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A Experiments continued

In this section, we discuss our experimental setup more thoroughly and present more results. Each plot depicts
> 50 independent simulations, and the error bands depict 68% bootstrap confidence intervals. For the NDBAL
query selection algorithm, we used the heuristic suggested in Section 6: we sampled m = 500 candidate atoms
from D and n = 300 pairs of structures from 7; and chose the atom that empirically minimized equation (5).

A.1 Models, sampling, and evaluation
In our experiments, we used the posterior update in equation (4) with ¢(z,y) as the logistic loss, i.e.
U(z,y) =log (1+e 7).

In this setting, it is not possible to express 7; in closed form. However, we can still approximately sample from
7y using the Metropolis-adjusted Langevin Algorithm (MALA) (Dwivedi et al., 2018). If we let

Fw) = =3 Btw, i, y3) — 5wl
i=1

then MALA is a Markov chain in which we maintain a vector W, € R% and transition to Wi41 according to the
following process.

(i) Sample V ~ N (W; —nV f(Wy), 2n1a).

(i) Caleulate a = min {1, exp (f(W0) = f(V) + & (IV = Wr + gV (W) = [We =V + 9V £(V)]?) ) }.
(iii) With probability a, W11 = V. Otherwise, set W11 = W,
The only hyper-parameter that needs to be set is > 0. This parameter should be carefully chosen: if 7 is too
large then the walk may never accept the proposed state, and if 7 is too small then the walk may not move far
enough to get to a large probability region. The best choice of 7 ultimately depends on the distribution we are
sampling from, and unfortunately for us, our distributions are changing. Our fix is to adjust 7 on the fly so that

the average number of times that step (iil) rejects is not too close to 0 or to 1. A reasonable rejection rate is
about 0.4 (Roberts and Rosenthal, 1998).

Finally, in all of our evaluations we recorded an approximation of the average error of the posterior distribution

7. This consists of sampling structures g1, ..., g, ~ 7 and calculating
1 n
error(m;) = g'Zlcl(gi,g*)
1=

where d(-,-) is the distance function for the task at hand. In our experiments, this distance takes the following
forms.

e Classification error: d(w,w’) = Pry ynirsa—1) (sign({w, 7)) # sign((w*, x))) = L arccos (Hﬁu”“’f"l”fjj)”).

e Best item identification: d(w,w’) = L[iy 7 tyr]-

e Approximate best item identification: d(w,w’) = ||z;, —; , |-

In the above, i,, = arg max; (w, ;) is the top item under w in the choice model setting. We used n = 300 in our
experiments.

A.2 Classification experiments

In Figure 2, we have classification experiments under logistic noise across different dimensions d and standard
deviations o. In all of the experiments, we used the logistic loss update on the posterior with f =1 and a prior
distribution of N'(0,021,).
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Figure 2: Logistic noise experiments. Top to bottom: d = 5,10. Left to right: o =1, 5, 10.

A.3 Logit choice model experiments

In Figure 3, we have logit choice model experiments across different dimensions d, numbers of items n, and
standard deviations o. In all of the experiments, we used the logistic loss update on the posterior with 5 = 1
and a prior distribution of N'(0,0%1).

B Dasgupta’s splitting index

We will make use of the original splitting index of Dasgupta (2005) and its multiclass extension in Balcan and
Hanneke (2012). Let E = ((g1,94);-- -, (9n, g,)) be a sequence of structure pairs. We say that an atom a p-splits
Eif
max|EY| < (1-p)|El.
Yy

G has splitting index (p, €, 7) if for any edge sequence E such that d(g,g’) > € for all (g,¢’) € E, we have

Prop(a p-splits E) > 7.

The following theorem, which we will use heavily, demonstrates that the average splitting index can be bounded
by the splitting index. It is analogous to Lemma 3 of Tosh and Dasgupta (2017).

Theorem 14. Fix G, D, and w. If G has splitting index index (p,€,7) then it has average splitting index
(aTog, 17e7726:7)-

From the proof of Lemma 3 by Tosh and Dasgupta (2017), it is easy to see that so long as d(-,-) is symmetric
and takes values in [0, 1], the same arguments imply Theorem 14.

C Proofs from Section 3

C.1 Proof of Lemma 2

To prove Lemma 2, we will appeal to the following multiplicative Chernoff-Hoeffding bound (Angluin and Valiant,
1977).
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Figure 3: Logit choice model experiments with d = 10. Top to bottom: n = 10,50,100. Left to right: o =1, 5.

Lemma 15. Let Xi,..., X, be i.i.d. random variables taking values in [0,1] and let X =" X; and p = E[X].
Then for 0 < B8 < 1,

(i) Pr(X < (1= B)) < exp (—552) and

(ii) Pr(X = (1+ B)n) < exp (- 52).

The key observation in proving Lemma 2 is that if a p-average splits 7, then for all y € ) we have
avg-diam(r) — 7(GY)*avg-diam(r|gy) > pavg-diam(n).
On the other hand, if a does not p-average split m, then there is some y € ) such that
avg-diam(r) — 7(GY)*avg-diam(r|gy) < pavg-diam(n).
Moreover, if g, g’ ~ m, then
Eld(g,9')(1 — 1lg(a) = y = W'(a)))] = ave-diam(r) — 7(GY)2ave-diam(|gy ).
Using these facts, along with Lemma 15, we have the following result.

