⇢) + e

��
⇢
�
Z

2
t�1avg-diam(⇡t�1) =

�
1� ⇢(1� e

��)
�
Z

2
t�1avg-diam(⇡t�1).

Suppose we receive query/label pairs (a1, y1), . . . , (at, yt) where the noise level at ai is qi, then the true posterior
distribution under Assumption 3 is

⌫t(g) =
1
bZt

⌫(g) exp

 
�

tX

i=1

[g(ai) 6= yi] ln
1� qi

qi

!

where bZt is the normalizing constant

bZt =
X

g

⌫(g) exp

 
�

tX

i=1

[g(ai) 6= yi)] ln
1� qi

qi

!
.

The following lemma will be useful in bounding this quantity.
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Lemma 26. Suppose Y1, . . . , Yt are independent random variables such that

Yi =

(
ln 1�qi

qi
with probability qi

0 with probability 1� qi

With probability 1� �, we have

tX

i=1

Yi 

tX

i=1

qi ln
1� qi

qi
+

r
t ln

2

�

✓
ln

2t

�

◆
.

Proof. We begin by partitioning the random variables Yi into two groups. We say Yi is ‘small’ if qi 
�
2t and

’big’ otherwise. Then with probability at least 1 � �/2, all small Yi satisfy Yi = 0. Let us condition on this
happening.

Now each big Yi takes values in [0, ln 2t
� ]. By Hoe↵ding’s inequality, we have that with probability at least 1��/2

tX

i=1

Yi 

tX

i=1

E[Yi] +

r
t ln

2

�

✓
ln

2t

�

◆


tX

i=1

qi ln
1� qi

qi
+

r
t ln

2

�

✓
ln

2t

�

◆
.

Given the above, we can lower bound bZt under Assumption 3.

Lemma 27. Let � 2 (0, 1) and let G have graph dimension dG. Suppose Assumption 3 holds. If in the course
of running ndbal we observe m atoms, of which we query a1, . . . , at where the noise level at ai is qi, then with
probability 1� � over the randomness of the responses we observe,

log
1
bZt

 log
2

�
+ dG log

em(|Y|+ 1)

dG
+

tX

i=1

qi ln
1� qi

qt
+

r
t log

3

�

✓
log

3t

�

◆

Proof. By Assumption 3, we know g
⇤
⇠ ⌫. Let U be the set of m atoms observed in running ndbal and let

V
⇤ = {g 2 G : g(a) = g

⇤(a) for a 2 U}. By Lemma 19, we have with probability 1� �/2

log
1

⌫(V ⇤)
 log

2

�
+ dG log

em(|Y|+ 1)

dG
.

Now let g 2 V
⇤ and say the responses on atoms a1, . . . , at are y1, . . . , yt, respectively. By Lemma 26, we have

with probability 1� �/2

tX

i=1

[g(ai) 6= yi] ln
1� qi

qi


tX

i=1

qi ln
1� qi

qt
+

r
t log

6

�

✓
log

6t

�

◆
.

Combining the above concentration results with the inequality

bZt �

X

g2V ⇤

⌫(g) exp

 
�

tX

i=1

[g(ai) 6= yi] ln
1� qi

qi

!

gives us the lemma.

We will assume that the noise distribution is restricted to classification noise.

Assumption 5. There exists a q 2 (0, 1) and g
⇤
2 G such that ⌘(g⇤(a) | a) = 1� q.

If we know the noise level, then the appropriate setting of � is ln 1�q
q , in which case we recover the bound

D(⇡t, ⌫t)  �
2avg-diam(⇡t). (7)

Given the above, we can now prove the following theorem.
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Theorem 28. Suppose G has average splitting index (⇢, ✏/(2�2), ⌧) and graph dimension dG. If Assumptions 3
and 5 hold, � = ⇢

2 ·
1�2q
1�q � q ln 1�q

q > 0, and � = ln 1�q
q , then with probability 1� � modified ndbal terminates

with a distribution ⇡t satisfying D(⇡t, ⌫t)  ✏ while using the following resources:

(a) less than T = O

⇣
1
� log3 1

�� + dG
� log

⇣
dG�|Y|

✏⌧� log
⇣

dG�|Y|

✏⌧�

⌘⌘⌘
rounds with one query per round,

(b) mt  O
�
1
⌧ log t

�

�
atoms drawn per round, and

(c) nt  O

⇣⇣
�2

✏⇢

⌘
log (mt+|Y|)t

�

⌘
structures sampled per round.

Proof. If we use the stopping criterion from Lemma 18 with the threshold 3✏/4�2, then at the expense of drawing

an extra 48�2

✏ log t(t+1)
� hypotheses for each round t, we are guaranteed that with probability 1 � � if we ever

encounter a round t in which avg-diam(⇡t)  ✏/(2�2) then we terminate and we also never terminate whenever
avg-diam(⇡K) > ✏. Thus if we do ever terminate at some round t, equation (7) guarantees

D(⇡t, ⌫t)  ✏.

Note that if we drawmt �
1
⌧ log t(t+1)

� atoms per round, then with probability 1�� one of them will ⇢-average split
⇡t if avg-diam(⇡t) > ✏/(2�2). Conditioned on this happening, Lemma 2 guarantees that that with probability

1� � select finds a point that ⇢/2-average splits ⇡t while drawing at most O
⇣

�2

✏⇢ log (mt+|Y|)t(t+1)
�

⌘
.

If after T rounds we still have not terminated, then avg-diam(⇡T ) > ✏/(2�2). By Lemma 25 we also know

Z
2
T avg-diam(⇡T )  exp

�
�⇢(1� e

��)T/2
�

= exp

✓
�
⇢T

2
·
1� 2q

1� q

◆
.

By Lemma 27, we have that for all rounds t � 1, with probability 1� �,

log
1

Zt
 log

2t(t+ 1)

�
+ dG log

em
(t)(|Y|+ 1)

dG
+ tq ln

1� q

q
+

r
t log

4t(t+ 1)

�

✓
log

4t2(t+ 1)

�

◆
.

Where m
(t) is the number of atoms sampled up to time t, which can be bounded as

m
(t)


t

⌧
log

t(t+ 1)

�
.

Putting this together, we can conclude that avg-diam(⇡T )  ✏/(2�2) whenever

T � max
2

�

(r
T log

4T (T + 1)

�

✓
log

4T 2(T + 1)

�

◆
,

log
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·
T

⌧
log
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�

◆
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✏

�
.

Note that T �
2
�

q
T log 4T (T+1)
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⇣
log 4T 2(T+1)
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⌘
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4
�2 log
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⌘
and this is satisfied for

T �
4c1
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✓
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4

�2
+ log3

4

�
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where c1 = 222 su�ces.

Further, we have T �
2
�

⇣
log 2T (T+1)

� + dG log
⇣
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·
T
⌧ log T (T+1)
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+ log 2�2

✏

⌘
is satisfied whenever we have
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(1 + dG) log
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+ log 2�2
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⌘
. We can achieve this with
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where c2 = 50 su�ces.


