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A Proofs

A.1 Proof of Theorem 3.1

Let x′ be the output of the gradient descent iteration
update for input x with step size η.

If x ∈ Xγ and x′ ∈ Xµ, then

f(x′)− f(x∗)

= f(x− η∇f(x))− f(x∗)

≤ f(x)− η||∇f(x)||2 +
µ

2
η2||∇f(x)||2 − f(x∗)

= f(x)− f(x∗)−
(
η − µ

2
η2
)
||∇f(x)||2

≤ f(x)− f(x∗)− 2γ
(
η − µ

2
η2
)

(f(x)− f(x∗))

= (1− 2γη + γµη2)(f(x)− f(x∗))

where the first inequality is by the assumption that f
is µ-smooth on Xµ and the second inequality is by the
assumption that f satisfies the γ-PL inequality on Xγ .
Taking η = 1/µ, which minimizes the above bound,
establishes the claim of the theorem.

A.2 Proof of Theorem 3.2

Let x′ be the output of the MM algorithm iteration
update for input x.

By the facts f(x′) ≤ g(x′;x) and g(x′;x) ≤ g(z;x) for
all z, for any η ≥ 0,

f(x′)− f(x∗)

≤ g(x′;x)− f(x∗)

≤ g(x− η∇f(x);x)− f(x∗)

= f(x− η∇f(x))− f(x∗)

+g(x− η∇f(x);x)− f(x− η∇f(x)).

Now, by the same arguments as in the proof of Theo-
rem 3.1, if x ∈ Xγ and x− η∇f(x) ∈ Xµ, we have

f(x−η∇f(x))−f(x∗) ≤ (1−2γη+γµη2)(f(x)−f(x∗)).

Next, if x ∈ Xγ and x− η∇f(x) ∈ Xµ,

g(x− η∇f(x);x)− f(x− η∇f(x))

≤ δ

2
η2||∇f(x)||2

≤ δη2γ(f(x)− f(x∗))

where the first inequality is by the smoothness condition
on the majorant surrogate function and the second
inequality is by the assumption that f satisfies the PL
inequality with parameter γ on Xγ .

Putting the pieces together, we have

f(x′)−f(x∗) ≤
(
1− 2γη + γ(µ+ δ)η2

)
(f(x)−f(x∗)).

Taking η = 1/(µ + δ) (which minimizes the factor
involving η in the last inequality) yields the asserted
result.

A.3 Proof of Lemma 3.1

The Hessian of the negative log-likelihood function has
the following elements:

∇2(−`(w))i,j =

{ ∑
v 6=imi,v

ewiewv

(ewi+ewv )2 , if i = j

−mi,j
ewiewj

(ewi+ewj )2
, if i 6= j.

(A.1)
We will show that for all i 6= j,

∂2

∂wi∂wj
(−`(w)) ≤ −cωmi,j for all w ∈ [−ω, ω]n

(A.2)
and

− 1

4
mi,j ≤

∂2

∂wi∂wj
(−`(w)) for all w ∈ IRn. (A.3)

From (A.2), we have ∇2(−`(w)) � cωLM for all w ∈
[−ω, ω]n. Hence, for all w ∈ [−ω, ω]n and x ∈ X

x>∇2(−`(w))x ≥ cωλ2(LM)||x||2

where X = {x ∈ IRn : x>1 = 0}. This shows that −`
is cωλ2(LM)-strongly convex on X .

From (A.3), we have 1
4LM � ∇2(−`(w)) for all w ∈

IRn. Hence,

x>∇2(−`(w))x ≤ 1

4
λn(LM)||x||2 for all x ∈ IRn.

This shows that −` is 1
4λn(LM)-smooth on IRn.

It remains to show that (A.2) and (A.3) hold. For
(A.2), we need to show that cω ≤ xixj/(xi + xj)

2

for all x ∈ [−ω, ω]n. Note that xixj/(xi + xj)
2 =

z(1 − z) where z := xi/(xi + xj). Note that z ∈
Ω := [e−ω/(e−ω + eω), 1− e−ω/(e−ω + eω)] for all x ∈
[−ω, ω]n. The function z(1− z) achieves its minimum
over the interval Ω at a boundary of Ω. Thus, it holds
minz∈Ω z(1− z) = cω. For (A.3), we can immediately
note that for all w ∈ IRn,

wiwj
(wi + wj)2

=
wi

wi + wj

(
1− wi

wi + wj

)
≤ 1

4
.

