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A SUMMARY OF NOTATIONS

Table 5: Summary of notations

g(x) True density
a(x) Auxiliary density
b(x) Noise distribution
n Sample size
p̃(x; θ) Unnormalized model
p(x; θ) Normalized model
q(x; τ) One-parameter extended model
xobs , xmis Observed data and missing data
r(x) q(x; τ)/a(x) or p̃(x; θ)/a(x)
Pr(δ|x, φ) Selection probability
π(δ|x, φ) Propensity score model
η (θ, φ)
ζ (τ, φ)
Msc Loss function of score matching
Zsc Estimating equation of score matching
Mnc,Mnc1,Mnc2 Loss function of NCE
Znc, Znc1, Znc2 Estimating equation of NCE
p(x; θ) Normalized model of p̃(x; θ)
t(xmis; η) Posterior p(x; θ)π(δ|x;φ)
θ0 True θ
x
(∗k)
i Imputed data
t(x)⊗2 t(x)t(x)>

η̂p Initial estimator
η̂sc Estimator by FISCORE and MISCORE
η̂nc,f Estimator by FINCE and MINCE
µ Baseline measure
cs(x; θ) ∇xs log p̃(x; θ)

B PROOF

To keep the clarity of the main points of this section, we will not specify regularity conditions. For details, see Chapter 5
in van der Vaart (1998).

Proof of Theorem 2 amd 1. Direct calculation based on the original theory of M-estimator.

Proof of Theorem 3. First, we discuss the general derivation without using a specific form of zsc(θ) so that it can be
applied to NCE case. Then, we derived the specific formula for FISCORE.

we have

Z̄sc(θ|θ̂p) = Zsc,obs(θ) + E[Zsc,mis|xobs; θ̂p],

where Zsc,mis = Zsc(θ)− Zsc,obs(θ). By Taylor expansion, we have

E[Zsc,mis|xobs; θ̂p] = E[Zsc,mis(θ0)|xobs; θ0] + E[Zsc,mis(θ)∇θ> log p(xmis|xobs; θ)|xobs; θ0]|θ0(θ̂p − θ0) + op(n
−1/2).

Therefore,

Z̄sc(θ0|θ̂p) = Zsc,obs(θ0)− I2,sc(θ̂p − θ0) + op(n
−1/2)

= −I1,sc(θ̂sc − θ0)− I2,sc(θ̂p − θ0) + op(n
−1/2) (12)

= (−I1,sc − I2,sc)(θ̂sc − θ0)− I2,sc(θ̂p − θ̂sc) + op(n
−1/2),
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where

I1,sc = E[∇θ>Zsc,obs(θ0)],

I2,sc = −E[E[Zsc,mis(θ0)∇θ> log p(xmis|xobs; θ0)]]

= −E[E[zsc,mis(θ0)∇θ> log p(xmis|xobs; θ0)]]

= −E[zsc,mis(θ0)∇θ> log p(xmis|xobs)]
= −E[cov[zsc,mis(θ0),∇θ> log p̃(xmis|xobs; θ0)]|xobs; θ0].

From the first line to the second line (12), we used E[Zsc,mis(θ0)|xobs; θ0] = 0 and Theorem 2.

In addition, since θ̂sc,∞ is the solution to Z̄sc(θ|θ̂p). Then,

0 = Z̄sc(θ̂sc,∞|θ̂p)

= Z̄sc(θ0|θ̂p) + E[∇θ>Zsc(θ0)](θ̂sc,∞ − θ0) + op(n
−1/2)

= Z̄sc(θ0|θ̂p) + I3,sc(θ̂sc,∞ − θ0) + op(n
−1/2),

where

I3,sc = E[∇θ>Zsc(θ0)].

Therefore, we get

(θ̂sc,∞ − θ0) = −I−13,sc{(−I1,sc − I2,sc)(θ̂sc − θ0)− I2,sc(θ̂p − θ̂sc)}+ op(n
−1/2),

= (θ̂sc − θ0) + I−13,scI2,sc(θ̂p − θ̂sc) + op(n
−1/2).

