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Abstract

This paper studies Online Convex Optimiza-
tion (OCO) problems where the constraints
have additive perturbations that (i) vary over
time and (ii) are not known at the time to
make a decision. Perturbations may not be
ii.d. generated and can be used, for exam-
ple, to model a time-varying budget or time-
varying requests in resource allocation prob-
lems. Our goal is to design a policy that
obtains sublinear regret and satisfies the con-
straints in the long-term. To this end, we
present an online primal-dual proximal gra-
dient algorithm that has O(T Vv T'~¢) re-
gret and O(T) constraint violation, where
€ € [0,1) is a parameter in the learning rate.
The proposed algorithm obtains optimal rates
when ¢ = 1/2, and can compare against a
stronger comparator (the set of fixed deci-
sions in hindsight) than previous work.

1 Introduction

The Online Convex Optimization (OCO) framework
was introduced in (Zinkevich| 2003), and it is widely
used to model applications such as spam filtering, port-
folio selection, recommendation systems, among many
others (Hazan, [2016). In short, OCO consists of a
sequence of games where in each round ¢t € IN an agent
selects an action z; from a convex set X C IR" and
experiences a cost fi(x;), where f; : R™ — IR is convex.
Crucially, the cost function is not known at the time of
making a decision, and it may even be selected by an
adversary after the action has been played. The goal is
to design a policy or algorithm that selects a sequence
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of actions {z:}, t =1,...,T from X so that the regret

T T
Ry = th(ift) - irél)f(Ith(x) (1)

increases sublinearly i.e., limsupy_, Rr/T < 0.
Hence, the incurred cost is asymptotically as good
as the best fixed decision in hindsightE]

As it was shown in (Zinkevich, [2003)), the online gra-
dient descent (OGD) algorithm can obtain sublinear
regret when the action set X is bounded and the convex
cost functions f;, t € IN have bounded subgradients.
The algorithm consists of the update

Ti41 :PX(It 7Oltft/(zt))7 t= 172a"' (2)

where a; = 1/4/t is the learning rate (or, step size),
fi(z;) a subgradient of the previous cost function at
x¢, and Px the Euclidean projection onto the convex
set X. Note from Eq. that ;41 is selected using
only information available at time t.

1.1 OCO with (online) long-term constraints

In the standard OCO framework, all the constraints
must be satisfied in every iteration. However, in many
important problems, it is only necessary to satisfy the
constraints on average. For instance, in wireless com-
munications a transceiver allocates power to maximize
the probability that a message is received successfully
(the power needed is not known a priori as it depends
on the channel conditions, the behavior of other users,
etc.) subject to average power transmission constraints.
That is, the transceiver can occasionally exceed the av-
erage threshold, as long as its power budget is satisfied
in the long run.

An extension of the above problem is the case of online
constraints: constraints that vary over time and are not

'The regret captures the difference between the incurred
cost and the cost obtained by an “offline” algorithm that
has knowledge of all the cost functions from t =1,...,T.
The offline algorithm, however, can only choose one vector
from X.
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known to the decision maker a priori. More specifically,
in every time slot t = 1,2,...,T the decision maker (i)
selects an action xy; (ii) experiences a penalty g;(x¢);
and (iii) learns the constraints g; : R™ — IR. For
these types of constraints, the goal is that the accumu-
lated penalty (i.e., Zle g+(2¢)) increases sublinearly
in addition to having sublinear regret. Two motivat-
ing examples of OCO with online constraints are the
following:

Online shortest path routing. Online shortest path
routing with static constraints is a canonical example
in OCO (Hazan, 2016], pp. 7). In brief, time is divided
in slots t € IN, and in each time slot an agent selects
the amount of flow x; to route over each link/path.
The goal is to minimize the cost f;(z;) and to satisfy
the inequality constraint Az; < b where A € R™*"
is a routing matrix and b € R™ a request vector that
indicates the supply/demand of flow (of material, traf-
fic, information, etc.) at each of the nodes. The cost
function f;(x;) usually captures the latency from the
source node to the sink. In the setting with online
constraints, b is replaced by b, and we select x; with-
out prior knowledge on b;. Hence, it is not possible to
design an algorithm that guarantees that Az; is less
than or equal to b; in every iteration. This setting
appears in practical queueing systems where resources
(x¢) must be allocated before the real demand (b;) can
be observed (Georgiadis et al., 2006)E|

Online advertising. Another example is online ad-
vertising with budget constraints (Liakopoulos et al.|
2019). In this case, z; € IR} represents a vector of bids
across n different websites, i.e., the price we are willing
to pay per click. Each website decides where to place
the ads of the different bidders, which affects the total
number of clicks p;. The goal is to maximize the total
reward Zthl —fi(x¢) and to keep the advertisement

cost Y1, (ps, 1) below the available budget ¢. The
budget can be given, for example, in a daily, weekly, or
monthly basis. Importantly, the problem is an online
optimization because it is not possible to predict the
number of clicks p;, which affect the reward and con-
straint penalties. Furthermore, the number of clicks
may be affected by an adversary (e.g., a bot) that aims
to increasing our advertising cost.