A.4 Proof of Lemma 3.3

Let y be an arbitrary vector in [−ω, ω]n. Let r(x;y) =
`(x;y)− `(x) for x ∈ [−ω, ω]n. Then, we have

r(y;y) = 0,∇xr(y;y) = 0, and

∇2
xr(x;y) = ∇2(−`(x)) +A (A.4)
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where A is a n × n diagonal matrix with diagonal
elements

Ai,i = −
∑
j∈i

mi,j
exi

eyi + eyj
≥ −1

2
e2ω||M||∞.

Since ∇2(−`(x)) is a positive semi-definite matrix and
A is a diagonal matrix, for all x,y ∈ [−ω, ω]n, we have
for all w ∈ [−ω, ω]n

x>∇2
xr(w;y)x ≥ −||M||∞

e2ω

2
||x||2 = −δ||x||2, .

By limited Taylor expansion, for all x ∈ [−ω, ω]n,

r(x;y)

≥r(y;y) + (x− y)>∇xr(y;y)

+
1

2
min

0≤a≤1
(x− y)>∇2

xr(ax + (1− a)y;y)(x− y)

=
1

2
min

0≤a≤1
(x− y)>∇2

xr(ax + (1− a)y)(x− y;y)

≥− δ

2
||x− y||2.

By the definition of r(x;y), we have ¯̀(x;y)− `(x) ≥
− δ2 ||x− y||2.

A.5 Surrogate function (3.3) for the
Bradley-Terry model is a first-order
surrogate function

We show that the surrogate function ` of the log-
likelihood function ` of the Bradley-Terry model, given
by (3.3), is a first-order surrogate function on Xω =
[−ω, ω]n with µ0 = 1

2e
2ωd(M).

We need to show that the error function h(x;y) =
`(x)− `(x;y) is a µ0-smooth function on Xω.

By a straightforward calculus, we note

∇2h(x;y) = ∇2`(x) +D(x,y)

where D(x,y) is a diagonal matrix with diagonal ele-
ments

du =
∑
j 6=u

mu,j
exu

eyu + eyj
.

We can take

µ0 = max
x,y∈Xω

max{|λ1(∇2h(x;y))|, |λn(∇2h(x;y))|}.

For any A = B + D where B is a n × n matrix and
D is a n× n diagonal matrix with diagonal elements
d1, d2, . . . , dn, we have

λ1(B) + min
u
du ≤ λi(A) ≤ λn(B) + max

u
du.

It thus follows that

µ0 ≤ max
x,y∈Xω

max{|λ1(∇2`(x))|+

min
u
du|, |λn(∇2`(x)) + max

u
du|}.

Now note that for all x,y ∈ Xω,

−1

2
d(M) ≤ λ1(∇2`(x)) ≤ λn(∇2`(x)) = 0

and
1

2
e−2ω min

u

∑
j∈u

mu,j ≤ min
u
du ≤ max

u
du ≤

1

2
e2ωd(M).

We have

|λn(∇2`(x)) + max
u

du| = max
u

du ≤
1

2
e2ωd(M)

and

|λ1(∇2`(x)) + min
u
du|

= (λ1(∇2`(x)) + min
u
du)1Iλ1(∇2`(x))+minu du≥0

+(−λ1(∇2`(x))−min
u
du)1Iλ1(∇2`(x))+minu du<0

≤ min
u
du1Iλ1(∇2`(x))+minu du≥0

−λ1(∇2`(x))1Iλ1(∇2`(x))+minu du<0

≤ 1

2
e2ωd(M)1Iλ1(∇2`(x))+minu du≥0

+
1

2
d(M)1Iλ1(∇2`(x))+minu du<0

≤ 1

2
e2ωd(M).

A.6 Proof of Lemma 3.4

We consider the log-a posteriori probability function
ρ(w) = `(w) + `0(w) + const where ` is the log-
likelihood function given by (3.1) and `0 is the prior
log-likelihood function given by (3.5). Note that
∇2(−`0(w)) is a diagonal matrix with diagonal ele-
ments equal to βewi , for i = 1, 2, . . . , n. It can be
readily shown that for w ∈ Wω,

cωLM + e−ωβIn � ∇2(−ρ(w)) � 1

4
LM + eωβIn.

(A.5)
From (A.5), for all w ∈ Wω and x ∈ IRn,

x>∇2(−ρ(w))x ≥ λ1(e−ωβIn)||x||2 = e−ωβ||x||2.

Hence, −ρ is e−ωβ-strongly convex on Wω.