From the first line to the second line of the last equation, we used the relation I3,sc = I1,sc + I2,sc. This is proved by

I1,sc + I2,sc = E[∇θ>(E[Zsc(θ)|xobs; θ])]− E[E[Zsc,mis(θ0)∇θ> log p(xmis|xobs; θ0)|xobs; θ0]]

= E[∇θ>Zsc(θ0)] = I3,sc.

We go back to the special case of FISCORE.

Noting msc(θ) =
∑dx
s=1 0.5c2s(x) +∇xs(cs(x)), the term zsc(θ) is

zsc(θ) =

d∑
s=1

{cs(x)∇θ(cs(x)) +∇xs(∇θcs(x))} .

Then, we have

E[∇θ>zsc,obs(θ)]|θ0 = E[∇θ>{E[zsc(θ)|xobs; θ]}]|θ0
=E[∇θ>zsc(θ)]|θ0 + E[E[zsc(θ){∇θ> log p(xmis|xobs; θ)}|xobs; θ0]]|θ0
=E[∇θ>zsc(θ)]|θ0 + E[zsc(θ){∇θ> log p(xmis|xobs; θ)}]|θ0 ,

where∇θ log p(xmis|xobs; θ) is

∇θ log p̃(x; θ)− E[∇θ log p̃(x; θ)|xobs; θ].

So, the above is equal to

E[∇θ>zsc(θ)]|θ0 + E[cov[zsc(θ),∇θ log p̃(x; θ)|xobs]]|θ0 .

In addition,

E[∇θ>zsc(θ)]|θ0 = E

[
d∑
s=1

{∇θcs(x)∇θ>cs(x) + cs(x)∇θθ>cs(x) +∇xs(∇θθ>cs(x))}

]
|θ0

= E

[
d∑
s=1

{∇θcs(x)}⊗2
]
|θ0 .
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From the second line to the third line, we used a partial integration trick, which is a core concept of score matching.

Proof of Corollary 1.

Clear from Theorem 4.

Proof of Corollary 2.

First, we calculate J1,nc. By noting the sampling mechanism of full data is a stratified sampling, this is calculated as
follows:

n−1(varq[E[znc1(x; τ0)|xobs]] + vara[znc2(y; τ0)]).

Next, we calculate I1,nc:

I1,nc = E[∇τ>Znc,obs(τ)]|τ0 = E[∇τ>znc,obs(τ)]|τ0 = E[∇τ>{E[znc(x, y; τ)|xobs; τ ]}]|τ0
= E[∇τ>znc(x, y; τ)]|τ0 + E[znc(x, y; τ){∇τ> log q̄(xmis|xobs; τ)}]|τ0 (13)
= I3,nc − I2,nc. (14)

where

q̄(xmis|xobs; τ) = q(xmis, xobs; τ)/

∫
q(xmis, xobs; τ)µ(dxmis).

By some algebra, the first term in (14) is

I3,nc = E[∇τ>znc(x, y; τ)]|τ0 = E

[
∇τ log q(x; τ0)⊗2

1 + r

]
|τ0 .

In addition, the second term in (14) is

I2,nc = −E[znc(x, y; τ){∇τ> log q̄(xmis|xobs; τ)}]|τ0
= −E[E[znc1(x; τ)|xobs]{∇τ> log q̄(xmis|xobs; τ)}]|τ0
= −E[cov[znc1(x; τ),∇τ log q(x; τ)|xobs]]

= I3,nc − E

[
E

[
∇τ log q(x; τ0)

1 + r
|xobs

]
E [∇τ> log q(x; τ0)|xobs]

]
.

Therefore, adding the first and the second term in (14), we get

I1,nc = E

[
E

[
∇τ log q(x; τ0)

1 + r
|xobs

]
E [∇τ> log q(x; τ0)|xobs]

]
.

Proof of Corollary 3. By some algebra, as in the proof of Corollary 2, we obtain

I1,nc = E
[
E [∇τ log q(x; τ0)|xobs]⊗2

]
,

I3,nc = E
[
∇τ log q(x; τ0)⊗2

]
.

So, noting that I3,nc is a positive definite matrix, and I3,nc and I1,nc are symmetric matrices, we can express I3,nc = RR>

and I1,nc = RΛR> using a nonsingular matrix R (Rao, 2008). Because I3,nc − I1,nc is a positive matrix from Jensen’s
inequality, each element in Λ is less than 1. Then, we get

I−13,ncI2,nc = I−13,nc(I3,nc − I1,nc) = R−1(I − Λ)R.

