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A.1 Numerical solution of the SDE

To ensure that the SDE solutions are monotonic
functions of the initial values, we make assumptions
about the Wiener process realisations W (·, ω). To
compute the SDE solutions under such assumptions,
we draw a Wiener process realisation as well as the
flow field drift and diffusion, and given these draws,
we use the Euler-Maryama numerical solver (follow-
ing [Hegde et al., 2019]). Specifically, starting with
the initial state (x = x1, t = 0), . . . , (x = xN , t = 0),
we use (2) to compute the drift and diffusion at
the current state, and the discretised version of (1)
(i.e. with ∆t and ∆W instead of dt and dW ) to
compute the state update ∆x. This gives the new
state (x1 + ∆x1,∆t), ..., (xn + ∆xn,∆t), and repeating
this procedure (T/∆t) times, we arrive at the state
(S(T, ω;x1), T ), ..., (S(T, ω;xN ), T ), corresponding to
the approximate SDE solution at time T. The mono-
tonic trajectories are recovered by the numerical SDE
solver in the limit of the step size going to zero, ∆t→ 0.
Therefore, the step size must be sufficiently small w.r.t.
the smoothness of the flow; since we use a GP to de-
fine the flow, the smoothness is determined by the
lengthscale of the kernel.

A.2 Implementation details

Our model is implemented in Tensor-
flow [Abadi et al., 2015]. For the evaluations in
Tables 1 and 2 we use 10000 iterations with the
learning rate of 0.01 that gets reduced by a factor of√

10 when the objective does not improve for more
than 500 iterations. For numerical solutions of SDE,
we use Euler-Maruyama solver with 20 time steps, as
proposed in [Hegde et al., 2019].

A.3 Computational complexity

Computational complexity of drawing a sample from
the monotonic flow model is O

(
Nsteps(NM

2 + N2)
)
,

where Nsteps is the number of steps in numerical com-

putation of the approximate SDE solution, NM2 is the
complexity of computing the GP posterior for N inputs
based on M inducing points, and N2 is the complexity
of drawing a sample from this posterior. We typically
draw fewer than 5 samples to limit the computational
cost.

A.4 Non-Gaussian noise

The inference procedures for the monotonic flow and
for the 2-layer model can be easily applied to arbitrary
likelihoods, because they are based on stochastic vari-
ational inference and do not require the closed form
integrals of the likelihood density.

A.5 Functions for evaluating the monotonic
flow model

The functions we use for evaluations are the following:

f1(x) = 3, x ∈ (0, 10] (flat function)

f2(x) = 0.32 (x+ sin(x)), x ∈ (0, 10] (sinusoidal
function)

f3(x) = 3 if x ∈ (0, 8], f3(x) = 6 if x ∈ (8, 10]
(step function)

f4(x) = 0.3x, x ∈ (0, 10] (linear function)

f5(x) = 0.15 exp(0.6x − 3), x ∈ (0, 10] (expo-
nential function)

f6(x) = 3 / [1 + exp(−2x+ 10)], x ∈ (0, 10] (lo-
gistic function)

For the experiments shown in Fig. 3 we generate 50
data points using y = sinc(πx) + ε, ε ∼ N (0, 0.02) for
linearly spaced inputs x ∈ [−1, 1].

A.6 Regression evaluation parameters

For the GP with monotonicity information we choose
M virtual points and place them equidistantly in the
range of the data; we provide the best RMSEs for
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M ∈ [10, 20, 50, 100]. For the transformed GP we
report the best results for the boundary conditions
L ∈ [10, 15, 20, 30] and the number of terms in the ap-
proximation J ∈ [2, 3, 5, 10, 15, 20, 25, 30]. For both
models we use a squared exponential kernel. Our
method depends on the time T , the kernel and the
number of inducing points M . For this experiment, we
consider T ∈ [1, 5], M = 40 and two kernel options,
squared exponential and ARD Matérn 3/2. The lowest
RMSE are achieved using the flow and the transformed
GP.

A.7 Uncertainty in alignment model

To further illustrate the advantages of capturing the
uncertainty about the warpings, we wish to find the
possibly bi-modal warpings for each sequence. We
use a Gaussian mixture model (instead of a single
Gaussian) as the distribution of both, the warpings and
the latent variables Z in the GP-LVM. In particular, the
inducing points of the flow for each sequence are defined
to be distributed as a mixture of two multivariate
Gaussians. Then, given a draw from the Categorical
distribution of this mixture, we defines the clusters
assignments for each sample, and assign the resulting
aligned sequences sj to one of the coherent mixture
component in the distribution of the latent points of the
GP-LVM. Fig. A1 illustrates this behaviour, and gives
an example where the uncertainty in the warps results
in ambiguity in cluster assignments. A full discussion
of the importance of correlations in the variational
parameters for compositional uncertainty is available
in [Ustyuzhaninov et al., 2019] which provides further
details of the inference scheme used.

A.8 Quantitative results

The expected log posterior predictive density is an
evaluation metric defined as:

ELPD = log

∫
p(y∗ | f∗)p(f∗ | y)df∗

≈ log

∫
p(y∗ | f∗)q(f∗ | y)df∗.

(1)

The results on the data described in Sec. 5
(with 100 data points) for the GP with deriva-
tives [Riihimäki and Vehtari, 2010], the transformed
GP [Andersen et al., 2018] and the monotonic flow are
given in Table 3.

References

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham,
P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Good-
fellow, I., Harp, A., Irving, G., Isard, M., Jia, Y.,
Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensor-
flow.org.