In sum, in OCO with long-term constraints we have a
sequence of convex penalty functions {g; }, and the goal

is that the average penalty % Zthl gt(xt) goes to zero
as T — oo. Specific instances of this problem are when

2See [Rockafellar| (1984); |Georgiadis et al.| (2006) for an
introduction to modeling different types of network flow
problems. The constraint can also be written as an inequal-
ity, meaning that the supply is equal to the demand. The
symbol < indicates entry-wise comparison of two vectors.

3See also the example in (Mannor et al. [2009] Sec. 8).

Largest comparator
(Liakopoulos et al., 2019)

Comparator in this work

\D

Smallest comparator
(Neely and Yu, 2017;
Yietal., 2019)

Figure 1: Illustrating the relationship between our
comparator (X7) and X¥?* and X",

the constraints are static (i.e., gt = giy1 for all t € IN)
as in [Mahdavi et al. (2012a); |[Jenatton et al.| (2016]),
or when the constraints are online (g; is not known at
the time to select an action z;). In this work, we focus
on the last type since it naturally encompasses a vast
range of problems in communications, network control,
and operations research.

1.2 Research question, previous work, and
contributions

A fundamental question in OCO with online constraints
is: What is the comparator (i.e., the set) from which
we select the best fixed decision in hindsight? Or put
differently: Which is the largest comparator we can use
to obtain sublinear regret and constraint violation? The
answer to these questions is non-trivial since, unlike
standard OCO where the constraints are static, now the
constraints vary over time and so the set of admissible
fixed decisions in hindsight.

A natural choice of comparator would be

xp o= {o € O S, ula) <0},

where C' is the set of actions that can be selected in
every round. However, Mannor et al.| (2009) showed
that it is not possible, in general, to design an algorithm
that obtains sublinear regret and constraint violation
against a fixed decision in X7**. Because of the latter,
previous work (e.g., (Neely and Yu,|2017;[Yi et al.l|2019;
Chen et al.| [2017}; (Cao and Liu| 2019))) has proposed
OCO algorithms with online constraints that compare
their performance to the weaker comparator

Xpni={zeC|gx) <0 forallt=1,2,...,T}.

However, using X' as a comparator is far from ideal.
A fixed decision z € X has to satisfy all the con-
straints, and an adversary can shrink X® with a
single attack. In the online advertisement problem, for
example, a bot can affect the comparator by generat-
ing fictitious clicks in just one round. Hence, X" is
vulnerable in adversarial settings. Observe the latter is
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Table 1: The comparator is the set from which the fixed decision in hindsight is selected. CV and LR stand for
constraint violation and learning rate respectively. In (Jenatton et all|2016)), 5 € (0,1). In (Yu et al., 2017), the
bounds and the comparator are defined in expectation. In|Yi et al.| (2019), x € (0,1). The bounds in (Liakopoulos
et al., [2019) correspond to selecting K = T'-7 and V =T'"2r in (Liakopoulos et al., 2019, Theorem 1). In this
work, € € [0,1). The works with () assume the Slater condition.

Paper Constraints Comparator Regret CV LR
“Mahdavi et al._(2012a) static Xmax O(Ttz31) o(Tti:31) constant
Jenatton et al.| (2016) static Xmax O(TPv TPy  O(T'P/2)  adaptive
Yu et al. (2017)7 stochastic X max O(T) O(WT) constant
[Neely and Yu[ (2017) T online X fin O(VT) O(T) constant
Yi et al.| (2019)7 online X min O(T*Vv TYr) O(TFVT!™") adaptive
Liakopoulos et al.| (2019) online Xmax O(T'~=r) O(T'~r) constant
This work' online Xmin €y, C Xmax (7€ v T¢) o(Te) adaptive

not the case for X77®*, where the size of the set depends
on the whole sequence of constraints {g;}7_; (i.e., a
sequence of attacks).