Finally,

(I−13,ncI2,nc)j = R−1(I − Λ)jR.

Therefore, {I−13,ncI2,nc}j converges to zero as j tends to infinity.
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C Multiple missing patterns

We explain how to handle the case when the missing pattern is multiple. In the most general case, we have to introduce
a missing pattern indicator δ that takes values in 0, 1, . . . , 2K − 1, where K is the dimension of x, for each sample. This
is based on the fact that there are 2K possible missing patterns for x. In the main manuscript, we have defined δ to take a
value of 0 or 1 because there are only two missing patterns, i.e., one value is missing or not. Then, we have to introduce an
importance distribution b(xmis) separately for each missing pattern in the general case. In practice, we can simply select
the importance distribution for each coordinate and take their products. Thus, the proposed methods can be applied to
the general missing case. For example, in Algorithm 2, we impute missing values of each sample using the importance
distribution of corresponding missing pattern. Then, W-step and M-step are essentially the same. Here is a concrete
example.

Example C.1 Consider the case x1,obs = [0,NA, 1], x2,obs = [NA,NA, 4], x3,obs = [1, 2, 3].

In this case, there are 3 missing patterns: (∗, ∗, ∗), (∗,NA, ∗), (NA,NA, ∗), where * means an observed value and NA means
a missing value. Then, we introduce a missing indicator δ to take values in 0, 1, 2. Namely, δ = 0 corresponds to (∗, ∗, ∗),
δ = 1 corresponds to (∗,NA, ∗), and δ = 2 corresponds to (NA,NA, ∗). Then, for x1,obs = [0,NA, 1], we have δ1 = 1. For
x2,obs = [NA,NA, 4], we have δ2 = 2. Since x3 is observed without missing, then δ3 = 0. (6) is rewritten:

1

n

n∑
i=1

2∑
k=0

I(δi = k)E[znc(xi; τ) | xi,obs; θ].

D COMPARISON BETWEEN FINCE and VNCE

Here, we compare FINCE and variational NCE (VNCE) (Rhodes and Gutmann, 2019). From (7), the difference between
the estimator proposed in this paper and VNCE (Rhodes and Gutmann, 2019) is clearly shown. Mainly, there are two dif-
ferences: (1) VNCE attempts to maximize the observed likelihood directly, whereas FINCE attempts to solve the observed
estimating equation, (2) VNCE assumes that the dimension of a(x) is the same as the dimension of xobs, whereas FINCE
assumes that the dimension of a(x) is the same as the dimension of x.

More specifically, an ideal loss function in VNCE is

arg max
s

JVNCE(τ, s(xmis)) = JVNCE(τ, q(xmis|xobs))

=
1

n

n∑
i=1

E

log

 1

1 +
q(xmis|xi,obs)a(xi,obs)

q(xmis,xi,obs)

 |xi,obs
+

1

n

n∑
j=1

log

{
a(yj)

a(yj) + E[q(yj , yj,mis)|yj ]

}

=
1

n

n∑
i=1

log

{
q(xi,obs)

q(xi,obs) + a(xi,obs)

}
+

1

n

n∑
j=1

log

{
a(yj)

a(yj) + q(yj)

}
, (15)

where q(xobs) =
∫
q(xmis, xobs)µ(dxmis). On the other hand, the loss function of our proposed estimator is (7). In general,

the efficiencies of the two loss function are not directly comparable. The following points highlight the comparison between
two methods.

• In terms of inferences, our proposed methods (FINCE, FISCORE) are superior to VNCE because it is difficult to
achieve the upper bound in (15) in VNCE.

• Unless the family of variational distribution includes the true posterior, VNCE does not have consistency. On the
other hand, FINCE has consistency and also asymptotic normality without requiring such conditions.

• In terms of the scalability, VNCE is superior to the proposed methods because VNCE does not require any sampling
methods.