Similarly, from (A.5), for all w ∈ Wω, and x ∈ IRn,

x>∇2(−ρ(w))x ≤ λn(
1

4
LM + eωβIn)||x||2

≤ (λn(
1

4
LM) + λn(eωβIn))||x||2

= (
1

4
λn(LM) + eωβ)||x||2.
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Hence, −ρ is µ-smooth on Wω with µ = 1
4λn(LM) +

eωβ.

B Comparison of Theorem 3.2 with
Proposition 2.7 Mairal (2015)

Theorem B.1. Suppose that f is a strongly convex
function on Xγ and x∗ is a minimizer of f and that it
holds x∗ ∈ Xγ . Assume that g is a first-order surrogate
function of f on Xµ with parameter µ0 > 0. Let x(t+1)

be the output of the MM algorithm for input x(t). Then,
if x(t) ∈ Xγ and x(t+1) ∈ Xµ, then we have

f(x(t+1))− f(x∗) ≤ c(f(x(t))− f(x∗))

where

c =

{ µ0

γ , if γ > 2µ0

1− γ
4µ0

, if γ ≤ 2µ0.

Proof. If g is a first-order surrogate function on Xµ
with parameter µ0, then

f(x′) ≤ f(z) +
µ0

2
||z− y||2

where x′ = arg minz′ g(z′;y).

From this it follows that

f(x′)

≤min
z

{
f(z) +

µ0

2
||z− x∗||2

}
≤ min
a∈[0,1]

{
f(ax∗ + (1− a)x) +

µ0a
2

2
||x− x∗||2

}
≤ min
a∈[0,1]

{
af(x∗) + (1− a)f(x) +

µ0a
2

2
||x− x∗||2

}
where the last inequality is by convexity of f .

We have established that

f(x′)− f(x∗)

≤ min
a∈[0,1]

{
(1− a)(f(x)− f(x∗)) +

µ0a
2

2
||x− x∗||2

}
.

By assumption that f is γ-strongly convex on Xγ and
x ∈ Xγ , we have

f(x)− f(x∗) ≥ γ

2
||x− x∗||2.

It follows that

f(x′)− f(x∗)

≤ min
a∈[0,1]

{
1− a+

µ0a
2

γ

}
(f(x)− f(x∗)).

It remains only to note that

min
a∈[0,1]

{
1− a+

µ0a
2

γ

}
= c.

The rate of convergence bound derived from Theo-
rem 3.2 can be tighter than the rate of convergence
bound derived from Theorem B.1.

To show this consider the Bradley-Terry model for
which we have shown in Lemma 3.3 that the surrogate
function ` of the log-likelihood function ` satisfies con-
dition of Theorem 3.2 on [−ω, ω]n with δ = 1

2e
2ωd(M).

It also holds that surrogate function ` is also a first-
order surrogate function of ` on [−ω, ω]n with µ0 =
1
2e

2ωd(M). Hence in this case, we have δ = µ0.

The convergence rate bound of Theorem 3.2 is tighter
than the convergence rate bound of Theorem B.1 if and
only if µ+ δ < 4µ0. Since δ = µ0, this is equivalent to
µ < 3δ. Since by Lemma 3.1 we can take µ = 1

2d(M),
the latter condition reads as

1 < 3eω

which indeed holds true.

C Generalized Bradley-Terry models

C.1 Generalized Bradley-Terry models

Bradley-Terry model of paired comparisons
According to the Bradley-Terry model, each paired
comparison of items i and j has two possible outcomes:
either i wins against j (i � j) or j wins against i (j � i).
The distribution of the outcomes is given by

Pr[i � j] =
ewi

ewi + ewj

where w = (w1, w2, . . . , wn)> ∈ IRn are model param-
eters.

Rao-Kupper model of paired comparisons with
ties The Rao-Kupper model is such that each paired
comparison of items i and j has three possible outcomes:
either i � j or j � i or i ≡ j (tie). The model is defined
by the probability distribution of outcomes that is given
by

Pr[i � j] =
ewi

ewi + θewj

and

Pr[i ≡ j] =
(θ2 − 1)ewiewj

(ewi + θewj )(θewi + ewj )

where w = (w1, w2, . . . , wn)> ∈ IRn and θ ≥ 1 are
model parameters.
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The larger the value of parameter θ, the more mass is
put on the tie outcome. For the value of parameter
θ = 1, the model corresponds to the Bradley-Terry
model for paired comparisons.