Lemma 2. Pick a,§ > 0. If SELECT is run with atoms ay,...,a,, one of which p-average splits w, then with
probability 1 — &, SELECT returns a data point that (1 — a)p-average splits m while sampling no more than

12 log 1Y
a?(1 — a)p aveg-diam(m) S

pairs of structures in total.
Proof. Define K%Y = inf{K : S%¥ > N}. Recalling that S&¥ = > d(g;,9))(1 — 1[gi(a) = y = ¢}(a)]), we
have the following relationship between Ky and S;"Y.

Pr(KyY <k) = Pr(Sy¥ > N for some k, < k) < Pr(S;¥ > N)

Pr(KyY > k) = Pr(SY < N forall k, <k) = Pr(SpY < N)
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Now let a* be the atom that p-average splits 7. Then for all y € ), we have

“ N exp [~ N+
Pr<KN >(1+e/2)(1—e)Pavg—diam(W)> : p( 8(1—e<1+6>/2>>'

On the other hand we know for any data point a that does not (1 — €)p-average split 7, there is some y € Y such
that

e (K5 < e opmaaant) < (o)

Taking a union bound over ) and all the a’s, we have

Ne? Ne?
Pr (we choose a; that does not (1 — €)p-average split 7) < |Y|exp (—4(26)> + mexp <_6(2—€F)> .
— € €

By our choice of N, this is less than §. O

D Proofs from Section 4

D.1 Proof of Lemma 3

Lemma 3. Pick k > 2. Suppose Assumption 2 holds and 8 < \/(2+2k?). If we query an atom a; that p-average
splits ws_1, then in expectation over the randomness of the response yy, we have

avg-diam(m_1)

[ avg-diam (7
]E — *\k
m-1(g*)

) 1
e e ==
where A > pA\B3/2.

Proof. To simplify notation, take m = m;_1. Suppose that we query a € A. Enumerate the potential responses
as ¥ = {y1,92,...,Ym}- The definition of average splitting implies that there exists a symmetric matrix R €
[0, 1]™*™ satisfying

o Ry <1—pforalli,
[ Zinij = ]., and
* Rjjavg-diam(m) =30 v cgui m(9)m(9')d(g,9).
Let us assume w.l.o.g. that g*(a) = y;. Define the quantity

Qu = m(GY) +e Py m(GY) = 7(GY) + P -m(GY)) < 1.
J#i

We now derive the form of avg-diam(7;). In the event that y; = 4, we have

avg-diam(m;) = Z me(R)ms (W) d(h, 1)
h,h'€H

2
(1> > wlgn(g)dlg.g)+270> > wlg)in(g)dlg.9)

O
@ 9.9'€GY I#L gegit g'eGl?

+e Y Y wle)n(g)d(g.g)

kA geghi greglk

2
1
= () Ri; +2¢ P g R;; + e 28 E Rjj; | avg-diam(7r)
J#i VEIN T
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1 2
= <Q> Rii+2e "> Rij+e | 1- Ry —2) Ri; | | avg-diam(r)

i i
1\2
= (@) e P (1—e )Ry +2(e7 P —eP) Z R;; | avg-diam(r).
“ J#i
We can also derive the form of m(;i*)k:
1 k
1 B <%) ifye =1
«\k i k
m(9") (in) if ye = yi # 1
e=Pm(g*)
Define
*\k S H
A, = 7r(g ) g |2ve dlamlgﬂ't) .
avg-diam(7) 7 (g*)
If we take n(y;la) = v; and assume w.l.o.g. that ;3 > v2 > v3 > -+, then
Ay =7(QN) 2 e P + (1 —e ?P)Ryy +2(e ZRU
J#1
+ 3 QU2 [ e 4 (1 — e )Ry +2(e7 — ) Y Ry
1>2 VE]
< (=)™ D8 4y [ e+ (1— e %) Ryy +2(e )3 Ry
J#1
+ 2 (ekﬁ — e(k—Q)B) Z R + 2(6(k DB _ o(k=2)B Z Z R;;
i>2 i>2 jF£i
< (1=7)e* 2P 41— e )Ry + (" — e*2P) Y "Ry
i>2
(e = ) 4 (et - 29)) 12 SRy
i>1

Using the inequalities 1 +z < e* < 1 4 2 4 22 for |z] <1 and Assumption 2, we can verify that the following
inequalities hold for our choice of :

Yo (P — eF=2D8) <~ (678 — e720) oy (eFDB — o(B=208) < (1 — 7 2F)
(1=y)e* P 4 y(1—e) <1
(1= e B) 4 yp(eth=18 _b=28) < _g)/2

Using our restrictions on the structure of R, the above inequalities imply

A < (=)D 4 (1= p)m(— e ) +p (e = ™) (D7 — h27))
= (1= 7)e®D7 31 (1= ) 4 p (a1 = e7F) F p(elE7 — -2

1+p (71(1 —e7P) 4 yp(elF 1B — e(k_2)5)>
1— pAB/2. O

IA

IN
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D.2 Proof of Lemma 4

Lemma 4. Pick k > 1. Suppose Assumption 2 holds and 8 < A/k. Then for any query a;, we have
E[1/m(g*)" | Feor,ae] < 1/m1(g*)".