• FINCE can be applied even if the missing data mechanism is MAR or MNAR. However, VNCE cannot be directly
applied when the missing mechanism is MAR or NMAR.
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E INFERENCE OF FISCORE WHEN m IS FIXED

We consider an asymptotic result of FISCORE when m is fixed. Actually, the estimating equation Zsc,m is not unbiased
estimator for Z̄sc because a self normalizing importance sampling is used rather than importance sampling (Owen, 2013).
This means that the derived estimator is theoretically not consistent; however, practically, a self normalized importance
sampling is preferable to importance sampling because of its robustness. Here, we consider the case when the weight is
defined as w(x|xobs) = p(xmis|xobs; θ0)/b(x).

As in the proof of Theorem 3, we have

θ̂sc,m − θ0 = −I−13,scZsc,m(θ0|θ̂p) + op(n
−1/2) (16)

This term is decomposed into two terms: −I−13,scZ̄sc(θ0|θ̂p) and −I−13,sc{Zsc,m(θ0|θ̂p)− Z̄sc(θ0|θ̂p)}. These two terms in
(16) are independent. The first term is equal to θ̂sc,∞ − θ0, of which the asymptotic property is shown in Theorem 3. The
second term converges to the normal distribution with mean 0 and variance I−13,scE[varb{Zsc,m(θ0|θ̂p)}]I>−13,sc .

Theorem 4 When θ̂p = θ̂sc, the asymptotic variance of θ̂sc,m is equal to

I−11,scJ1,scI
>−1
1,sc +m−1I−13,scJ2,scI

>−1
3,sc ,

where w(x|xobs) = p(xmis|xobs; θ0)/b(x) and

J2,sc = n−1E[Eb(xmis)[w
2(x){zsc(θ0)⊗2}|xobs]]− n−1E[E[zsc(θ0)|xobs]⊗2].

F EXTENSION TO MULTIPLE IMPUTATION: MISCORE AND MINCE

MI was originally developed with Bayesian flavor (Rubin, 1987; Meng, 1994). In this paper, we consider frequentist MI
rather than Bayesian MI (Tsiatis, 2006) to avoid the additional computation. In addition, it is shown that frequentist MI is
asymptotically more efficient than Bayesian MI (Wang and Robins, 1998; Robins and Wang, 2000).

In MI, the crucial assumption is that the sample can be obtained from p(xmis|xobs; θ). When the missing data mechanism is
MAR, it is easy to sample from p(xmis|xobs; θ) using the MCMC based on (5). The algorithm is described as in Algorithm
4. In this paper, this approach is referred to as MISCORE. MINCE is also defined similarly. Nevertheless, we do not
recommend Algorithm 4 for the practical reason of its instability and computational burden.

Algorithm 4: MISCORE

1 repeat
2 W-step: Take a set of m samples from x∗kmis ∼ p(xmis|xobs; θ̂t) using MCMC for each i
3 M-step: Update the solution to the following function with respect to θ as θ̂t+1:

1

nm

n∑
i=1

m∑
k=1

msc(x
∗k
i ; θ).

4 until τ̂t converges;

Dues to the challenges associated with Algorithm 4, we recommend the following algorithm. This algorithm is similar to
the one in Levine and Casella (2001). In the original MISCORE, a set of samples is generated at every step. This requires
tremendous computational cost and causes instability. In Algorithm 5, by constructing a

√
n–consistent estimator based

on FISCORE at each step and updating by MISCORE one time, this limitation is overcome.

Algorithm 5: One step MISCORE

1 repeat
2 Do W-step and M-step in Algorithm 2 (FISCORE)
3 until τ̂t converges;
4 Do W-step and M-step in Algorithm 4 (MISCORE)
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Table 6: Monte Carlo median square error and bias

Setting 1

n MINCE MISCORE

500 (bias) 0.15 0.10
(mse) 0.037 0.024

1000 (bias) 0.13 0.12
(mse) 0.030 0.020

Table 6 illustrates the experimental result. We generated a set of 50 samples for each i using MCMC in the last step.
Compared with FINCE and FISCORE, the performance of one step MISCORE is worse. Perhaps, more step is needed.

The asymptotic property is obtained as follows.

