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A NOTATION

n Total sample
µ Baseline measure
p(x; θ) Unnormalized Model
p̃(x; θ) Normalized model
c Normalizing constant parameter
τ (c, θ>)>

q(x; τ) One-parameter extended model exp(−c)p(x; θ)
Θ Parameter space for θ
Θτ Parameter space for τ
η∗(x) True density
η̂n(x) Nonparametric estimator
Fη∗ True distribution
pn Empirical density
E∗ Expectation under true distribution
Ẽ Expectation under empirical distribution
Var∗ Variance under true distribution
∇x Differentiation with respect to x
Pn Empirical distribution of n samples from Fη∗

Gn Empirical process
√
n(Pn − Fη∗)

Iθ Fisher information matrix for θ
|τ∗ the value at τ = τ∗

N (A,B) Normal distribution with mean A, variance B
L2(Fη∗) L2-space with the underlying distribution Fη∗

X Sample space
Bf (u, v) Bregman divergence based on f between u and v
K Kernel
τ̂s Self density-ratio matching estimator with a separable divergence.

Note that it is equal to (ĉs, θ̂s)
τ̂ns-γ Self density-ratio matching estimator with a γ-divergence
τ̂ns-ps Self density-ratio matching estimator with a pseudo spherical divergence
‖ · ‖ Euclidean norm
‖ · ‖∞ l∞ norm
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B CONVEXITY

We see specific examples of f(x), satisfying the above conditions in Theorem 5.

Example B.1 For the functions f(z) = z log z and f(z) = 2z log z − 2(1 + z) log(1 + z), we can confirm the conditions
in Theorem 5. However, the function f(z) = 0.5z2 does not meet the above conditions. In the same way, we can find that
the function f(z) = zm/{m(m− 1)} with a natural number m ≥ 2 does not meet the conditions.

We have a similar result for non-separable estimators. As for the estimator with γ-divergence, the loss function is convex
if the equality δ = 0 holds.

C ASYMPTOTICS UNDER MISSPECIFICATION

C.1 Misspecified Case

We have assumed that the model includes a true density. We can also consider a misspecified case, showing that the
behavior of the proposed estimators associated with f(x) = x log x, i.e., (11) is asymptotically the same as that of MLE.
This implies that similar to the MLE, the proposed estimator with f(x) = x log x converges to the parameter that minimizes
the KL-divergence between the model and the true distribution. Furthermore, its asymptotic variance is the same, even
when the model is misspecified. We specifically have the following theorem.

Theorem 6 Under certain regularity conditions, we have
√
n(τ̂s − τ∗)

d→ N (0,Ω−1
1mΩ2mΩ−1

1m),

where τ∗ = (c∗, θ∗) is a value such that

exp(c∗) =

∫
p(x; θ∗)dµ(x), 0 = E∗{S(x; θ)},

and

Ω1m = −E∗

[{
1− q(x; τ)

η∗(x)

}
∇τ>∇τ log q(x; τ)|τ∗

]
+ E∗

{
q(x; τ)

η∗(x)
∇τ log q(x; τ)∇τ> log q(x; τ)|τ∗

}
,

Ω2m = Var∗ {∇τ log q(x; τ)|τ∗} .

Two implications are observed in Theorem 6. First, this theorem is reduced to Theorem 2 when the model includes the true
distribution, i.e., η∗(x) = q(x; τ∗). Second, the resulting form of Ω1m,Ω2m has a form similar to the terms that appear in
the asymptotic result of MLE estimator when the model is normalized. For details, see Appendix C.1.

We have assumed that the model includes true density. In this section, we consider a misspecified case, showing that
the behavior of the proposed estimators associated with KL divergence is asymptotically the same as that of MLE when
f(x) = x log x. This implies that similarly to MLE, the proposed estimator converges to the parameter that minimizes the
KL-divergence between the model and the true distribution, even when the model is misspecified.