Proof. Suppose we query a at step t. Denote by v; = n(y;|a) and m; = m_1(GY"), and assume w.l.o.g that
g*(a) =y; and 41 > 2 > 73 > ---. Then we have

1 . Y1 (my 4+ e Bl — )k yi(ePmi+1—m;)F
*\k | 7Tt_1(g ) = *\k +Z : : *\k -
me(g*) me-1(9%) i>o me-1(9*)

1
_ B k B k
= — | 1(m +e 1—7 —|—E (ePm+1—m;
: 1( *)k 1( 1 ( 1)) i>2%( i z)

Denote the term in parenthesis by A,. Using the inequalities 1 + 2 < e* < 14 x + 22 for |z] <1, for our choice
of B8 we have

Ay < yi(m +(1=B+H1—m))k +Z%((1 + B+ BH)m +1—m)k

= n(1=B(1 =B —m))* + D %l +mp1+p))"
i>2
< mexp(—=kB(1 = B)(1 —m)) + Z% exp(kmiB(1+ B))
< 1 —kB(=B)A—m)+ (kB — B)Y1 —m))*) + Y %l + kmiB(1 + B) + (kmiB(1+ §))?)

i>2

= 1+kB [ (1+8) D _yimi —m(1=B) A —m) | +#28* [ (1+8)* D vimi + (1= B)*(1 —m)?

i>2 i>2
< 14+ kB —m) (2(1 4 B) = (1 = B) + K821 — m)? (121 + B)* + (1 - 5)?)

= 1+kB(1—m) (B(n+7) (1+k(1—m)+B%k(1—m)) — (11 — 7)1 +28%k(1 —m))
< 1+kB(1—m)(Bk—N) < 1. O

D.3 Proof of Lemma 5

Recall our definitions of the splitting index. Let E = ((¢1,9}),-- -, (9n,9g,)) be a sequence of structure pairs. We
say that an atom a p-splits E if
max |EY| < (1-p)|El.
y

G has splitting index (p, €, 7) if for any edge sequence FE such that d(g,g’) > € for all (g,¢’) € E, we have
Prop(a p-splits E) > 7.

Lemma 16. Pick v,e > 0. If G is finite and Assumption 1 holds, then there exists a constant p > 0 such that
G has splitting index ((1 — v)p, €,7p)

Proof. Given Assumption 1 and the finiteness of G, we know that there is some p > 0 such that for any g,¢' € G
satisfying d(g,¢’) > 0, we have Pr,.p(g(a) # ¢'(a)) > p. Now suppose that we have a collection of edges
E C () such that d(g,g') > € for all (g,¢') € E. A random atom a ~ D will split some random number Z of
these edges. Note that EZ > p|E|. Moreover, by Markov’s inequality, we have

Pr(Z > (1 —=~)plEN|E| = EZ — (1 —7)p|E| = p|E| - (1 —7v)p|E| = ~p|E|.
Simplifying the above, and substituting our definition of splitting gives us

Prop(a (1l —~)p-splits E) > 4p. O
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Lemma 16 and Theorem 14 together imply the following corollary.
Corollary 17. If G is finite and Assumption 1 holds, then there exists a constant p > 0 such that G has average
splitting index (m, e,p/2) .

Given this result, we can now prove the following claim.

Lemma 5. If Assumption 1 holds and NDBAL is run with constants «,d € (0,1), then there is a constant ¢ > 0,
depending on «,6,d(-,-),G and D, such thatl for every round t, NDBAL queries a point that pi-average split m;
satisfying Elpi | Fi—1] >

c
1—log(avg-diam(m¢))

Proof. By Corollary 17, there is some constant p > 0 such that every distribution 7; is (p, 7)-average splittable
with
p

8 (logz m + 2)

Suppose that NDBAL draws m; > 1 candidate queries at round ¢. By the definition of average splittability, we
have

and 7 := p/2.

Pr(at least one of m; draws p-average splits m;—1) > 1—(1—7)" > 7 > p/2.

Conditioned on both of this happening, Lemma 2 tells us that SELECT will choose a point that (1 — «)p-average
splits m; with probability 1 — §. Putting these together, along with the fact that p; > 0 always, gives us the
lemma. U

D.4 Proof of Theorem 6

Theorem 6. If Assumptions 1 and 2 hold, B < A\/10, and 7,(g*) > 0, then Egr,[d(g,9)] — 0 a.s.

Proof. Let X; = avg-diam(m;) and Y; = 1/7m;(g*)%. Since 8 < A\/10, Lemmas 3 and 5, together with the inequality
z/(1 +log(1/x)) > 22 for z € (0,1), imply

EX.Y; | Fioa] € Xeo1Yeoq — X7 Y (6)

for some constant ¢ > 0. Since X;Y; and Y; are positive supermartingales, we have that X;Y; — Z and Y; = Y
for some random variables Z, Y almost surely. Moreover, since Y;,Y > 1 almost surely, we have X2V, — W for
some random variable W almost surely.

Iterating expectations in equation (6) and using the fact that X;Y; > 0, we have

t—1

—c¢> E[X}Y].

=1

0 < EX,v] < avg-diam(7,)
N N To(9*)?