Corollary 4 When θ̂p = θ̂sc and m is fixed, the asymptotic variance of θ̂sc,∞ is equal to

I−11,scJ1,scI
>−1
1,sc +m−1I−13,scJ2,scI

>−1
3,sc ,

where

J2,sc = n−1{E[zsc(θ0)⊗2]− E[E[zsc(θ0)|xobs]⊗2]},

and other terms are the same as in Theorem 3.

Proof of Corollary 4. We just replace b(xmis) with p(xmis|xobs; θ0) in Theorem 4.

Finally, there are two things to note about MISCORE and MINCE. When the missing data mechanism is MNAR, we have
to sample from p̃(xmis|xobs, δ; η) ∝ p̃(xmis|xobs; θ)π(δ|xmis, xobs;φ). In this case, the distribution becomes a doubly-
intractable distribution (Mller et al., 2006; Murray et al., 2006), and it is generally difficult to sample. Secondly, when we
use a Bayesian multiple imputation assuming the prior distribution ρ(θ), even if the missing mechanism is MAR, we have
to sample from p̃(xmis, θ|xobs) ∝ p̃(xmis, xobs; θ)ρ(θ). Often, data augmentation is utilized for this purpose (Tanner and
Wong, 1987). However, even if the data augmentation is applied, we still have to deal with doubly–intractable distributions
to calculate Pr(θ|x) ∝ ρ(θ)p(x; θ).

G EXTENSION TO CONTRASTIVE DIVERGENCE METHODS

Although there are several variations of contrastive divergence methods (Younes, 1989; Tieleman, 2008), the basic idea is
that θ is updated by adding the gradient of log-likelihood log p(x; θ) with respect to θ:

1

n

n∑
i=1

∇θ log p̃(xi; θ)− Ep(x;θ)[∇θ log p̃(x; θ)],

multiplying some learning rate. When some data is not observed, the expected gradient becomes

1

n

n∑
i=1

E[∇θ log p̃(xi; θ)|xi,obs; θ]− E[∇θ log p̃(x; θ)].

The expectation of the first term is taken under p(xmis|xobs; θ). It is possible to sample from MCMC like (5) without
involving doubly-intractable distributions (Mller et al., 2006). Therefore, the gradient is approximated as

1

nm

n∑
i=1

m∑
k=1

∇θ log p̃(x∗ki ; θ)− 1

n

n∑
j=1

∇θ log p̃(yj ; θ),

where x∗ki ∼ p(xmis|xi,obs; θ) and yj ∼ p(y; θ). We refer the updating method using the above gradient as MICD.

We can still use a FI approach for the approximation. By introducing an auxiliary distribution with a density b(x), the
gradient is approximated as

1

n

n∑
i=1

m∑
k=1

wik∇θ log p̃(x∗ki ; θ)− 1

n

n∑
j=1

∇θ log p̃(yj ; θ).
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where x∗ki ∼ b(x), wik ∝ p̃(x∗ki ; θ)/b(x∗ki ), yj ∼ p(y; θ). We refer this approach to FICD.

Furthermore, by introducing a noise distribution with a density a(y) to prevent using MCMC totally, the gradient is ap-
proximated as

1

n

n∑
i=1

m∑
k=1

wik∇θ log p̃(x∗ki ; θ)− 1

n

n∑
j=1

rj∇θ log p̃(yj ; θ),

where x∗ki ∼ b(x), wik ∝ p̃(x∗ki ; θ)/b(x∗ki ), yj ∼ a(y), and rj ∝ p̃(yj ; θ)/a(yj). In this case, the gradient is essentially
equivalent to the loss function of FINCE when f(x) = x log x by profiling-out c.

H DETAILED ALGORITHM OF FINCE WITH MNAR DATA

The algorithm is described as in Algorithm 6.