Before analyzing the proposed estimators, we review a misspecified case where the model can be normalized properly.
The MLE under the misspecified model is equivalent to finding the closest model to the true distribution regarding KL
divergence (White, 1982). The MLE estimator θ̂MLE converges to the value maximizing the function θ → E∗{log p(x; θ)−
log
∫
p(x; θ)dµ(x)}. We denote this value as θ∗. The value θ∗ satisfies the equation E∗{S(x; θ)} = 0, where S(x; θ) is

∇θ
{

log p(x; θ)− log

∫
p(x; θ)dµ(x)

}
.

It is well-known that the estimator θ̂MLE has the following asymptotic property, that is,
√
n(θ̂MLE − θ∗) converges weakly

to the normal distribution with mean 0 and variance

E∗{∇θ>S(x; θ)|θ∗}−1Var∗{S(x; θ)|θ∗}E∗{∇θ>S(x; θ)|θ∗}−1
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The term E∗{∇θ>S(x; θ)|θ∗} is

E∗

[{
1− p̃∗(x)

η∗(x)

}
∇θ>∇θ log p(x; θ)|θ∗

]
+ E∗

{
p̃∗(x)

η∗(x)
∇θ log p(x; θ)∇θ> log p(x; θ)|θ∗

}
− E∗

{
p̃∗(x)

η∗(x)
∇θ log p(x; θ)|θ∗

}
E∗

{
p̃∗(x)

η∗(x)
∇θ> log p(x; θ)|θ∗

}
,

where

p̃(x; θ) = p(x; θ)/

∫
p(x; θ)dµ(x),

p̃∗(x) = p̃(x; θ∗). We also have

Var∗{S(x; θ)|θ∗} = Var∗{∇θ log p(x; θ)|θ∗}.

Next, consider the asymptotic behavior of θ̂s in (9) when the model is misspecified. We assume f(x) = x log x, as in
Example 3.1. In this case, the estimator θ̂s converges in probability to θ∗, which satisfies the equation E∗[S(x; θ)] = 0.
When f(x) is not x log x, a similar result can be obtained. However, the limits of estimators no longer converge to the
same θ∗. With these settings, we have the following theorem.

Theorem 7 Under regularity conditions as in Theorem 2, we have
√
n(θ̂s − θ∗) = Ω†

−1

1m Gn {∇θ log p(x; θ)|τ∗}+ op(1),
√
n(θ̂s − θ∗)

d→ N (0,Ω†
−1

1m Ω†2mΩ†
−1

1m ).

The specific forms of Ω†1m and Ω†2m are

Ω†1m = E∗

[{
1− q(x; τ)

η∗(x)

}
∇θ>∇θ log p(x; θ)|τ∗

]
+ E∗

{
q(x; τ)

η∗(x)
∇θ log p(x; θ)∇θ> log p(x; θ)|τ∗

}
− E∗

{
q(x; τ)

η∗(x)
∇θ log p(x; θ)|τ∗

}
E∗

{
q(x; τ)

η∗(x)
∇θ> log p(x; θ)|τ∗

}
,

and

Ω†2m = Var{∇θ log p(x; θ)|θ∗}.

Two implications are observed in Theorem 7. First, when the model includes the true distribution, i.e., η∗(x) = q(x; τ∗),
this theorem is reduced to Theorem 2. Second, the resulting form of Ω†1m,Ω

†
2m has a form similar to terms appeared in

the asymptotic result of the MLE estimator when the model is normalized.

C.2 Misspecified Poisson Model

Here, we examine the bahavior of each estimator when the model is misspecified. We assume unnormalized paramet-
ric models P (x; θ) ∝ exp(θ)x/x!, x ∈ N≥0 based on Poisson distributions. We consider two scenarios based on
the true distribution (well-specified case) exp(−2.0)2.0x/x! and, (misspecified case) 0.5 exp(−2.0)2x−0.2/(x − 0.2)! +
0.5 exp(−1.0)/(x− 1.2)!.

We compared five estimators: s-KL, s-Chi, s-JS, ns-γ and MLE. The Monte Carlo mean and the standard error of KL
divergence between true density and estimated density are presented in Table 5. This experiment reveals that the perfor-
mance of each estimator significantly varies in the misspecified case, but not in the well-specified case. It is indicated that
s-KL is preferable in terms of the KL divergence because it has a performance similar to that of MLE, even when the
model is misspecified.