In particular, we know lim;_,o, E[X?Y;] = 0. By Fatou’s lemma, this implies

0 < ]E[lim XfYt} < lim E[X?Y]] = 0.
—00

t—o00
Thus, we have
_di 2
lim SEdamT)” ey g

t—o0 ﬂt(g*)Q t—00

avg-diam ()

almost surely. By the Continuous Mapping Theorem, this implies (o)

— 0 almost surely. The inequality

avg-diam ()

0 <Egor[dg,97)] < (o)

finishes the proof. O
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D.5 Proof of Theorem 7

Theorem 7. Let €,0 > 0 and ¢, = edw(g*)/4. If Assumption 2 holds, G has average splitting index (p, €, T)
and NDBAL is run with 8 < A/10 and o = 1/2, then with probability 1 — §, NDBAL encounters a distribution m;
satisfying Egrx,[d(g,g")] < € while the resources used satisfy:

2¢28

(a) T < m max (ln m(g = CRERV (] In %) rounds, with one query per round,
(b) my < Llog 4t(t+1) atoms drawn per round, and
(c) ny <O <pT w) structures sampled per round.

Proof. We will show that for some round ¢, NDBAL must encounter a posterior distribution m; satisfying
avg-diam(m;)/m(g*)? < € while using the resources described in the theorem statement. By Lemma 1, this
will imply that Egr, [d(g, g*)] < € for the same round t.

Lemma 4 implies that 1/7(g*)? is a positive supermartingale for our choice of 3. From standard martingale
theory (Resnick, 2013), we have m;(g*)? > én(g*)?/4 for t = 1,...,T with probability at least 1 — /4.

Conditioned on this event, we have by a union bound that if we sample m; = %log % data points at every
round ¢, then with probability 1 — §/4, one of those data points will p-average split 7 for every round in which
avg-diam(m;) /7 (g*)? > e. Conditioned on drawing such points, Lemma 2 tells us that for all rounds ¢, SELECT
terminates with a data point that p/2-average splits m; with probability 1 —§/4 after drawing n; hypotheses, for
the value of n; given in the statement.

Let us condition on all of these events happening. For round ¢ define the random variable

avg-diam(m;) mi_1(g*)?

Ay =1-— )
¢ me(g*)? avg-diam(m;_1)

If m;_, satisfies avg-diam(7;)/7¢(g*)? > €, then the query z; p/2-average splits m;_;. By Lemma 3,

EIA | Fia] 2 5pM8(1- ).

Now suppose by contradiction that avg-diam(m;) /7 (g*)? > e for t = 1,...,T. Then we have E[A; + ...+ Ar] >
%pkﬂ(l — f3). To see that this sum is concentrated about its expectation, we notice that A; € [1 — e?#, 1] since

e Pm_1(9) < mlg) < e’m_1(g)

for all g € G which implies
—2p avg-diam(m;) mi—1(g*)?

< .
me(g*)? avg-diam(m_1) ¢

€

By the Azuma-Hoeffding inequality (Azuma, 1967; Hoeffding, 1963), if T achieves the value in the theorem
statement, then with probability 1 — 9,

1 T 1
A+ + A —E[A; 4+ -+ Ap] > =pAB(1 — > 1 .
1+ Ar > SE[A -+ Ar] 2 2pAB(1-B) > g
However, this is a contradiction since
avg-diam(7r) avg-diam(7) 1
e < ——= = (1-4A1)---1-Ap)————— < exp(—(A1+--+ A7) —.
melgy? (A AT, = Ve
Thus, with probability 1 — §, we must have encountered a distribution 7; in some round ¢ = 1,...,T satisfying
avg-diam(m;) /m(g%)? < e. O

D.6 Proof of Theorem 9

To begin, we will utilize the following result on our stopping criterion.
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Lemma 18. Pick ¢,6 > 0 and let n, = 28 ¢ log t(tgrl). If at the beginning of each round t, we draw F =

(91,91} - AGni» 90, }) ~ 7, then with pmbabzlzty 1-6
1 &
LS sl »
1 &
- Zd(gi,%) <
i=1

if avg-diam(m;) > €

if avg-diam(m;) < €/2

N _,;‘w

for all rounds t > 1.

The proof of Lemma 18 follows from applying a union bound to Lemma 7 of Tosh and Dasgupta (2017).

For a round ¢, let V; denote the version space, i.e. the set of structures consistent with the responses seen so far.
Then we may write

_ m(g)llg € Vi _
me(g) = W and 1(g) =

Assumption 3 tells us that we have the following upper bound.

v(g)l[g € V]
v(Vi)

D(ms,vs) < ANavg-diam(my).

Thus, the average diameter of avg-diam(m;) is a meaningful surrogate for the objective D(m, ;) in this setting.

Recalling the definition of average splitting, we know that if we always query points that p-average the current
posterior, then after ¢ rounds we will have

(Vi) ?avg-diam(m) < (1 - p)'m(Vp)*ave-diam(m) < e 7.

While this demonstrates that the potential function 7(V;)2ave-diam(m;) is decreasing exponentially quickly, it
does not by itself guarantee that avg-diam(m;) is itself decreasing. What is needed is a lower bound on the factor
m(V:). The following lemma, which is a generalization of a result due to Freund et al. (1997), provides us with
just that, provided that G has bounded graph dimension.

Lemma 19. Suppose g* ~ v where v is a prior distribution over a hypothesis class G with graph dimension
dg, and say |Y| < k. Let ¢ > 0 and ay,...,a,, be any atomic questions, and let V* = {g € G : g(a;) =

g*(a;) for all i}, then
m(k + 1)) < e

1
Pr <log (I/(V*)) > c+ dglog e =

To prove this, we need the following generalization of Sauer’s lemma.