Contributions: We propose an algorithm for solv-
ing OCO problems with online perturbed constraints
that obtains (i) optimal rates and (ii) uses a com-
parator X7 that is strictly larger than the one used
in the state of the art. In particular, we show that
Xmin € Xp C X3 (see Fig.[1), and that X" € X7
unless XM = XX (which corresponds to the deter-
ministic case where g = gi1q for all t = 1,2,..., 7).
Our results improve upon previous work on OCO with
online constraints that obtain optimal rates but use
Xmin a5 a comparator (Neely and Yu, 2017; |Yi et al.|
2019)). The work by |Liakopoulos et al.| (2019)) proposes
an algorithm that can compare with X7®*, however,
the performance/rate of the algorithm degrades as the
horizon increasesﬁ Our results also clarify how the
comparator affects the regret bound and provide a uni-
fied expression for analyzing the regret in a variety of
settings. Table summarizes the differences between
this paper and previous approaches. The works by
Mahdavi et al.| (2012al)), |[Jenatton et al. (2016]), [Yu et al.
(2017) consider long-term constraints that are fixed or
stochastic (i.e., non-adversarial), and so it is possible
to use X™?** as a comparatorﬂ We leave in Sec.
an extended technical discussion of previous work, the
impossibility result by [Mannor et al.| (2009), and the
Slater condition.

The key to our results relies on modeling online
constraints using perturbations. Specifically, we let

4In particular, select parameters K = 77T and V =
T~ 37 as indicated in (Liakopoulos et al., 2019, Theorem 1).
Then, limsupy_, Rr/T < limsupT%ooO(Tk%T)/T =
limr o O(T™YT) = O(1), i.e., a constant.

5The comparator does not depends on T when the con-
straints are static. With stochastic constraints, the com-
parator is defined in expectation.

gi(x) = g(x) + by, where g : R" — IR is a static
convex constraint and b; € IR an arbitrary pertur-
bation (i.e., it does not need to be i.i.d. or have any
other statistical property). For instance, in the online
shortest path problem g(z) = —Az, and b; is the time
varying supply/demand vector. In the online adver-
tisement problem, g(z) is an approximate model of
the “expected” cost per click, and by = g¢(z;) — g(x)
captures the difference between our model and the true
penaltyﬁ

The proposed algorithm (Algorithm is based on
an online primal-dual proximal gradient method and
obtains O(T¢ V T'¢) regret and O(T¢) accumulated
constraint violation, where € € [0,1) is a parameter in
the learning rate. Our algorithm allows us to balance
between regret and constraint violation by choosing
e accordingly. When € = 1/2, our bounds match the
best well-known rates (Neely and Yul, |2017; Yi et al.|
2019), but we can also obtain faster violation rate than
O(VT). For example, with € = 1/4, we have O(T?/4)
regret and O(T"/*) constraint violation. Another key
characteristic of our algorithm is that the learning rate
is adaptive, and so we do not need to fix in advance
the time the algorithm will run (which is not known
in many resource allocation problems). The latter is
challenging technically since the set in which the dual
variables exists is unbounded.

The rest of the paper is organized as follows. Sec.
[2] presents the problem model and Sec. [3] the main
technical results. In Sec.[d] we discuss related work, and
in Sec. [5] we present a numerical example that shows
the performance of the proposed algorithm against
different comparators. The proof of our main result,
Theorem [T} is in the supplementary material.

SFor instance, an increasing function such that g(0) = 0.
We can expect to have more clicks if we bid higher, and no
clicks if we do not bid.
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2 Problem Model

The standard OCO framework can be extended to
encompass long-term constraints with additive per-
turbations as follows. Let C be a convex set that
contains the admissible or implementable actions, and
gV (z) : R™ = R, j € {1,...,m} be a collection of
convex constraints that need to be satisfied on average.
Each constraint ¢(/) has an associated perturbation
bgj ) that varies with time. There is no need for the
perturbations to be i.i.d., have zero mean, or any other
statistical property. The only assumption we will make
is that they satisfy a mild Slater condition, which is
typical in convex optimization (see Sec. . In each
round ¢ € IN, an agent must select an action z; € C
without knowledge of the cost function f; or the per-
turbation b;.