D Additional experiments

D.1 Performance of s-KL, s-Chi, s-JS in RBM

We compared four estimators: s-JS, s-KL, s-Chi and MLE. Refer to Table 6. It is shown that s-KL is generally stable.
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Table 5: Monte Carlo mean and standard error of the KL divergence between the true density and estimated density scaled
by sample size in a Poisson model. Parenthesis indicates a standard error.

well-specified case

n s-KL s-Chi s-JS ns-γ MLE

1000 0.26 0.26 0.27 0.26 0.26
(0.03) (0.03) (0.04) (0.03) (0.03)

2000 0.25 0.26 0.25 0.25 0.25
(0.03) (0.04) (0.04) (0.03) (0.03)

misspecified case

n s-KL s-Chi s-JS ns-γ MLE

1000 5.6 6.0 7.3 6.2 5.5
(0.4) (0.7) (1.4) (0.7) (0.2)

2000 11.1 11.8 14.6 12.1 10.9
(0.4) (0.9) (1.9) (0.7) (0.2)

Table 6: Monte Carlo mean and standard error of the KL divergence between the true density and estimated density scaled
by sample size in RBM. Parenthesis indicates a standard error.

dimv = 5,dimh = 2, iteration: 50
n s-JS s-KL s-Chi MLE

100 5.91(2.66) 5.32(2.22) 6.73(4.07) 5.66(2.72)
500 4.94(2.02) 5.14(2.05) 6.88(3.03) 5.06(1.95)

1000 5.35(2.46) 5.43(2.58) 6.45(3.57) 5.57(2.74)
dimv = 8,dimh = 2, iteration: 20

n s-JS s-KL s-Chi MLE
500 26.3(12.9) 24.7(12.1) 30.2(12.3) 11.2(4.60)

1000 18.4(9.62) 14.6(9.28) 17.4(10.4) 8.38(3.09)
5000 10.5(3.73) 8.78(3.27) 18.9(7.35) 8.85(3.24)

Table 7: Median squared errors scaled by sample size

n = 1000 n = 4000
Gaussian Gamma Gaussian Gamma

MLE 0.24 14.3 0.26 14.8
NCE 0.26 54.4 0.28 61.2
s-KL 0.39 24.6 0.29 23.3
s-Chi 0.35 15.1 0.43 19.6
s-JS 0.48 16.3 0.26 18.5
ns-γ 0.75 14.5 0.35 36.5

D.2 Gaussian and Gamma Distributions

We perform toy experiments using Gaussian distribution and gamma distributions. These experiments show that proposed
estimator’s performance is almost the same as the MLE. In this section, we use median squared errors rather than mean
squared errors.

Let us consider simple examples when the baseline measure is a Lebesgue measure. Here we define the following two
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unnormalized models: Gaussian distribution, gamma distribution as follows:

p(x; θ) = exp(−θx2), p̃(x; θ) =

√
θ

π
exp(−θx2),

p(x; θ) = xθ1−1 exp(−θ2x), p̃(x; θ) =
θθ12 x

θ1−1 exp(−θ2x)

Γ(θ1)
.

We write down each corresponding normalized model on the right side. Simulation is replicated for 100 times. Monte
Carlo median squared errors are reported in Table D.2. Note that we use a half-normal distribution for the NCE in the case
of the gamma distribution. It is indicated that proposed estimators have the similar performance as the MLE. This supports
our theoretical result. However, it seems that each proposed estimator has a slightly different performance. One reason is
that our analysis does not take high-order terms into account.

E PROOF OF THEOREMS

Proof of Theorem 1. Use Theorem 5.11 in van der Vaart (2002). We check two conditions; (1a) φ(x; τ, η̂n) belongs to
Glivenko Canteli class,(1b) for any ε > 0, inf{τ :‖τ−τ∗)‖>ε} ‖E∗{φ(x; τ, η∗})‖. Regarding the first condition, we check in
the proof of Theorem 2. Assumption (1b) is verified by the following two conditions: (1c) φ(x; τ, η∗) is continuous with
respect to τ , (1d) E∗{φ(x; τ, η∗)} = 0 ⇐⇒ τ = τ∗. The condition (1c) immediately holds assuming that θ → p(x; θ)
is continuous. When the identification condition of the model q(x; τ1) = q(x; τ2) ⇐⇒ τ1 = τ2 holds, (1d) is verified
because E∗[φ(x; τ, η∗)] = 0 ⇐⇒ q(x; τ) = q(x; τ∗) ⇐⇒ τ = τ∗ (Uehara et al., 2018).