Lemma 20 (Corollary 3 of Haussler and Long (1995)). Let d,m,k be s.t. d <m. Let F C {1,...,k}™ s.t. F
has graph dimension less than d. Then,

F<Z< ) (k+1) (em(lyl))d

Proof of Lemma 19. Let Vi,...,Vy C G denote the partition of G induced by our atomic questions. Note that
if g* ~ v, then the probability V* = V; is exactly v(V;). Let S C {1,... N} consist of all indices i satisfying
log ﬁ > c+ log N. Rearranging, we have

S
ZV(Vi) < e ¢ |—N| < e ¢
i€S
From Lemma 20, we have log N < d log M , which finishes the proof. O

Given the above, we are now ready to prove Theorem 9.
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Theorem 9. Suppose G has average splitting index (p,e/(2)%),7) and graph dimension dg. If Assumptions 3
and 4 hold, then with probability 1 — 0, modified NDBAL terminates with a distribution 7 satisfying D(m, 1) < €
while using the following resources:

(a) T<O (‘%G (log VA log2 dTG)) rounds with one query per round,

€T

(b) my <O (% log %) atoms drawn per round, and
(¢c) ng <O ((g) log W) structures sampled per round.

Proof. If we use the stopping criterion from Lemma 18 with the threshold 3¢/4\?, then at the expense of drawing

an extra g log @ hypotheses for each round ¢, we are guaranteed that with probability 1 — § if we ever
encounter a round ¢ in which avg-diam(m;) < €/(2A?) then we terminate and we also never terminate whenever
avg-diam (7 ) > €. Thus if we do ever terminate at some round ¢, then with high probability

D(my,vy) < )\Qavg—diam(wt) < e

It remains to be shown that we will encounter such a posterior. Note that if we draw m; > %log @ atoms

per round, then with probability 1 — 4 one of them will p-average split 7, if avg-diam(7;) > €/(2A?). Conditioned
on this happening, Lemma 2 guarantees that that with probability 1 — § SELECT finds a point that p/2-average

splits m; while drawing at most O (i‘—; log WM)

If after T' rounds we still have not terminated, then ave-diam(mr) > €/(2A?). However, we also know

7(Vr)?avg-diam(rp) < e P1/2,

Now suppose that in each round ¢, we have seen m; atoms xgt), e ,xﬁ,ﬁ{, and define
Vs ={heH: h(xgt)) = h*(xgt)) fort=1,...,T,i=1,...,m}.
Clearly, Vp« C Vp. By Lemma 19, we have with probability 1 — 9,

1 1 J d "
m(Vr) z w(Vre) 2 Sv(Vr) 2 3 Fr (em(T>(|§il+1>)

for all rounds T > 1, where m(T) = 23;1 my.
Plugging this in with the above, we have
epr/Z

avg-diam(np) < )2

(T)
gm AT ) (P1+1) + 2log
G

T(T+1 T
< Mexp <2dG log ¢ 4 w — p> .

) 2

Suppose m; = + log . Then we can upper bound m(™) as

T

t(t+1)
)

T
T T(T+1)
(T) — < —1 L —
m tE:1mt - og 5

Putting everything together, we have

T(T +1)

1) T (T +1 T
. < wgdiam(er) < Ve (210g e(|Y] +1) <+>>_ﬂ),

Letting C' = 2d¢ log E(I{g;# and b = £, the right-hand side is less than ¢/(2A?), whenever
2 204 204
T > —max{C+log— +6(dg + 1)1log T, C + log — + log b + 2d¢ log (3blog(d)) ¢ .
P € €

Additionally, note that T > % (C + log% +6(dg + 1) log T), whenever

4 274 d 1
T > —max {C+ log =—, 24(d¢ + 1) log® (%(G—F)> } .
P € P

The value of T provided in the theorem statement, satisfies all of these inequalities. Thus, with probability
1 — 4§, we must have encountered a round in which avg-diam(m;) < €/(2\?) and terminated. O
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D.7 Proof of Theorem 10

The following result is analogous to Theorem 2 of Dasgupta (2005).

Theorem 21. Fiz G and D. Suppose that G does not have splitting index (p,e,7) for some p,e € (0,1) and
7 € (0,1/2). Then any interactive learning strategy which with probability > 3/4 over the random sampling from
D finds a structure g € G within distance €/2 of any target in G must draw at least 1/7 atoms from D or must
make at least 1/p queries.

From the proof of Theorem 2 of Dasgupta (2005), it is easy to see that so long as d(-,-) is symmetric, the same
arguments imply Theorem 21. For completeness, we include its proof here.

Proof. Since G does not have splitting index (p, €, 7), there is some set of edges E C (g) such that d(g,g’) > €
for all (g,¢’) € E and
Prop(a p-splits E) < T.

Let V denote the vertices of E. Then distinguishing between structures in V requires at least 1/p queries or at
least 1/7 atoms.

To see this, suppose we draw less than 1/7 atoms. Then with probability at least (1 —7)%/7 > 1/4 none of these
atoms p-splits F, i.e. for each of these atoms there is some response y € ) such that less than p|E| edges are
eliminated. Thus, there is some g* € V' such that requires us to query at least 1/p atoms to distinguish it from
the rest of the structures in V. O

Combining the above with Theorem 14, we have the following corollary.