[Andersen et al., 2018] Andersen, M. R., Siivola, E.,
Riutort-Mayol, G., and Vehtari, A. (2018). A non-
parametric probabilistic model for monotonic func-
tions. “All Of Bayesian Nonparametrics” Workshop
at NeurIPS.

[Hegde et al., 2019] Hegde, P., Heinonen, M.,
Lähdesmäki, H., and Kaski, S. (2019). Deep
learning with differential gaussian process flows. In
International Conference on Artificial Intelligence
and Statistics (AISTATS).

[Lin and Dunson, 2014] Lin, L. and Dunson, D. (2014).
Bayesian monotone regression using gaussian process
projection. Biometrika, 101(2):303–317.

[Maatouk, 2017] Maatouk, H. (2017). Finite-
dimensional approximation of gaussian processes
with inequality constraints. arXiv:1706.02178.

[Riihimäki and Vehtari, 2010] Riihimäki, J. and Ve-
htari, A. (2010). Gaussian processes with mono-
tonicity information. International Conference on
Artificial Intelligence and Statistics (AISTATS).

[Shively et al., 2009] Shively, T. S., Sager, T. W., and
Walker, S. G. (2009). A bayesian approach to non-
parametric monotone function estimation. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 71(1):159–175.

[Ustyuzhaninov et al., 2019] Ustyuzhaninov, I., Ka-
zlauskaite, I., Kaiser, M., Bodin, E., Campbell, N.
D. F., and Ek, C. H. (2019). Compositional uncer-
tainty in deep gaussian processes. In Bayesian Deep
Learning Workshop at NeurIPS.



Ustyuzhaninov, Kazlauskaite, Ek, Campbell

(a) Observations of 3 warped se-
quences.

(b) Examples of sampled aligned functions s. (c) Fitted sequences (left), estimated warps (middle) and fits in the warped
coordinates (right) for the 3 sequences.

Figure A1: Illustration of uncertainty in warps and cluster assignments. When the warps and the cluster assignment are
allowed to be bi-modal, and model captures two possible solutions, one that assigns all sequences to a single cluster and
aligns them within the cluster, and another solution that favours the model with two separate clusters. This can be see in
the fit in warped coordinates figure for the blue curve where the majority of the samples are assigned to one cluster (which
corresponds to now aligning the blue function to the other, as shown on the right in Fig. A1b) while a small subset is
assigned to a new cluster (which corresponds to all sequences being aligned together, as shown on the left in Fig. A1b).

flat sinusoidal step linear exponential logistic

GP 15.1 21.9 27.1 16.7 19.7 25.5
GP projection [Lin and Dunson, 2014] 11.3 21.1 25.3 16.3 19.1 22.4
Regression splines [Shively et al., 2009] 9.7 22.9 28.5 24.0 21.3 19.4
GP approximation [Maatouk, 2017] 8.2 20.6 41.1 15.8 20.8 21.0
GP with derivatives [Riihimäki and Vehtari, 2010] 16.5 ± 5.1 19.9 ± 2.9 68.6 ± 5.5 16.3 ± 7.6 27.4 ± 6.5 30.1 ± 5.7
Transformed GP [Andersen et al., 2018] (VI-full) 6.4 ± 4.5 20.6 ± 5.9 52.5 ± 3.6 11.6 ± 5.8 17.5 ± 7.3 17.1 ± 6.2
Monotonic Flow (ours) 6.8 ± 3.2 17.9 ± 4.2 20.5 ± 5.0 13.2 ± 6.7 14.4 ± 4.8 18.1 ± 5.0

Table 1: Root-mean-square error ± SD (×100) of 20 trials for data of size N = 100

flat sinusoidal step linear exponential logistic

Transformed GP [Andersen et al., 2018] (VI-full) 18.5 ± 14.4 40.0 ± 17.5 101.9 ± 11.4 37.4 ± 22.8 52.9 ± 11.9 51.7 ± 19.6
Monotonic Flow (ours) 21.7 ± 15.0 39.1 ± 13.0 64.5 ± 10.7 30.8 ± 12.0 32.8 ± 17.9 43.2 ± 15.2

Table 2: Root-mean-square error ± SD (×100) of 20 trials for data of size N = 15

flat sinusoidal step linear exponential logistic

GP with derivatives [Riihimäki and Vehtari, 2010] -1.43 ± 0.08 -1.41 ± 0.06 -1.69 ± 0.15 -1.36 ± 0.04 -1.45 ± 0.08 -1.45 ± 0.11
Transformed GP [Andersen et al., 2018] (VI-full) -1.44 ± 0.03 -1.39 ± 0.02 -1.51 ± 0.06 -1.40 ± 0.03 -1.41 ± 0.02 -1.41 ± 0.02
Monotonic Flow (ours) -1.39 ± 0.05 -1.42 ± 0.05 -1.41 ± 0.08 -1.39 ± 0.05 -1.40 ± 0.07 -1.43 ± 0.07

Table 3: Expected log posterior predictive density estimate (± SD) of 20 trials for data of size N = 100
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(a) Standard GP. (b) GP, monotonic samples. (c) GP with monotonic information.

(d) Transformed GP (VI-full). (e) Flow (ours).

Figure A2: Comparison of the confidence intervals for standard GP, and monotonic regression methods (GP with monotonic
information from [Riihimäki and Vehtari, 2010] and Transformed GP from [Andersen et al., 2018]). The samples from the
fitted models are shown in blue and the 2 standard deviations from the mean are shown in green.
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