Proof of Theorem 2.

First, under Assumptions 1-3 and (2a), we can check the following conditions;

• (τ, η)→ φ(x; τ, η) is continuous in an L2 space L2(Fη∗) at (τ∗, η∗)

• {φ(x; τ, η)} belongs to a Donsker class

• τ̂s
p−→ τ∗

• Map τ → φ(x; τ, η) is differentiable at τ∗ uniformly in a neighrborhood of η∗

• The following matrix Ω = E∗(∇τ log q∇τ> log q|θ∗) is non-singular

to invoke Theorem 6.17. in van der Vaart (2002). Especially, the second condition is confirmed as follows. First,
{q(x; τ); τ ∈ Θτ} and {1(x ≤ t), t ∈ R} belong to Donsker class from Example 19.16 and Example 19.18 in (van der
Vaart, 1998). Then, noting that

(q, η)→ φ(q, τ)

is a Lipsthicz continuous function, from Example 19.20 in (van der Vaart, 1998), φ(q(x); η(x)) = φ(x; τ, η) is also a
Donsker class.

We have
√
n(τ̂s − τ∗) = Ω−1Gn {∇τ log q(x; τ)|τ∗}+ op(1),
√
n(τ̂s − τ∗)

d→ N (0,Ω−1).

The estimator τ̂s is considered as the one satisfying Pnφ(x; τ, η)|τ̂s,η̂n = 0, where w(x) = q(x; τ)/η(x) and φ(x; τ, η) is

([f ′{h1(w)} − f ′{h2(w)}]h′1(w)− f ′′{h2(w)}h′2(w) [h1(w)− h2(w)])w∇τ log q(x; τ).

From Theorem 6.17. in van der Vaart (2002) based on the above assumptions, we have
√
n(τ̂s − τ∗) = −V −1

τ∗,η∗
√
nE∗{φ(x)|τ∗,η̂n} − V −1

τ∗,η∗Gnφ(x)|τ∗,η∗ + op(1 +
√
n‖E∗[φ(x)|τ∗,η̂n ]‖), (13)



A Unified Statistically Efficient Estimation Framework for Unnormalized Models

where Vτ∗,η∗ is a derivative of τ → E∗{φ(x; τ, η∗)} at τ∗. First, we calculate the derivative Vτ∗,η∗ . The derivative is

∇τ>E∗{φ(x; τ, η∗)|τ∗} = E∗{∇τ>φ(x; τ, η∗)|τ∗}
=
√
nE∗[f

′′{h1(w)}h′1(w)− f ′′{h2(w)}h′2(w)]h′1(w)− f ′′{h2(w)}h′2(w){h′1(w)− h′2(w)}
w∇τ log q(x; τ){∇τ>w}{η̂n(x)− η∗(x)}|τ∗,η∗
= f ′′(1){h′1(1)− h′2(1)}2E∗(∇τ log q∇τ> log q|τ∗)
= f ′′(1){h′1(1)− h′2(1)}2Ω.

Next consider each term in (13). The second term in (13) vanishes because φ(x)|τ∗,η∗ is 0. Therefore, we only analyze the
first term in (13):

√
nE∗{φ(x)|τ∗,η̂n} =

√
nE∗{φ(x)|τ∗,η̂n} −

√
nE∗{φ(x)|τ∗,η∗}

=
√
nE∗[∇ηφ(x)|τ∗,η∗{η̂n(x)− η∗(x)}] (14)

+
√
nE∗{φ(x)|τ∗,η̂n} −

√
nE∗{φ(x)|τ∗,η∗} −

√
nE∗[∇ηφ(x)|τ∗,η∗{η̂n(x)− η∗(x)}]. (15)