Theorem 10. Fiz G, D and d(-,-). If G does not have average splitting index (m,26,7') for some p,e €

(0,1) and T € (0,1/2), then any interactive learning strategy which with probability > 3/4 over the random
sampling from D finds a structure g € G within distance €/2 of any target in G must draw at least 1/7 atoms
from D or must make at least 1/p queries.

E Proofs from Section 5

E.1 Proof of Theorem 11

We will utilize the following result from Dasgupta (2005).
Lemma 22 (Lemma 11 from Dasgupta (2005)). For any d > 2, let z,y be vectors in R? separated by an angle

of 6 € [0,7]. Let &, 7 be their projections into a randomly chosen two-dimensional subspace. There is an absolute
constant ¢, > 0 (which does not depend on d) such that with probability at least 3/4 over the choice of subspace,
the angle between T and 7 is at least c,0.

Given the above, we prove Theorem 11.

Theorem 11. Suppose p is spherically symmetric. Under distance d.(-,-), G has average splitting index
(W, €, ce) for some absolute constant ¢ > 0.

The proof of Theorem 11 closely mirrors that of Theorem 10 Dasgupta (2005). For completeness, we produce
its proof here.

Proof. We make two key observations here.

e A weight vector w € G ranks z over y if and only if (w,z —y) > 0.

e If z,y are drawn from a spherically symmetric distribution, then z = x—y also follows a spherically symmetric
distribution.

From these two observations, we know that if w,w’ € G, then d(w,w’) = 8/7 where 6 is the angle lying between
w and w'.
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Suppose w1, Wi, . .., wn, w,, are a sequence of edges such that d(w;, w}) > €, which implies their corresponding an-

gles satisfy 0; > em. Suppose we project the pairs onto a randomly drawn 2-d subspace, to get Wy, @}, .. . , Wy, W,.
Let ¢, be the absolute constant from Lemma 22. Call an edge w;, w} good if the resulting angle satisfies 6; > c,er.

By Lemma 22, the expected number of good edges for a randomly chosen 2-d subspace is n/2. By Markov’s
inequality, with probability 1/2, at least n/2 edges are good.

Let us suppose that we have chosen a 2-d subspace/plane that results in at least n/2 good edges. Call these
projected edges Wy, WY, ..., W, w,,. Without loss of generality, assume that the clockwise angle 6; from w; to
W} satisfies coem > 0; < 7. Notice that if z, is in our plane and satisfies (10;, z,) > 0 for at least n/2 edges and
(W}, zo) < 0 for at least n/2 edges, then querying any points z,, y, such that z, — y, = z, will eliminate at least
half of the w;. Moreover, it is enough to query any pair x, y such that x —y = z satisfies that x’s counterclockwise
angle is in the range [0, coem] or [m, 7 + coem], since such a pair will eliminate either w; or w,. Thus, querying
such an z,y pair will result in eliminating at least 1/2 of the good edges, which is at least 1/4 of all the edges.

Since z = x — y follows a spherically symmetric distribution, the probability of drawing such a pair is at least
co€m /2. Thus, the splitting index here is (1/4, ¢, coem/2), and Theorem 11 follows by applying Theorem 14. [

E.2 Proof of Lemma 13

Lemma 13. Let u(Z) = o. Under distance dz(-,-), Gk,z has average splitting index (m, € %)

Proof. We will first bound the splitting index and then invoke Theorem 14. Suppose that g1, 9], ..., 9n, 95 € Gk.a
are a sequence of edges satisfying dz(g;,g;) > € for all i = 1,...,n. Note that for each g;, g, there are associated
reals ¢; < u; and ¢} < u} such that

From the definition of dz(g;, g;), we have

where p(a, b) is the probability mass of the interval bounded by a and b. Call an edge left-leaning if pu(€;, ;) > €/2

and right-leaning if p(u;, u)) > €/2.

Suppose without loss of generality that at least half of the edges are right-leaning (the case where half are
left-leaning can be handled symmetrically), and order them as g1, g1, .., Gm, gi, sSuch that u; <wug < -+ < Uy,
Moreover, let us also assume without loss of generality that u; < u;. Let r denote the point u; < r < wu} such
that p(u;,r) = €/2. Suppose we query a pair o,y where x € Z and y € (ty,/2,7), notice that such a pair satisfies.

x<u1§-~-§um/2<y<u;n/2§~-~§u;n.

If we query this pair and the result is that they should belong to the same cluster, then we may eliminate at
least one endpoint of edges g1, 91, -, Gm/2; g;n/z. On the other hand, if the result is that they should belong to

different clusters, then we may eliminate at least one endpoint of edges g, 2,9;, 20+ Yms gr,- In either case,
we eliminate at least half of these m edges. Since this is only the right-leaning edges, at least one quarter of the
original edges are eliminated. Finally, the probability of drawing such a pair z,y is « - €.

Thus, Gk 7 has splitting index (1/4, €, ve). Theorem 14 finishes the proof. O
E.3 Proof of Theorem 12

We will make use of the following result from Dasgupta (2005).
Lemma 23 (Corollary 3 from Dasgupta (2005)). Suppose there are structures go,gi,...,gn € G such that

1. d(go,9:) > € foralli=1,...,N and
2. the sets {a : go(a) # gi(a)} are disjoint for alli=1,...,N.