We proceed to define the feasible set, the regret, and the
constraint violation measure. To keep notation short,
we let g := (¢M,...,¢"™) and b; := (bgl), .. .,b§m)).
The time-varying feasible set or comparator (i.e., the
set from which we select the best fixed decision in
hindsight) is given by

Xr(w):={zeC|g(x)+w=0}, (3)

where b8 < w < BB with 658 = LT by,
bpe* .= max{b;,t = 1,... ,T}E] The use of a param-
eterized comparator is a key difference with previous
work. Observe that if we select w = bp**, then our
comparator is equal to X" as in (Neely and Yu,
2017). If w = b3®, then our comparator is equal to
X7 (b3®), such as in (Liakopoulos et al. 2019). And
if b7 = b**, we have that X" = Xp(w) = XPox,
which corresponds to the case of static constraints
(Mahdavi et al., |2012a). Note that by construction we
always have that

Xmin C Xo(w) C Xmax,

Since we use a parameterized comparator, we also
parameterize the regret

th(x) (4)

t=1

T
Rr(w) = th(ast) — min

z€XT (W)

We define the sum of the constraint violations as follows

T +
Vi = [Z glze) +e| ||, (5)
t=1
where [z]* := (max{0,2(V},... , max{0, 2(™}) is the

projection of each of the components of vector z € R™

"The max is component-wise.

onto the non-negative orthant. Note that Vi does not
depend on w. Recall we would like that Vi grows at
most sublinearly with T so that limr_, . Vr/T = 0.
There is no requirement that Vp = 0 for any particular
T € IN. Finally, note that if the sum of the penalties
inflicted by a constraint j € {1,...,m} is non-positive
(i.e., Zle g(j)(q:t)—&—b?) < 0), then that constraint does
not contribute to the aggregate constraint violation V.

3 Main Results

3.1 Proposed algorithm and interpretation

The main technical contribution of the paper is Algo-
rithm |1} with which we can obtain O(T¢V T*~¢) regret
and O(T¢) constraint violation. The comparator for
which those rates hold will be discussed in detail after
Theorem [

In short, to handle long-term constraints, we define a
Lagrangian-type function

Li(x,y) = (fi(xe), x) + (y,9(x) + by), (6)

where f/(x;) is a (sub)gradient of the cost function
in the previous round, and y € R a vector of dual
variables. To streamline exposition, in the rest of the
paper we will refer to L£;(z,y) simply as Lagrangian.
Note that the Lagrangian is convex in x, concave in
y, and that it depends on t as the objective function
and constraints change in each round. The second
term of the Lagrangian can be regarded as a penalty
or as an adaptive regularizer that allows us to steer the
decisions towards X (w).

Algorithm [1} is based on a regularized primal-dual prox-
imal gradient method, where we use the general Breg-
man divergence as the proximal term instead of the
usual squared Euclidean distance; see, for example,
(Beck and Teboulle, 2003|). Recall the Bregman diver-
gence associated with function 1 is defined as

By(a,b) = ¢(a) = () = (V(b),a =b),  (7)

where v is usually assumed to be oy-strongly convex
function and differentiable. The primal update (o) is
equivalent to carrying out an (unconstrained) proximal
gradient update with the regularization term (y, g(z) +
b;). The regularization or penalty term is updated
via the dual update (o), which can be regarded as
applying a standard proximal gradient ascent since
(9(z441) + big1) € OyLip1(xe41,y) for a fixed vector
2++1. The following observation is crucial

. - . ’
argglelgﬁt(u, yt) = arg min (fi(ze),u) + (Y g(u) + br)

= argineig (fi(@e),u) + (ye, g(u)),
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Algorithm 1
Input: Bregman functions ¢ and ¢; vector f; = 0;
set C.
Set: 21 € C; y; =0; and € € [0,1).
fort=1,2,... do
p < 1/t
(0) Tt1 + argeﬂéiﬂ{ﬁt(u,yt) + 5 By (u,0)}

(®) ye+1  argmax{(v, g(z41) + brs1) — 5 By(v, 41)}
velRT
ft+1 < play action z;y7 and learn cost function
end for

That is, the primal update is oblivious to perturbation
b;. Hence, the perturbation is only relevant in our
algorithm in the update of the dual variables[]

Finally, observe that we use step size p equal to t™¢
with € € [0,1) for both updates, so there is no need to
fix in advance the time horizon the algorithm will run.
Note that when € = 0, then the algorithm corresponds
to using constant step size p = 1. The algorithm’s
complexity depends on the structure of the constraints
and the functions associated with the Bregman diver-
gence terms in the primal and dual updates. When
g(x) is linear (e.g., g(x) = Ax) and ¥, p equal to
3|l I3, Algorithm [1f has the same complexity than pre-
vious work on OCO with long-term constraints (Mah-
davi et al., 2012a} [Jenatton et all 2016; Yu et al.|
2017)). In particular, the primal and dual updates
can be written as ;11 = Po(x: — (p/2)(AT, y:)) and
Yer1 = [y + (0/2)(9(@e41) + bey1)] T

3.2 Assumptions

Fix a norm || - ||. To establish the convergence of Algo-
rithm [T} we need to make the following assumptions:

Bounded set. Set C is bounded. There exists a con-
stant D such that ||lu —v|| < D, Yu,v e C.