We decompose
√
nE∗{φ(x)|τ∗,η̂n} into two terms again. The first term (14) is

√
nE∗[∇ηφ(x)|τ∗,η∗{η̂n(x)− η∗(x)}]

=
√
nE∗[{f ′′{h1(w)}h′1(w)− f ′′{h2(w)}h′2(w)}h′1(w)− f ′′{h2(w)}h′2(w)(h′1(w)− h′2(w)}{vgn∇ηw}

w∇τ log q(x; τ)|τ∗,η∗(η̂n(x)− η∗(x))]

=−
√
n

∫
f ′′ (1) {h′1(1)− h′2(1)}2∇τq(x; τ)

q(x; τ)
|τ∗{η̂n(x)− η∗(x)}dµ(x)

=−
√
nf ′′ (1) {h′1(1)− h′2(1)}2Gn

{
∇τq(x; τ)

q(x; τ)
|τ∗
}
.

In addition, the second residual term (15) vanishes because, for some large C and η̃ is a between η̂n, we have

‖
√
nE∗{φτ∗,η̂n} −

√
nE∗{φτ∗,η∗} −

√
nE∗[∇ηφ(x; τ, η)|τ∗,η∗{η̂n(x)− η∗(x)}]‖

=
√
n‖E∗[∇ηηφ(x; τ, η)|τ∗,η̃{η̂n(x)− η∗(x)}2]‖

≤ C
√
n‖E∗[{η̂n(x)− η∗(x)}2].

From the second line to the third line, we use an assumption (2b). The last term goes to 0 in probability. By combining all
things and substituting into (13), the statement is proved.

Proof of Corollary 1. The score function S(x; θ) can be written as

∇θ log p(x; θ)−
∫
∇θ log p(x; θ)

p(x; θ)∫
p(x; θ)dµ(x)

dµ(x).

Fisher information matrix I−1
θ∗ is Var∗{S(x; θ)|θ∗}, that is,

E∗{∇θ log p(x; θ)∇θ> log p(x; θ)|θ∗} − E∗{∇θ log p(x; θ)|θ∗}E∗{∇θ> log p(x; θ)|θ∗}.

On the other hand, the component corresponding θ∗ in Ω−1 can be also written as

E∗{∇θ log p(x; θ)∇θ> log p(x; θ)|θ∗} − E∗{∇θ log p(x; θ)|θ∗}E∗{∇θ> log p(x; θ)|θ∗}

from Theorem 2 and Woodbury formula. This is the same as the Fisher information matrix. This concludes the proof.

Proof of Theorem 3.
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We can do in the proof of Theorem 2. Here, η(x) belongs to a Donsker class from Example 19.24 (van der Vaart, 1998);
therefore, φ(x; τ, η) belongs to Donsker class from Lipschitz continuous property. The problem is a drift term. We can
derive the given theorem by calculating the drift term in the same way. The drift term

√
nE∗[φτ∗,η̂n ] is decomposed into

two terms, the main term:

√
n

∫
∇τq(x; τ)

q(x; τ)
|τ∗
{

1

nhdx

n∑
i=1

K

(
x− xi
h

)
− η∗(x)

}
dµ(x),

and the residual term. The main term corresponds to the term (14) in Theorem 2 and the residual term corresponds to the
term (15) in Theorem 2. As revealed in the proof, the residual term is written as Op(

√
n‖η̂ − η∗(x)‖2). This term is equal

to the order op(1) because ν
2ν+dx

> 1/4 holds from the assumption (2e). Next, we have

√
n

∫
∇τq(x; τ)

q(x; τ)
|τ∗
{

1

nhdx

n∑
i=1

K

(
x− xi
h

)
dµ(x)− dPn(x)

}
= op(1).

This holds from Theorem 8.11 in Newey and Mcfadden (1994) using assumptions (2d) and (2e). Then, the drift term
becomes

√
nE∗[φτ∗,η̂n ] =

√
n

∫
∇τq(x; τ)

q(x; τ)
|τ∗ {dPn(x)− η∗(x)}dµ(x) + op(1)

= Gn
{
∇τq(x; τ)

q(x; τ)
|τ∗
}

+ op(1).