Algorithm 6: FINCE witn MNAR data

1 Initialize t = 0, ζ̂0 = (ĉ0, θ̂0, φ̂0)
2 Take n samples {yj}nj=1 from a(y).
3 For i with δi = 0, take m samples {x∗ki,mis}mk=1 from b(x).
4 For i with δi = 1, set m samples {x∗ki }mk=1 to x∗ki = xi
5 repeat
6 W-Step:
7 For i with δi = 0; wik ∝ q(x∗ki ; τ̂t)π(δi|x∗ki ; φ̂t)/b(x

∗k
i,mis),

8 For i with δi = 1; wik = 1/m.
9 M-step: Solve the following equation for ζ̂t+1 w.r.t ζ:

1

n

n∑
i=1

m∑
k=1

wikznc1(x∗ki ; τ) + Znc2(y; ζ) = 0,

1

n

n∑
i=1

m∑
k=1

∇φwik log π(δi|x∗ki ;φ) = 0.

t = t+ 1
10 until τ̂t converges;
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I VARIANCE ESTIMATORS OF FISCORE AND FINCE

I.1 FISCORE

The variance estimator of FISCORE in the case of Corollary is defined as follows: Î−11,scĴ1,scÎ
>−1
1,sc |θ̂, where

Î1,sc =
1

n

n∑
i=1

{Î1,sc1(xi,obs) + Î1,sc2(xi,obs)− Î1,sc3(xi,obs)},

Î1,sc1(xi,obs) =

m∑
k=1

w(x∗ki ; θ)

(
d∑
s=1

∇θcs(x∗ki )

)⊗2
,

Î1,sc2(xi,obs) =

m∑
k=1

w(x∗ki ; θ)zsc(x
∗k
i )∇θ> log p̃(x∗ki ; θ),

Î1,sc3(xi,obs) =

(
m∑
k=1

w(x∗ki ; θ)zsc(x
∗k
i )

)(
m∑
k=1

w(x∗ki ; θ)∇θ> log p̃(x∗ki ; θ)

)
,

Ĵ1,sc =
1

n(n− 1)

n∑
i=1

(
m∑
k=1

w(x∗ki ; θ)zsc(x
∗k
i ; θ)− z̄

)⊗2
,

z̄ =
1

n

n∑
i=1

m∑
k=1

w(x∗ki ; θ)zsc(x
∗k
i ; θ),

zsc(θ) =

d∑
s=1

{cs(x)∇θ(cs(x)) +∇xs(∇θcs(x))} , cs(x; θ) = ∇xs log p̃(x; θ).

Next, consider an loss function and a variance estimator in truncated exponential family cases (Hyvärinen, 2007). Assume
that p̃(x; θ) is given by

log p̃(x; θ) =

d∑
k=1

θkFk(x).

Let us denote two matrices: dθ × d matrix K1(x) with elements ∇xbFa (1 ≤ a ≤ dθ, 1 ≤ b ≤ d) and dθ × 1 matrix,
Ki,2(x) with elements∇∇xiFa (1 ≤ a ≤ dx). The loss function is written as n−1

∑n
i=1 zsc,t(xi; θ).

zsc,t(x; θ) = 0.5θ>K1(x)K1(x)>θ + θ>
dx∑
i=1

Ki,2(x).

The variance estimator is obtained almost in the same by replacing zsc(x) with zsc,t(x). The only modification is

Î1,sc1(xi,obs) =

m∑
k=1

w(x∗ki ; θ)K1(x∗ki )K1(x∗ki )>.
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I.2 FINCE

The variance estimator of FINCE in the case of Corollary 2 is defined as follows: Î−11,ncĴ1,ncÎ
>−1
1,nc |τ̂ , where

Î1,nc =
1

n

n∑
i=1

(
m∑
k=1

w(x∗ki ; τ)
∇τ log q(x∗ki ; τ)

1 + q(x∗ki )/a(x∗ki )

)(
m∑
k=1

w(x∗ki ; τ)∇τ> log q(x∗ki ; τ)

)
,

Ĵ1,nc = Ĵ1,nc1 + Ĵ1,nc2,

Ĵ1,nc1 =
1

n(n− 1)

n∑
i=1

(
m∑
k=1

w(x∗ki ; τ)znc1(x∗ki ; τ)− z̄nc1

)⊗2
,

Ĵ1,nc2 =
1

n(n− 1)

n∑
i=1

(znc2(yi; τ)− z̄nc2)
⊗2
,

z̄nc1 =
1

n

n∑
i=1

m∑
k=1

w(x∗ki ; τ)znc1(x∗ki ; τ), z̄nc2 =
1

n

n∑
j=1

znc2(yj ; τ),

znc1(τ) = −∇τ log q(x; τ)

1 + r
, znc2(τ) =

r∇τ log q(x; τ)

1 + r
.