Bounded perturbation. ||b|| < B for all ¢t € IN for
some constant B > 0.

Bounded subgradients. Let || - ||. denote the dual
norm of ||-||. There exist constants Fy, G, G such
that (@)l < Fo, 9(@) + bille < Gur lg(e) +
b <Gforallz e C,teN.

Slater condition. There exists a n > 0 such that
g(Z) + b +n1 <0 for an & € C and all ¢t € IN.

Bregman functions. ¢ and ¢ are oy, o,-strongly
convex and Ly, L,-smooth. Also, ¢ is strictly
increasing.

8This is due to the fact that 4 is the dual variable of the
additive perturbation on the constraints. See Sec. [D|in the
supplementary material for more details.

The first assumption is standard in OCO. The second
and third assumptions are also standard in OCO and
ensure that the subgradients used in the primal and
dual updates are bounded. The Slater condition says
that there is a set of actions that satisfy the constraints
g(x) + by strictly for all ¢t € {1,...,T}, and is key to
ensure that the constraint violation Vp is sublinear.
Importantly, the Slater condition assumption is mild in
many problems. For example, when the perturbation b,
represents the budget available at time ¢, that budget
has to be always positive—independently of whether
we decide to spend more (i.e., violate the constraint).
Finally, the assumption that function @ and ¢ are
strongly convex is also standard in the definition of the
Bregman divergence. The additional assumption that
1 and @ are smooth (hence, ¥ and ¢ are upper and
lower bounded by a quadratic function) is to streamline
exposition in the proofsﬂ The assumption that ¢ is
strictly increasing is necessary to obtain the faster rates
on the constraint violation when € € [0, 3). Note that
all the conditions are satisfied, for example, by the
squared Euclidean distance.

3.3 Bounds and discussion

The following theorem is the main result of the paper.

Theorem 1. Consider Algorithm [1 and suppose the
assumptions in Sec. [3.9 are satisfied. For any w €
(678, b22X] | the following bounds hold

S T
Rr(w) < . +G g pr+Aw) =0T VT ) + Aw)
T t=1

L
Vr <G+ 2 E=0(T
2pr

where S := (LT””D2 + %’EQ), G — (ﬂ 4 ﬁ)
oy oy
T
Aw) := Z<yt+17 bit1 — w),

t=1

and FE is a constant that does not depend on T. In
particular, E captures the diameter of the set in which
the dual variables are contained (i.e., ||y:|| < E for all
t=1,...,T) and is given by

Lo (2x\°> 2
B W (2) 42,
o, \ 7 oy
where x := figii +3F,.D + L”’QDz.

9Technically, all we need is that By (u,v) is uniformly
upper bounded for all u,v € C. Such assumption is also
made in previous work and elsewhere to streamline exposi-
tion; see, for example, (Mahdavi et al.| [2012a Lemma 10)
or |Duchi et al.| (2011).
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Interpretation of the regret bound: This consists of
three terms. The first two are the typical terms in
standard OCdEL while the third term depends on the
w in the comparator; see Eq. . When ¢ and ¢ are the
squared Euclidean distance (i.e., Ly, Ly, 0y, 0, = 2),
we have Rr(w) < p% (D? + E?) + (F?+G?) St
A(w). The first term is related to the size of the sets
where the primal and dual variables are contained (i.e.,
D and E respectively) and is inversely proportional to
the learning rate at time 7T (i.e., pp* = T¢). The second
term consists of the bounds on the subgradients of the
cost functions (Fy) and the constraints (G.) multiplied
by S e < 14 [ tcdt < 14 [ t<dt < 1+T11;
The bounds in Theorem [ are of course useful if the
constants are bounded, which is the case for D, F,
and G, by standard OCO assumptions (see Sec. [3.2).
However, for constant F we need more work. To show
that this constant exists is one of the main technical
challenge of the paper; we will discuss it in detail later
in the section.