Luce choice model The Luce choice model is a nat-
ural generalization of the Bradley-Terry model of paired
comparisons to comparison sets of two or more items.
For any given comparison set S ⊆ N = {1, 2, . . . , n} of
two or more items, the outcome is a choice of one item
i ∈ S (an event we denote as i � S) which occurs with
probability

Pr[i � S] =
ewi∑
j∈S e

wj

where w = (w1, w2, . . . , wn)> ∈ IRn are model param-
eters.

We will use the following definitions and notation. Let
T be the set of ordered sequences of two or more items
from N such that for each y = (y1, y2, . . . , yk) ∈ T ,
y1 is an arbitrary item and y2, . . . , yk are sorted in
lexicographical order. We can interpret each y =
(y1, y2, . . . , yk) ∈ T as a choice of item y1 from the
set of items {y1, y2, . . . , yk}. According to the Luce’s
choice model, the probability of outcome y is given by

Pr[Y = (y1, y2, . . . , yk)] =
ewy1∑
j∈y e

wj
.

We denote with dy the number of observed outcomes y
in the input data. For each y ∈ T , let |y| denote the
number of items in y.

Plackett-Luce ranking model The Plackett-Luce
ranking model is a model of full rankings: for each
comparison set of items S ⊆ N = {1, 2, . . . , n}, the set
of possible outcomes contains all possible permutations
of items in S. The distribution over possible outcomes
is defined as follows. Let T be the set of all possible
permutations of subsets of two or more items from
N . Each y = (y1, y2, . . . , yk) ∈ T corresponds to a
permutation of the set of items S = {y1, y2, . . . , yk}.
The probability of outcome y is given by

Pr[Y = (y1, y2, . . . , yk)]

=
ewy1∑k
j=1 e

wyj

ewy2∑k
j=2 e

wyj

· · · ewyk−1∑k
j=k−1 e

wyj

where w = (w1, w2, . . . , wn)> ∈ IRn are model param-
eters.

The model has an intuitive explanation as a sampling
of items without replacement proportional to the item
weights ewi . The Plackett-Luce ranking model corre-
sponds to the Bradley-Terry model of paired compar-
isons when the comparison sets consist of two items.

We denote with dy the number of observed outcomes y
in the input data.

In this section, we discuss how the results for Bradley-
Terry model of paired comparisons can be extended to
other instances of generalized Bradley-Terry models. In
particular, we show this for the Rao-Kupper model of
paired comparisons with tie outcomes, the Luce choice
model and the Plackett-Luce ranking model.

C.2 Rao-Kupper model

The probability distribution of outcomes according to
the Rao-Kupper model is defined in Section C.1. The
log-likelihood function can be written as

`(w) =

n∑
i=1

∑
j 6=i

d̄i,j (wi − log(ewi + θewj )) +

1

2

n∑
i=1

ti,j log(θ2 − 1)

where d̄i,j is the number of observed paired comparisons
of items i and j such that either i wins against j or there
is a tie outcome, and ti,j is the number of observed
paired comparisons of items i and j with tie outcomes.

Lemma C.1. The negative log-likelihood function for
the Rao-Kupper model of paired comparisons with pa-
rameter θ > 1 is γ-strongly convex on Wω = {w ∈
IRn : ||w||∞ ≤ ω and w>1 = 0} and µ-smooth on IRn

with

γ = cθ,ωλ2(LM) and µ =
1

2
λn(LM)

where cθ,ω = θ/(θe−ω + eω)2.

Proof of Lemma C.1 is provided in Appendix C.5.

A surrogate minorant function for the log-likelihood
function of the Rao-Kupper model is given as follows:

`(x;y)

=

n∑
i=1

∑
j 6=i

d̄i,j

(
xi −

exi + θexj

eyi + θeyj
− log(eyi + θeyj ) + 1

)

+
1

2

n∑
i=1

ti,j log(θ2 − 1).

The MM algorithm is defined by, for i = 1, 2, . . . , n,

w
(t+1)
i = log

∑
j 6=i

d̄i,j

−
log

∑
j 6=i

(
d̄i,j

ew
(t)
i + θew

(t)
j

+
θd̄j,i

ew
(t)
j + θew

(t)
i

) .
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Lemma C.2. For all x,y ∈ [−ω, ω]n, `(x;y)−`(x) ≥
− δ2 ||x− y||2 where

δ = e2ωd(M).