Then for any T > 0 and any p > 1/N, G is not (p, €, 7)-splittable. Thus, any active learning scheme that finds
g € G satisfying d(g,g*) < €/2 for any g* € G must use at least N labels in the worst case.
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y

Figure 4: Viewing an interval-based clustering as a classifier over R2. The green regions correspond to ‘must-link’
constraints, and the red regions correspond to ‘cannot-link’ constraints.

Given this, we have the following lemma lower bounding the query complexity of a particular subset of Gy, 7.
Lemma 24. Say u(Z) < 1/2. There is a subset G, C Griaz of N = min{k, \/LS?} + 1 clusterings such that

learning G, under distance d.(-,-) requires at least N — 1 queries, no matter how many unlabeled data points are
drawn.

Proof. For ease of exposition, say that p is uniform over the interval [0, 1] and that Z = [0, o] for some o < 1/2.
We will consider the case where k& < \/Lg?, the other case can be proven symmetrically.

Define g, as the clustering with dividing points

1—a 2(1 —« k=11 -«
T,agza—i—%,...,ak:a—i—()%.

We also define g; as the clustering with the same dividing points except it has an additional dividing point at
b; = % =a+ % for i = 1,...k, where we take axy1 = 1. Then it can be seen that

a] =, a3 =o+

1/1-a)’
(9o, 9i) = 2-Pra~pu(z € (a;,0:)) - Pry~p(y € (bi,aiv1)) = 3 (T) > e
Moreover, we also have that the sets {(z,y) : go(z,y) # gi(z,y)} are disjoint for all ¢ = 1,...,N. This
is readily observed after making the transformation from an interval-based clustering to binary classifier over
[0,1]2. Applying Lemma 23 finishes the proof. O

Given Lemmas 13 and 24, we can now prove Theorem 12.

Theorem 12 (Formal statement) Let € > 0. There is a setting of k = ©(1/\/€) and a subset G C Gy1o 1 that
s polynomially-sized in k such that any active learning algorithm that is guaranteed to find any target in G up
to distance € in distance d.(-,-) must make at least Q(k) queries, but NDBAL with distance dz(-,-) and prior =
uniform over G requires O(log”(k/ed)) queries.

Proof. Take k = ©(1//€) and let G, C Gj42 7 be the subset from Lemma 24. Take G to be any subset of G407
such that (a) G has size polynomial in k and (b) G, C G. By Lemma 24, we know that learning under distance
d.(-,-) requires at least |G,| = O(k) queries.

On the other hand, consider running NDBAL with distance dz(-,-) and prior 7 uniform over G. The results in
Theorem 7 and Lemma 13 tell us that NDBAL requires O(log?(k/€)) queries to find a posterior 7; over G such
that Egr,[dz(g,9%)] < e. To turn this into a high probability result, simply apply Markov’s inequality to get
that NDBAL requires O(log?(k/ed)) queries in order to find a posterior 7, such that with probability 1 — § if
g ~ 7 then dz(g,g*) <e. O
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F Noisy fast convergence

In this section, we give rates of convergence in the Bayesian setting under noise. We start by defining the quantity
t
Zi=> (g eXp( By 1g(x #.%)-
g€eG i=1

The following lemma is analogous to Lemma 3.

Lemma 25. Pick 5,p > 0. If at step t, our query p-average splits m¢_1, then

Z}®(m) < [1—p(1- e_ﬁ)} Z2  ®(mq).

Proof. Suppose that we query atom a; and receive label y,. Enumerate the potential responses as Y =
{y1,Y2,---,Ym}. The definition of average splitting implies that there exists a symmetric matrix R € [0, 1]™*™
satisfying

e Ry <1—pforalli,

L4 Zi,j Rij =1, and

o Rjjavg-diam(m) = 3> v . cqvi T(9)m(9")d(g, 9).
Define the quantity

Qi = w(GL)+ e 7Y n(G) = w(GL)+eP(1-n(GL) < L
J#i

Note that if y; = y;, we have

P Zt 1 Zt—l

t
Zml gexp (—Bllg(ar) 2ul) = 3 ——rlg)exp [ 83 Uglay) £u) | = 2
j=1

Thus, if we observe y; = v;, then

Z2avg-diam(r) = Q4% 1)* S @m(g)m_l(g')d(g, o) exp (=B(1g(ar) # v + Llg(ar) # m)))

9,9’

= | Rii+e? Z Rjp+e 7.2 ZRU Z? javeg-diam(m;_;)

jokAi i
< (1= p)+ e Pp) Z;_javg-diam(m_1) = (1—p(1— e ?)) Z2  aveg-diam(m_1). O
Suppose we receive query/label pairs (a1,y1),- .-, (at,y:) where the noise level at a; is ¢;, then the true posterior

distribution under Assumption 3 is

vi(9) = %V(g) exXp ( Z 1[g(a;) # yi]In L _‘qi>

i=1 v

where Z; is the normalizing constant

Zy = > vlg)exp (- Zl 1g(a;) # )] In - ;iqi> :

g9

The following lemma will be useful in bounding this quantity.
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Lemma 26. Suppose Y7,...,Y; are independent random variables such that

v = ln% with probability ¢;
B ) with probability 1 — q;

With probability 1 — 6, we have

t t
1—g; [ 2 2t
ZYi < Zqiln qiq + tlné(lné).

i=1 =1
Proof. We begin by partitioning the random variables Y; into two groups. We say Y; is ‘small’ if ¢; < ﬁ and
’big’ otherwise. Then with probability at least 1 — §/2, all small Y; satisfy Y; = 0. Let us condition on this
happening.
Now each big Y; takes values in [0, In %] By Hoeffding’s inequality, we have that with probability at least 1 —4/2

t t t
2/ 2t 1—q [ 2/ 2
;i < i — — < . — .
E_ Y; < E_ E[Y;] + tln6 (ln 5) < E ¢; In m + tlné (ln 5) O

i=1

Given the above, we can lower bound Z under Assumption 3.

