
Supplement - Deep Structured Mixtures of Gaussian Processes

Martin Trapp Robert Peharz Franz Pernkopf Carl Edward Rasmussen
TU Graz & OFAI

SPSC Lab
TU Eindhoven

Information Systems WSK&I
TU Graz
SPSC Lab

University of Cambridge
CBL Lab

0.1 Shared Cholesky Decomposition

We naturally have overlapping local GPs in DSMGPs
and, therefore, experts at the leaves share parts of their
kernel matrix. This property can be utilised to share
solutions of the Cholesky decompositions, which speeds
up computations. Therefore, let us consider the case in
which two leaves, denoted as Li and Lj , are such that
XLj

is contained in XLi
. Further, let us consider the

scenarios for which the number of observation in XLj

is less than in XLi , i.e. #X(j) < #X(i) where X(i) is
shorthand for X(Li).

In the first scenario the kernel matrix kX(j),X(j)
of

Lj is a submatrix of the kernel matrix of Li and
[kX(j),X(j)

]1,1 = [kX(i),X(i)
]1,1. Therefore, the lower-

triangular matrix of the Cholesky decomposition for
the kernel matrix of Lj is a submatrix of the decom-
position for the kernel matrix of Li. Let LLi

and LLj

denote the lower-triangular matrix of the Cholesky de-
composition for the respective kernel matrices. Then,

LLi
=

[
LLj

vT

v L̃

]
, (1)

where the vector v ∈ RP and L̃ ∈ RP×P with P being
the additional dimensions contained in LLi . Thus, we
can copy the respective sub-matrix to obtain LLj

.

In the second scenario [kX(j),X(j)
]1,1 6= [kX(i),X(i)

]1,1
but both kernel matrices share the last column/row.
This scenario can be solved efficiently using rank-1
updates. Therefore, let LLi

be defined as

LLi
=

[
l1,1 0
l2:N,1 L2:N,2:N

]
, (2)

and let us assume that the kernel matrix of Lj contains
all observations the kernel matrix of Li contains, except
the first one, i.e. the first index. We now aim to
obtain LLj without solving the Cholesky decomposition
explicitly. For this purpose, let A be

A =

[
0 0

0 L̃2:N,2:N

]
, (3)

and let L̃2:N,2:N = LLj be the sub-matrix of interest.
Using a rank-1 update with l2:N,1, i.e.

L̃2:N,2:N = L2:N,2:N + l2:N,1l
T
2:N,1 , (4)

we can efficiently obtain LLj
by solving Equation (4)

and dropping the first column and row of A. Note
that in case of multiple missing observations, we can
apply rank-1 updates on A consecutively. To perform
rank-1 updates numerically stable we use the approach
in [Seeger, 2008]. Note that other scenarios are either
a combination of the two discussed scenarios, or can be
solved by continuing the Cholesky decomposition after
applying rank-1 updates or have to be solved directly
to obtain sufficiently stable results1.

10 20 30 40 50 60
0

1

2

Number of partitions

T
im

e
(s
ec
on

ds
) Naive

Shared

Figure 1: Time required to solve the Cholesky decom-
position of a DSMGP on a synthetic dataset using a
naive approach or using our shared approach.

We empirically evaluated the performance gains
through sharing solutions of the Cholesky decompo-
sitions, shown in Figure 1. The plot compares the
runtime, measured on an i7-6900k CPU @ 3.2 GHz,
for a synthetic dataset consisting of 1, 000 observations
against an increasing number of partitions. We see that
sharing Cholesky decompositions reduces the runtime
by a factor of two, allowing us to explore twice as many
partitions of the input space.

1We empirically evaluated the numerical errors for dif-
ferent scenarios and found that rank-1 downgrades do not
result in numerically stable solutions.

Supplement - Deep Structured Mixtures of Gaussian Processes

0.2 Datasets

If available we used the existing training set / testing
set splits and otherwise randomly split the dataset into
70% for training and 30% for testing.

We pre-processed each dataset to have zero mean and
unit variance – in the inputs and outputs – and used a
zero mean function for each approach. Note that all of
the datasets (without pre-processing) can be found on
GitHub under https://github.com/trappmartin/
DeepStructuredMixtures/releases/download/v0.
1/datasets.tar.gz.

Table 1: Statistics of benchmark datasets. For each
dataset we list the number of training samples N (train),
the number of test samples N (test), the number of
input dimensions (D) and the number of output dimen-
sions (P).

Dataset N (train) N (test) D P

Airfoil 1,052 451 5 1
Parkin. 4,112 1,763 16 2
Kin40k 10,000 30,000 8 1
House 15,949 6,835 16 1
Protein 32,011 13,719 9 1
Year 360,742 154,603 90 1
Flight 500,000 200,000 8 2

0.3 Scores

To assess the performance we computed the root mean
squared error (RMSE), the mean absolute error (MAE)
and the negative log predictive density (NLPD), i.e.