C.3 Luce choice model

The probability distribution of outcomes according to
the Luce choice model is defined in Section C.1. The
log-likelihood function can be written as:

`(w) =
∑
y∈T

dy

wy1 − log

∑
j∈y

ewj

 .

Lemma C.3. The negative log-likelihood function for
the Luce choice model with comparison sets of size
k ≥ 2 is γ-strongly convex and µ-smooth on Wω =
{w ∈ IRn : ||w||∞ ≤ ω and w>1 = 0} with

γ = cω,kλ2(LM) and µ = dω,kλn(LM)

where

cω,k =

{
1/(e−ω + eω)2, if k = 2
1/((k − 2)e2ω + 2)2, if k > 2

and

dω,k =
1

((k − 2)e−2ω + 2)2
.

Note that for every fixed ω > 0, (a) cω,k/dω,k is decreas-
ing in k, (b) 1/e8ω ≤ cω,k/dω,k ≤ 1/e2ω, and (c) 1/e8ω

is the limit value of cω,k/dω,k as k goes to infinity.

A minorant surrogate function for the log-likelihood
function of the Luce choice model is given by

`(x;y) =
∑
y∈T

dy

xy1 − ∑j∈y e
xj∑

j∈y e
yj
− log

∑
j∈y

eyj

+ 1

 .

The MM algorithm iteration can be written as: for
i = 1, 2, . . . , n,

w
(t+1)
i

= log

∑
y∈T

dy1Ii=y1

− log

∑
y∈T

dy1Ii∈y
1∑

j∈y e
w

(t)
j


where

∑
y∈T dy1Ii=y1 is the number of observed com-

parisons in which item i is the chosen item.

Lemma C.4. For all x,y ∈ [−ω, ω]n, `(x;y)−`(x) ≥
− δ2 ||x− y||2 where

δ =
1

k(k − 1)
e2ωd(M).

C.4 Plackett-Luce ranking model

The probability distribution of outcomes according
to the Plackett-Luce ranking model is defined in Sec-
tion C.1. The log-likelihood function can be written as
follows:

`(w) =
∑
y∈T

dy

|y|−1∑
r=1

wyr − log

 |y|∑
j=r

ewyj

 .

Lemma C.5. The negative log-likelihood function for
the Plackett-Luce ranking model with comparison sets
of size k ≥ 2 is γ-strongly convex and µ-smooth on
Wω = {w ∈ IRn : ||w||∞ ≤ ω and w>1 = 0} with

γ = c̃ω,kλ2(LM) and µ = d̃ω,kλn(LM)

where

c̃ω,k =
1

k2
e−4ω and d̃ω,k =

(
2− 1

k

)
e4ω.

Proof of Lemma C.5 is provided in Appendix C.6.

Note that for fixed values of ω and k, Lemma C.5
implies the convergence time log(d(M)/a(M)). Note,
however, that for fixed ω > 0, c̃ω,k/d̃ω,k decreases to
0 with k and is of the order 1/k2. This is because
in the derivation of parameters c̃ω,k and d̃ω,k we use
(conservative) deterministic bounds. Following Hajek
et al. (2014), one can derive bounds for γ and µ that
hold with high probability, which are such that c̃ω,k
and d̃ω,k scale with k in the same way.

The log-likelihood function of the Plackett-Luce ranking
model admits the following minorization function:

`(x;y) =∑
y∈T

dy

|y|−1∑
r=1

xyr − ∑|y|j=r exyj∑|y|
j=r e

yyj
− log

 |y|∑
j=r

eyyj

+ 1

 .

The MM algorithm is given by: for i = 1, 2, . . . , n,

w
(t+1)
i = log

∑
y∈T

dy1Ii∈S1,|y|−1(y)

−
log

∑
y∈T

dy

|y|−1∑
r=1

1Ii∈Sr,|y|(y)
1∑|y|

j=r e
w

(t)
yj


where Sa,b(y) = {ya, ya+1, . . . , yb}.
Lemma C.6. For all x,y ∈ [−ω, ω]n, `(x;y)−`(x) ≥
− δ2 ||x− y||2 where

δ =
1

2
e2ωd(M).
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C.5 Proof of Lemma C.1

Let ti,j be the number of paired comparisons in the
input data with tie outcome for items i and j. Note
that ti,j = tj,i. The log-likelihood function can be
written as follows:

`(w)

=

n∑
i=1

∑
j 6=i

di,j (wi − log(ewi + θewj ))

+
1

2

n∑
i=1

∑
j 6=i

ti,j (wi + wj − log(ewi + θewj ))

−1

2

n∑
i=1

∑
j 6=i

ti,j
(
log(θewi + ewj )− log(θ2 − 1)

)
.