We have calculated the drift term. For the rest of the proof, it is the same as the proof in Theorem 2.

Proof of Theorem 4. We redefine σ ≡ (θ>, c1, c2)>. To avoid abuse of notations, we write Uα,β(x;σ) as U(x).

As in the proof of Theorem 2, we have
√
n(σ̂ns-γ − σ∗) = −V −1

σ∗,η∗
√
nE∗{U(x)|σ∗,η̂n} − V −1

σ∗,η∗GnU(x)|σ∗,η∗ + op(1 +
√
n‖E∗{U(x)|σ∗,η̂n}‖), (16)

where σ̂ns-γ is a solution to Ẽ[U(x;σ)] = 0 and Vσ∗,η∗ is a derivative of the map σ → E∗{U(x;σ, η∗)} at σ∗.

First, we calculate the derivative Vσ∗,η∗ . This becomes

E∗

(β − α)∇θs(x; θ)s(x; θ)> −s(x; θ) s(x; θ)
(β − 1)s(x; θ)> exp(c1) exp(c1) 0
(α− 1)s(x; θ)> exp(c2) 0 exp(c2).

 ,
which is evaluated at σ∗ and s(x; θ) = ∇θ log p(x; θ). The term corresponding θ in the above matrix V −1

σ∗,η∗ is

(β − α)−1 [E∗{∇θ log p(x; θ)∇θ> log p(x; θ)} − E∗{∇θ log p(x; θ)}E∗{∇θ> log p(x; θ)}]−1 |θ∗
= (β − α)−1J−1

θ∗ .

Then, we analyze each term in (16). First of all, the second term in (16) becomes zero becauseU(x;σ∗, η∗) = 0. Therefore,
we only consider the first term in (16). We have

√
nE∗{U(x)|σ∗,η̂n} =

√
nE∗[∇ηU(x)|σ∗,η∗{η̂n(x)− η∗(x)}] + op(1)

=
√
nE∗

(α− β)∇θ log p(x;θ)
η∗(x)

(β − 1)/η∗(x)
(α− 1)/η∗(x)

 {η̂n(x)− η∗(x)}

+ op(1).
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Therefore, the first term corresponding θ in the above equation becomes

J−1
θ∗
√
n

∫
∇θ log p(x; θ)|θ∗{η̂n(x)− η∗(x)}dµ(x)

= J−1
θ∗ Gn {∇θ log p(x; θ)|θ∗} .

Finally, we get

√
n(θ̂ns-γ − θ∗) = J−1

θ∗ Gn{∇θ log p(x; θ)|θ∗}+ op(1).

Proof of Theorem 5. Let us define `i(τ) as the loss for the sample xi, i.e.,

`i(τ) = −f ′(zi) + wif
′(zi)− f(zi),

where zi = q(xi; τ)/η̂(xi). The loss function is expressed by the total sum of `i(τ) over all samples. For the unnormalized
exponential model, some calculation yields the Hessian matrix of `i(τ),

∇2`i(τ) =
[
f ′′(zi)z

2
i + (zi − 1) {f ′′′(zi)z2

i + f ′′(zi)zi}
]
φ(xi)φ(xi)

>

= zi {(2zi − 1)f ′′(zi) + zi(zi − 1)f ′′′(zi)}φ(xi)φ(xi)
>.

The assumption of the theorem guarantees that the coefficient above is non-negative; hence, the Hessian matrix of `i(τ) is
non-negative definite, so is the loss function. Eventually, the loss function is convex in the parameter τ .

Proof of Theorem 6. The estimator τ̂s can be considered as the one satisfying Pnφτ̂s,η̂n = 0, where

φ(x; τ, η) = ∇τ log q(x; τ)−
{
q(x; τ)

η(x)

}
∇τ log q(x; τ).

From Theorem 6.17. van der Vaart (2002), we have

√
n(τ̂s − τ∗) = −V −1

τ∗,η∗
√
nE∗{φ|τ∗,η̂n} − V −1

τ∗,η∗Gnφ(xi; τ
∗, η∗) + op(1 +

√
n‖E∗[φ|τ∗,η̂n ]‖), (17)

where Vτ∗,η∗ is a derivative of τ → E∗{φ(x; τ, η∗)} at η∗.