Term A(w): Our regret bound allows us to use differ-
ent comparators, i.e., we can compare our algorithm
to different hindsight policies. The impact of the com-
parator is captured in the term A(w). We proceed to
show how A(w) is affected by the perturbations and w.
We study four cases:

Case (i) — Pessimistic: (w = b®™). In this case,
we trivially have that A(w) < 0 since b1 — DF** <0
and y; = 0 for all t =1...,7T. Recall that by selecting
w = b then Xy (w) = Xmin,

Case (ii) — Stochastic: (b; arei.i.d. random variables
with E(b;) = b for all t = 1,...,T). In this case, we
have that

E(A(b)) = 0.

Let by = b + &, where d; is a vector with E(§;) = 0
(the all zeroes vector). By the linearity of the ex-

pectation and the fact that é; and y; are indepen-
dent, we have E(A(b) = E(X/_, (Wi, biy1 — b)) =

E( L W 041) = Srey (e, B(e41)) = 0.

This case can be seen as having static constraints
(hence, X™" = X7(b) = X™a for all T € IN) and
an unbiased noise vector d; in the dual update (o). The
bounds in Theorem [I| still hold in expectation, and the
Slater condition must be satisfied also in expectation.

Case (iii) — Convex combination: (w = (1 —
pe)b* + p,b7'®). Note that w is the convex combina-

108ee, for example, (Zinkevich) [2003, Theorem 1). More
specifically, the regret bound in the second column on page
4,1, Ry <||F|?gh + 192 ST )

HWe write O(T¢ vV T'™°) instead of O(T* V Tll_t) in
Theorem |1] as the interesting range is when ¢ € [0, %]

tion of b4** and b3'® since p, € (1/¢,1]. In this case,
the comparator Xr(w) is in between XMW" or Xmax,
We can upper bound A(w) as follows

AWw) = S W1, b1 — w)

= e, ber — DR 4 py (D — EYE))

< T Py, DR — bE) (8)
< Sy pellyellpg — b5 (9)
<2EBY._,p (10)
<92EB (1 ¥ Tf_‘j) (11)

where Eq. follows by dropping Zf:1<yt+1, biy1 —
by (case (i)); Eq. (9) by Cauchy-Schwarz; Eq. (10)
since ||b¢]] < B and |ly:]| < F; and Eq. by the

T : . . .
upper bound on ), ; p; given in the previous section.
We have arrived to the following corollary.

Corollary 1. Consider the setup of Theorem [1] and
select wevx = (1 — po) VP + pb'8. Then, Ry(weyx) <
O(T VT ¢ and Vy < O(T®).

Finally, we note that since p; > 0, then X®* C Xy
unless XM = XMmax je  our comparator is strictly
larger than X", The latter means that Algorithm
has optimal regret and constraint violation rates
(e = 0.5) with respect to a stronger benchmark.

Case (iv) — General: (w, € {s € [b3®5 bp*] |
A(s) < k} where £ > 0). This case corresponds to
enforcing A(wy) to be smaller than x, which is always
possible since by the first case A(bF**) < 0 < k. Note
that we could also allow x to increase with T in order
to obtain a larger comparator. For instance, we could
set kK = O(T°V T17¢), and so A(w,) will grow at the
same rate than the fastest of the two terms in the regret
bound in Theorem [1} The choice of w in case (iii) is
an example that ensures that A(w,) grows at a rate of
at most O(T*~¢).

Interpretation of the constraint violation bound: The
bound on the accumulated constraint violation Vi con-
sists of two terms. The first term is a constant related
to the constraints, and the second term depends on
constants & and L, and is divided by the learning rate
at time T. Hence, if € = 0 we have that Vp < O(1);
however, constant constraint violation comes at the
price of the regret bound not being sublinear. Also,
observe that for any € in the range [0, %), the constraint
violation has better rate than the regret. Finally, note
again that the constraint violation rates do not depend
on w since G, L, and E are just constants.

Constant E: This constant is analogous to constant D,
which measures the maximum distance between any
two vectors in the bounded set C' of primal variables;
see Sec. [3:2] However, we cannot define E in the same
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way as the dual variables exist in the nonnegative or-
thant (which is an unbounded set). Instead, we show
that the difference between the vectors generated by
the dual update in Algorithm [T]is bounded. Or equiva-
lently, that the dual variables obtained with Algorithm
remains bounded for all ¢ € IN; see Lemma [7] in the
supplementary material.

To ensure that ||y;|| is bounded for any ¢ € IN, we rely
on the Slater condition. In brief, this condition requires
that there exists an « € C such that g(z) + b + nl =<
0 for some scalar n > 0, and ensures that the dual
variables in Algorithm [I] are attracted to a bounded set
within IRTE Constant 7 can be regarded, informally,
as the minimum curvature constant of a strongly convex
function. The technical challenge is to characterize the
diameter of the set to which these dual variables are
attracted since unlike standard optimization with a
static objective function, in OCO the cost functions
vary over time and, indirectly, the (bounded) sets to
which the dual variables are attracted. See Proposition
[2 and discussion in Section [B.2]in the supplementary
material.