Let d̄i,j be the number of paired comparisons of items
i and j such that i � j, i.e. d̄i,j = di,j + ti,j . By a
straightforward calculus, we can write

`(w) =

n∑
i=1

∑
j 6=i

d̄i,j (wi − log(ewi + θewj ))

+
1

2

n∑
i=1

ti,j log(θ2 − 1).

Now, we note when i 6= j,

∂2

∂wi∂wj
(−`(w))

=− d̄i,j
θewiewj

(ewi + θewj )2
− d̄j,i

θewiewj

(θewi + ewj )2

and

∂2

∂w2
i

(−`(w)) = −
∑
j 6=i

∂2

∂wu∂wj
(−`(w)).

For any i 6= j, it indeed holds

θewiewj

(ewi + θewj )2
≤ 1

4
.

Hence, when i 6= j,

∂2

∂wi∂wj
(−`(w)) ≥ −1

4
(d̄i,j + d̄j,i) ≥ −

1

2
mi,j .

It follows that 1
2LM � ∇2(−`(w)) for all w ∈ IRn.

Hence,

x>∇2(−`(w))x ≤ 1

2
λn(LM) for all x ∈ IRn.

This implies that −` is a 1
2λn(LM)-smooth function

on IRn.

On the other hand, we can show that for all w ∈
[−ω, ω]n,

θewiewj

(ewi + θewj )2
≥ θ

(θe−ω + eω)2
:= cθ,ω.

This can be noted as follows. Let z = θewj/(ewi +θewj ).
Note that

θewiewj

(ewi + θewj )2
= z(1− z)

and that z ∈ Ω := [1/(1 + θe2ω), 1/(1 + θe−2ω)]. The
function z(1− z) is convex and thus achieves its min-
imum value over the interval Ω at one of its bound-
ary points. It can be readily checked that the mini-
mum is achieved at z∗ = 1/(1 + θe2ω), which yields
z∗(1− z∗) = cθ,ω.

Hence, when i 6= j,

∂2

∂wi∂wj
(−`(w)) ≤ −cθ,ω(d̄i,j + d̄j,i) ≤ −cθ,ωmi,j .

It follows that ∇2(−`(w)) � cθ,ωLM. From this, we
have that for all w ∈ [−ω, ω]n and x ∈ X

x>∇2(−`(w))x ≥ cθ,ωλ2(LM)

where X = {x ∈ IRn : ||x||∞ ≤ ω and x>1 = 0}. This
implies that −` is cθ,ωλ2(LM)-strongly convex on X .

C.6 Proof of Lemma C.5

It can be easily shown that for all w ∈ [−ω, ω]n, S ⊆ N
such that |S| ≥ 2, and u, v ∈ S such that u 6= v, we
have

e−4ω

|S|2
≤ ewuewv

(
∑
j∈S e

wj )2
≤ e4ω

|S|2
.

Combining with (A.1), we have

∂2

∂wu∂wv
(−`(w))

≤ −
∑
y∈T

dy
wuwv

(
∑k
j=1 e

wyj )2
1u,v∈{y1,y2,...,yk}

≤ −e
−4ω

k2

∑
y∈T

dπ1u,v∈{y1,y2,...,yk}

= −e
−4ω

k2
mu,v.

From this it follows that for all x ∈ IRn such that
x>1 = 0,

x>∇2(−`(w))x ≥ e−4ω

k2
λ2(LM)||x||2. (C.1)
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Similarly, we have

∂2

∂wu∂wv
(−`(w))

≥ −
∑
y∈T

dy

k−1∑
l=1

wuwv

(
∑k
j=l e

wyj )2
1u,v∈{y1,y2,...,yk}

≥ −e4ω
k−1∑
l=1

1

(k − l + 1)2
mu,v

= −e4ω
k∑
l=2

1

l2
mu,v

≥ −e4ω

(
1 +

∫ k

1

dx

x2

)
mu,v

= −e4ω

(
2− 1

k

)
mu,v.

From this it follows that for all x,

x>∇2(−`(w))x ≤ e4ω

(
2− 1

k

)
λn(LM)||x||2. (C.2)

D Code and Dataset

The code and datasets for reproducing our experiments
are available online:

https://github.com/GDMMBT/GDMM.

https://github.com/GDMMBT/GDMM
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