RMSE =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2 , (5)

MAE =
1

N

N∑
n=1

|ŷn − yn| , (6)

NLPD = − log p(yn | D,xn, θ) , (7)

where ŷn is the prediction for test datum n and D is
the training set.

0.4 Algorithms

We applied the structure construction algorithm
described in Section 5.1 in the paper to auto-
matically build hierarchical structures. In the
following text, we will explain the algorithms
for structure construction, posterior inference
in pseudo-code. For an efficient implementa-
tion of the algorithms, we refer to the Julia package
https://github.org/trappmartin/DeepStructuredMixtures.

0.4.1 Structure Construction

The Algorithm 1 recursively creates a tree structured
DSMGP containing sum nodes with KS many chil-
dren and product nodes with KP many children. The
argument minN controls the minimum number of ob-
servations per GP expert. Note that in the Julia imple-
mentation provided on GitHub, we additionally control
for the number of recursions, that is the number of
consecutive sum and product nodes. Note that N isa
S denotes a check if N is a S or not and leverage the
Julia syntax of using an exclamation mark to denote
an in-place operation, e.g. push!(Q,N) adds N into
Q.

0.4.2 Exact Posterior Inference

The following sub-section illustrates the implementa-
tion of exact posterior inference in DSMGPs. The
procedure shown in 2 recursively performs exact poste-
rior updates and is called using the root node of the
DSMGP. Note that for reasons of numerical stability,
an actual implementation of the algorithm will need to
perform the operations in log-space. Again, we refer to
the accompanied Julia implementation for an efficient
example implementation.

References

[Rasmussen and Williams, 2006] Rasmussen, C. E.
and Williams, C. K. I. (2006). Gaussian processes
for machine learning. Adaptive computation and
machine learning. MIT Press.

[Seeger, 2008] Seeger, M. (2008). Low rank updates
for the cholesky decomposition. Technical report,
University of California at Berkeley.

https://github.com/trappmartin/DeepStructuredMixtures/releases/download/v0.1/datasets.tar.gz
https://github.com/trappmartin/DeepStructuredMixtures/releases/download/v0.1/datasets.tar.gz
https://github.com/trappmartin/DeepStructuredMixtures/releases/download/v0.1/datasets.tar.gz
https://github.org/trappmartin/DeepStructuredMixtures

Martin Trapp, Robert Peharz, Franz Pernkopf, Carl Edward Rasmussen

Algorithm 1 structure construction algorithm
1: procedure learnDSMGP(KS,KP,minN)
2: S ← S
3: Q← empty queue
4: push!(Q,S)
5: while Q 6= ∅ do
6: N← pop!(Q)
7: if N isa S then
8: for k = 1, . . . ,KS do
9: ch(N)[k]← P

10: wN,ch(N)[k] =
1
KS

11: push!(Q, ch(N)[k])
12: else if N isa P then
13: D(N) ← {X(N),y(N)}
14: d ∼ [variance(X(N)

i)∀i]
15: dmin ← minX

(N)
d

16: dmed ← median(X(N)
d)

17: v ← maxX
(N)
d − dmin

18: for k = 1, . . . ,KP − 1 do
19: sk ∼ 0.5[vBeta(2, 2)+dmin]+0.5dmed

20: sort!(s)
21: smin ← dmin
22: for k = 1, . . . ,KP − 1 do
23: smax ← s[k]
24: D(C) ← D(N)[smin : smax]
25: if #D(C) > minN then
26: ch(N)[k]← S
27: Dch(N)[k] ← D(C)

28: push!(Q, ch(N)[k])
29: smin ← s[k]
30: else
31: ch(N)[k]← L
32: Dch(N)[k] ← D(C)

33: smax ← maxX(N)

34: D(C) ← D(N)[smin : smax]
35: if #D(C) > minN then
36: ch(N)[k]← S
37: Dch(N)[k] ← D(C)

38: push!(Q, ch(N)[k])
39: else
40: ch(N)[k]← L
41: Dch(N)[k] ← D(C)

Algorithm 2 Exact posterior inference
1: procedure exactInference(N)
2: z ← 0
3: if N isa S then
4: for C ∈ ch(N) do
5: wN,C ← wN,C∗ exactInference(C)
6: z ← z + wN,C

7: for C ∈ ch(N) do
8: wN,C ← wN,C/z

9: else if N isa P then
10: for C ∈ ch(N) do
11: z ← z+ exactInference(C)
12: else
13: z ← pN(y |X) [Rasmussen and Williams, 2006]

return z

	Shared Cholesky Decomposition
	Datasets
	Scores
	Algorithms
	Structure Construction
	Exact Posterior Inference