Finally, we note that E = O(D?). For instance, when
1 and ¢ are the squared Euclidean distance, E becomes

2x21n~2 4+ x where x := % +3F.D + LdTl)Z‘ The

latter implies that Rr(w) < O(D*(T€ Vv T17¢)) and
Vi < O(DT).

Online convex optimization: Our analysis also allow
us to recover the standard OCO bound when the con-
straints are always satisfied. We have the following
corollary to Theorem [T}

Corollary 2. Suppose that X7 = C (i.e., g(x)+b =20
for allz € C and t € IN). The regret bound becomes

1 (LyD? 2F? T
Ry < FT( B )+(aw)2t:1pt'

That is, when the constraints are always satisfied the
dual variables will always be equal to zero and there-
fore £ = 0 and G, = OIEI Hence, by considering
perturbed constraints in the learning problem we are
adding (2pr) 'L,E?+2G20, ! Zthl pt to the bound
of the standard regret in Corollary[2] Such symmetry is
not available in previous works (Mahdavi et al.l [2012a}
Jenatton et all |2016; Neely and Yul [2017} [Yu et al.
2017)), and it appears in our work as Algorithm [1| can
be regarded as applying OGD twice (see Lemm in
the supplementary material for the technical details).
As a result, the constants in the usual OCO bound

2This type of behavior is typical in dual subgradient
methods. See, for example, Figure 8.2.6. in (Bertsekas et
al. 2003). This is also discussed in detail in (Nedi¢ and
Ozdaglar, [2009); see Lemma 1.

T5The fact that G. = 0 follows by adding a slack variable
s¢ to change the inequality constraint to equality, i.e., g(z)+
bt + st = 0.

appear “duplicated”.

Constrained convex optimization: Our results can also
be applied to constrained optimization problems. The
following corollary to Theorem [I] establishes the con-
vergence of a constrained convex program with relaxed
constraints and primal averaging.

Corollary 3. Consider the setup of Theorem [1] where
the objective function and constraints are constant (i.e.,
fe = f andb, = b for allt € IN) and step size py = at™¢
with a > 0. We have that

W ) -5 <0+ )

) lfatar)+ 71 <0 (7

where f* := mingex f(z) with X = {x € C' | g(z)+b =
0} and Zr == F Zthl Ty

The result recovers the upper bound on the objective
and constraint violation in Proposition 1 in (Nedi¢ and
Ozdaglar, |2009) when € = 0 (fixed step size), but also
ensures that f(Z7) — f* and Zp converges to a vector
in X asymptotically as ' — oo for any ¢ € (0, 1).

4 Related Work and Discussion

Long-term constraints: The first works of OCO
with long-term constraints were motivated by the com-
plexity of the projection step in OGD. In brief, when
set X is composed of general convex constraints, the
projection step involves solving a convex program that
can be computationally burdensome. For example,
projections onto the semidefinite cone. Expensive pro-
jections are dealt with in mainstream convex optimiza-
tion by carrying them out only in the last iteration
(Mahdavi et all 2012b]) or less often (Cotter et al.
2016f), but that is not possible in OCO since every
action incurs an instantaneous cost. The latter was
noted by |Mahdavi et al| (2012al), which formalized the
OCO problem with static long-term constraints and
proposed two algorithms that obtain O(T {2:33) regret
and O(T {%’%}) constraint violation respectively. |Jenat-
ton et al.| (2016)) extends the work in (Mahdavi et al.
2012a)) by proposing an algorithm that can balance
regret and constraint violation. In particular, the al-
gorithm obtains O(T? v T*~#) regret and O(T*~#/2)
constraint violation where 8 € (0,1) is a design param-
eter. Furthermore, the learning rate is adaptive, and so
the algorithm can run for any time horizon. Finally, we
note the recent work by [Yuan and Lamperski (2018]),
which considers static long-term constraints where the
penalties cannot cancel out.

Online constraints: This problem was addressed for
the first time in Mannor et al.| (2009) in an online
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learning setting (not just OCO). The work showed
that sublinear regret and constraint violation are not
attainable in general when the comparator is equal to
Xmax (Mannor et al}, 2009, Prop. 2.4)[™] In view of that
negative result, the authors proposed to use a more
restrictive regret benchmark, which is analogous to
selecting a fixed decision from the smaller set X" we
consider in this paper. It is also shown that restricted
comparator is tight for a special case with only one
constraint; see Sec. 5 in (Mannor et al.| 2009). However,
that does not contradict our results since (Mannor et al.}
2009)) does not assume the Slater condition.