Lemma 27. Let 6 € (0,1) and let G have graph dimension dg. Suppose Assumption 8 holds. If in the course
of running NDBAL we observe m atoms, of which we query ay,...,a; where the noise level at a; is q;, then with
probability 1 — & over the randomness of the responses we observe,

1 2 em(IV[+1) < 1—q 3 3t
2 fdglog 2T 1 tlog = (log =
7 < losgtdels——00 +_¢ln o T \thoe s (los

log = < log
i=1

Proof. By Assumption 3, we know g* ~ v. Let U be the set of m atoms observed in running NDBAL and let
V*={g€G : gla) =g*(a) for a € U}. By Lemma 19, we have with probability 1 — §/2

2 1
log = + d¢ log %_

1
BV 5 do

L <
vV =

Now let g € V* and say the responses on atoms ay,...,a; are yi,...,¥;, respectively. By Lemma 26, we have

with probability 1 — /2
+4/tlo 6 lo ot
VRS )

t
17
< E giIn &
=1

Combining the above concentration results with the inequality

t
Zt > Z exp( ZIL (a;) # yi] ln %’)
=1

geV* i

Z 1[g(a;) # yi| In -

gives us the lemma. O

We will assume that the noise distribution is restricted to classification noise.

Assumption 5. There exists a g € (0,1) and g* € G such that n(g*(a)|a) =1 —q.

If we know the noise level, then the appropriate setting of 3 is In 1(1;‘1, in which case we recover the bound

D(my,vy) < Navg-diam(7). (7)

Given the above, we can now prove the following theorem.
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Theorem 28. Suppose G has avemge splitting indea: (p,€/(2)\2),7) and graph dimension dg. If Assumptions 3
and 5 hold, v = g Cad —glni=9 >0, and 8 = 1qq, then with probability 1 — § modified NDBAL terminates
with a distribution g satzsfymg D(ﬂ't, vy) < € while using the following resources:

€T €To

(a) less than T = O (% log® 75 + dG log (dc)‘ly‘ log (chM))) rounds with one query per round,
(b) my <O (% log %) atoms drawn per round, and

(c) ny <O ((g) log W) structures sampled per round.

Proof. If we use the stopping criterion from Lemma 18 with the threshold 3¢/4\2, then at the expense of drawing
an extra @ log @ hypotheses for each round t, we are guaranteed that with probability 1 — ¢ if we ever
encounter a round ¢ in which avg-diam(m;) < €/(2A?) then we terminate and we also never terminate whenever
avg-diam(mg) > e. Thus if we do ever terminate at some round ¢, equation (7) guarantees

D(7Tt7 l/t) S €.

Note that if we draw m; > 1 ~ log HHD atoms per round, then with probability 1—4§ one of them will p-average split

7 if avg-diam(m;) > €/ (2)\2) Conditioned on this happening, Lemma 2 guarantees that that with probability
1 — 0 SELECT finds a point that p/2-average splits m; while drawing at most O (;\—; log w>

If after T rounds we still have not terminated, then avg-diam(mz) > €/(2A?). By Lemma 25 we also know

T 1-2
Z% avg-diam(mr) < exp (—p(1 — eiﬁ)T/2) = exp <p2 = q) .
—4q

By Lemma 27, we have that for all rounds ¢ > 1, with probability 1 — 9,

) 1 1- 4t(t +1 482(t+ 1
+dgl0gem (c|li}|+ )—l—tqln qq—i- tlog (t+ )<log (t+ )>

1 2A(t+1
log L < log 2D

Zy 4] 0

Where m(® is the number of atoms sampled up to time ¢, which can be bounded as

) < Elogt(t—’_l).
T 1)

Putting this together, we can conclude that avg-diam(nr) < €/(2A%) whenever

AT(T +1) <log 4T2(T + 1)) 7

2
T > max{ T log
Y

o o
2I(T+1 1) T T(T+1 22
logi( * )+dglog elvl+1) )-—logi( +1 + log 2 .
) dg T )

Note that T > %\/Tlog 4T(§+1) (log 4T2(5T+1)) whenever T' > = log (%) and this is satisfied for

4c 4 34
T>1<log —+1og )
~2 1)
where ¢; = 222 suffices.

Further, we have T' > 2 <log m + dglog (e(DJH-l) Llog @) + log %) is satisfied whenever we have

T> % ((1 +dg) log 2T(T+1) + dg log (E(MH)) + log T) We can achieve this with

2 2
T> 2c2 dalo M—i—log&—&—q(l—i—dg)log 401 +de) dc]ogw_,_log&
v Tdg € v Tdg €

where ¢y = 50 suffices. O