First, we will see a more specific form of τ∗. The value τ∗ satisfy the equation E∗{φ(x; τ, η∗)} = 0. Noting that
∇τ> log q(x; τ) = (1,∇θ> log p(x; θ)), we can get the form of c∗ and θ∗ specified in the statement.

Next, we calculate the derivative Vτ∗,η∗ . The derivative is

∇τ>E∗{φ(x; τ, η)|τ∗}
= E∗{∇τ>φ(z; τ, η)|τ∗}

= E∗

[{
−1 +

q(x; τ)

η(x)

}
∇τ>∇τ log q(x; τ)|τ∗

]
− E∗

{
q(x; τ)

η(x)
∇τ log q(x; τ)∇τ> log q(x; τ)

}
|τ∗

= −Ω1.

Next, consider each term in (17). The second term is

Ω−1
1 Gn

[{
1− q(x; τ)

η(x)

}
|τ∗,η∗∇τ log q(x; τ)|τ∗

]
.

The first term is
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√
nΩ−1

1mE∗(φ|τ∗,η̂n) =
√
nΩ−1

1mE∗(φ|τ∗,η̂n)−
√
nE∗(φ|τ∗,η∗)

=
√
nΩ−1

1mE∗
[
∇ηφ(x)|τ∗,η∗{η̂n(x)− η∗(x)}

]
+ op(1)

=
√
nΩ−1

1mE∗

[
q(x; τ)

η2(x)
∇τ log q(x; τ)|τ∗,η∗{η̂n(x)− η∗(x)}

]
+ op(1)

=
√
nΩ−1

1m

∫
q(x; τ)

η(x)
|τ∗,η∗∇τ log q(x; τ){η̂n(x)− η∗(x)}dµ(x) + op(1)

= Ω−1
1mGn

{
q(x; τ)

η(x)
|τ∗,η∗∇τ log q(x; τ)|τ∗

}
+ op(1).

Adding the first term and the second term, we get
√
n(τ̂s − θ∗) = Ω−1

1mGn {∇τ log q(x; τ)|τ∗,η∗}+ op(1).

Therefore, we conclude that
√
n(τ̂s − θ∗) converges to the normal distribution N (0,Ω−1

1mΩ2mΩ−1
1m).

Proof of Theorem 7.

We calculate matrix, corresponding to θ term in Theorem 6. The matrix Ω1m in Theorem 6 is equal to the following block
matrix: [

Ω11 Ω12

Ω21 Ω22

]
,

where Ω11 = 1,

Ω21 = E∗

{
∇τ log q(x; τ)

q(x; τ)

η∗(x)
|τ∗
}

and

Ω22 = E∗

[{
1− q(x; τ)

η∗(x)

}
∇θ>∇θ log q(x; τ)|τ∗

]
+ E∗

{
q(x; τ)

η∗(x)
∇θ log q(x; τ)∇θ> log q(x; τ)|τ∗

}
.

From Woodbury formula, the corresponding term to θ in Ω−1
1m is Ω†1m where

Ω†1m = E∗

[{
1− q(x; τ)

η∗(x)

}
∇θ>∇θ log p(x; θ)|τ∗

]
+ E∗

{
q(x; τ)

η∗(x)
∇θ log p(x; θ)∇θ> log p(x; θ)|τ∗

}
− E∗

{
q(x; τ)

η∗(x)
∇θ log p(x; θ)|τ∗

}
E∗

{
p(x; θ)

η∗(x)
∇θ> log p(x; θ)|τ∗

}
.

On the other hand, the corresponding part in Ω2m is Ω†2m, where

Ω†2m = Var{∇θ log p(x; θ)|θ∗},

noting that∇τ> log q(x; τ) = {1,∇θ> log p(x; θ)}. This concludes the proof.

Note the difference between the normalized case and unnormalized case is that p̃(x; θ∗)/η∗ is used when the model is
normalized; while, q(x; τ∗)/η∗ is used in Ω†1m and Ω†2m when the model is unnormalized.