The impossibility result shown in (Mannor et al., [2009))
motivated the work in (Neely and Yu, [2017) to con-
sider OCO problems with online constraints and to
propose the first algorithm to obtain O(v/T) regret
and constraint violation with respect to fixed decision
in X" The work in (Neely and Yu, 2017) also im-
proves the bounds in previous works with long-term
constraints, with the exception that it cannot handle
linear equality constraints. Recently, [Yi et al.|(2019)
have presented an algorithm for distributed OCO with
online constraints and uses X" as comparator. The
bounds obtained are similar to ours in the sense that the
step size is adaptive. However, we can further tradeoff
regret for zero constraint violation and compare with
a larger set (see Table .

Regarding online stochastic constraints, Yu et al.
(2017) consider online constraints that are i.i.d. gen-
erated where the feasible set is defined in expec-
tation and equal to X™&®%.  The proposed algo-
rithm obtains O(v/T) regret and constraint violation
in expectation, and O(v/T log(T)log(%)) regret and

O(VT log(T)log*?(%)) constraint violation bounds
that hold for every sample path with probability 1 — 4§,
0 € (0,1). The recent work by Wei et al.[(2019)) extends
the previous work to handle stochastic linear equality
constraints.

Slater condition: This condition is typical for non-
linear convex constraints as otherwise the comparator
would be a single point in space. The downside of
requiring the Slater condition is that we cannot handle
online linear equality constraints. Nonetheless, there is
a broad class of problems where the constraints are in-
equalities and the Slater condition holds naturally. For
instance, in the online advertising problem the Slater

n (Mannor et all, 2009, Sec. 2.4), the authors say
“...we do not see a way to reduce the problem of online
learning with constraints to an online convexr optimization
problem, and given the results below, it is unlikely that such
a reduction is possible.” We understand this refers to OCO
without long-term constraints.

15See the discussion in Sec. I.A and last paragraph at the
end on Sec. I
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Figure 2: Illustrating the regret using different com-
parators for e = 0.5 (left) and € = 0.25 (right).

condition amounts to having the option of not bidding
(i.e., spending zero) and so to remain under the budget.
We are not aware of any algorithm that supports online
linear inequalities constraints and obtains sublinear
regret and constraint violation.

5 Numerical Example

We illustrate the results with a synthetic example that
corresponds to the online advertising problem (see Sec.
1.1)) with normalized variables and parameters. In
each time slot t = 1,2,...,7T we select a vector z; €
C = [0,1]™ with n = 10. The cost and constraint
functions are (I;,-) and (a, -) + b; — ¢ respectively, where
lp € {z € [-1,0]" | 1T2 = —1}, a € [0,1]*, and
b: € [0,¢ — 0.01] with ¢ = 1/n. The cost function I
is selected by an adversary to maximize the cost at
time ¢, i.e., I; € arg max;e[_q o (I, ). The adversarial
perturbation in the constraint is selected as follows:
by =c—0.01fort =1,...,7/2, and b = 0 for t =
T/2+1,...,T. Note the Slater condition is satisfied,
and that this choice of perturbations makes set X}H?*
constant for the first T'/2 slots, and then the set expands
as fast as possible. That is, we are making the best
fixed decision in hindsight to change quickly.

Fig. [P shows the simulation results for w €
{ba* weyx, wo, b7 8} and € = 0.5 (left) and € = 0.25
(right).Both Bregman functions (¢, ) are selected
equal to the squared Euclidean distance. Observe from
the figure that Ry (b9*) = Rp(wevx) = Rr(wo) =
Ry (b38) for the first T/2 time slots since X®ax = X min
(the constraints are static), whereas for the remaining
T/2 time slots Ry (wevx) and Rr(wg) are in between
Rr (b)) and Rp(b7®) as expected. However, note
that X (wg) is a stronger comparator than X (weyx)
since Rp(wo) > Ry (wevx). Observe also that Ry (weyx)
is negative for ¢ > T'/2, which means that the total
cost is smaller than the cost of the best fixed decision
in hindsight in X7 (weyx). This is not the behavior we
would expect in an adversarial setting. With X (wp) as
comparator, however, we obtain positive regret as we
are indeed comparing to a stronger benchmark.
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