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Abstract

A number of applications (e.g., AI bot tour-
naments, sports, peer grading, crowdsourc-
ing) use pairwise comparison data and the
Bradley-Terry-Luce (BTL) model to evalu-
ate a given collection of items (e.g., bots,
teams, students, search results). Past work
has shown that under the BTL model, the
widely-used maximum-likelihood estimator
(MLE) is minimax-optimal in estimating
the item parameters, in terms of the mean
squared error. However, another important
desideratum for designing estimators is fair-
ness. In this work, we consider one spe-
ciÞc type of fairness, which is the notion of
bias in statistics. We show that the MLE
incurs a suboptimal rate in terms of bias.
We then propose a simple modiÞcation to
the MLE, which ÒstretchesÓ the bounding
box of the maximum-likelihood optimizer by
a small constant factor from the underlying
ground truth domain. We show that this sim-
ple modiÞcation leads to an improved rate in
bias, while maintaining minimax-optimality
in the mean squared error. In this manner,
our proposed class of estimators provably im-
proves fairness in the sense of bias without
loss in accuracy.

1 Introduction

A number of applications involve data in the form of
pairwise comparisons among a collection of items, and
entail an evaluation of the individual items from this
data. An application gaining increasing popularity
is competition between pairs of AI bots (e.g., Ontan
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et al., 2013). Here a number of AI bots compete with
each other in pairwise matchups for a certain task,
where each bot plays every other bot a certain number
of times in a round robin fashion, with the goal of eval-
uating the quality of each bot. A second example is the
evaluation of self-play of AI algorithms in their train-
ing phase (Silver et al., 2017), where again, di!erent
copies of an AI bot play against each other a number of
times. Applications involving humans include sports
and online games such as the English Premier League
of football (Kir«aly and Qian, 2017; SinceAWin.com,
2019) (uno"cial ratings), and o"cial world rankings
for chess such as FIDE (International Chess Feder-
ation, 2017) and USCF (Glickman and Doan, 2017)
ratings.

A common method of evaluating the items based on
pairwise comparisons is to assume that the probability
of an item beating another equals the logistic function
of the di!erence in the true quality of the two items,
and then infer the true quality from the observed out-
comes of the comparisons (e.g., the Elo rating system).
Various applications employ such an approach to rat-
ing from pairwise comparisons, with some modiÞca-
tions tailored to that speciÞc application. Our goal is
not to study the application-speciÞc versions, but the
foundational underpinnings of such rating systems.

In this paper, we study the pairwise-comparison model
that underlies (Glickman and Jones, 1999; Aldous,
2017) these rating systems, namely the Bradley-Terry-
Luce (BTL) model (Bradley and Terry, 1952; Luce,
1959). The BTL model assumes that each item is as-
sociated to an unknown real-valued parameter repre-
senting the quality of that item, and assumes that the
probability of an item beating another is the logis-
tic function applied to the di!erence of the parame-
ters of these two items. The BTL model is also em-
ployed in the applications of peer grading (Shah et al.,
2013; Lamon et al., 2016) (where the grades of the stu-
dents are set as the BTL parameters to be estimated),
crowdsourcing (Chen et al., 2016; Ponce-L«opez et al.,
2016), and understanding consumer choice in market-
ing (Green et al., 1981).
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1.1 BTL model and maximum likelihood
estimation

Now we present a formal deÞnition of the BTL model.
Let d � 2 denote the number of items. Thed items are
associated to an unknown parameter vector! !

2 Rd

whose i th entry represents the underlying quality of
item i 2 [d]. When any item i 2 [d] is compared with
any item j 2 [d] in the BTL model, then item i beats
item j with probability

1

1 + e" ( ! ⇤
i " ! ⇤

j )
, (1)

independent of all other comparisons. The probability
of item j beating i is one minus the expression (1)
above. We consider the Òleague formatÓ (Aldous,
2017) of comparisons where every pair of items is com-
pared k times.

We follow the usual assumption (Hajek et al., 2014;
Shah et al., 2016) under the BTL model that the true
parameter vector ! ! lies in the set #B parameterized
by a known constant B > 0, deÞned as:

# B = {! 2 Rd
| k! k#  B and

d!

i =1

! i = 0}. (2)

The Þrst constraint requires that the magnitude of
the parameters is bounded by some constantB . We
call this constraint the Òbox constraintÓ. It has been
shown that a box constraint is necessary, because
otherwise the estimation error can diverge to inÞn-
ity (Shah et al., 2016, Appendix G). The second con-
straint requires that the parameters sum to 0. This is
without loss of generality due to the shift-invariance
property of the BTL model.

A large amount of both theoretical (Hunter, 2004; Ha-
jek et al., 2014; Sz¬or«enyi et al., 2015; Negahban et al.,
2016; Shah et al., 2016) and applied (Stigler, 1994;
Sham and Curtis, 1995; Chen et al., 2016; Ponce-L«opez
et al., 2016) literature focuses on the goal of estimating
the parameter vector ! ! of the BTL model. A stan-
dard and widely-studied estimator is the maximum-
likelihood estimator (MLE):

"! (B ) = argmin
! $ ! B

"(! ), (3)

where" is the negative log-likelihood function. Letting
Wij denote a random variable representing the number
of times that item i 2 [d] beats item j 2 [d], the log-
likelihood function " is given by:

"(! ) := "({Wij }; ! ) = �

!

1%i<j %d

#
Wij log

$
1

1 + e" ( ! i" ! j )

%

+ Wji log
$

1
1 + e" ( ! j " ! i)

%&
.

1.2 Metrics

Accuracy. A common metric used in the literature
on estimating the BTL model is the accuracy of the
estimate, measured in terms of the mean squared error.
Formally, the (worst-case) accuracy of any estimator
"! is deÞned as:

#("! ) := sup
! ⇤$ ! B

E[k"! � ! !
k

2
2]. (4)

Importantly, past work (Hajek et al., 2014; Shah et al.,
2016) has shown that the MLE (3) has the appealing
property of being minimax-optimal in terms of the ac-
curacy deÞned in (4).

Bias. Another important desideratum for designing
and evaluating estimators is fairness. For example,
in sports or online games, we do not want to assign
scores in such a way that it systematically gives certain
players higher scores than their true quality, but at the
same time gives certain other players lower scores than
their true quality. In this paper, we adopt the standard
deÞnition of bias in statistics as our notion of fairness.
For any estimator, the bias incurred by this estimator
on a parameter is deÞned as the di!erence between
the expected value of the estimator and the true value
of the parameter. Since our parameters are a vector,
we consider the worst-case bias, that is, the maximum
magnitude of the bias across all items. Formally, the
worst-case bias of any estimator"! is deÞned as:

$("! ) := sup
! ⇤$ ! B

kE["! ] � ! !
k# .

With this background, we now provide an overview of
the contributions of this paper.

1.3 Contribution I: Performance of MLE

Our Þrst contribution is to analyze the widely-used
MLE (3) in terms of its bias. Let us begin with a visual
illustration through simulation. Consider d = 25 items
with parameter values equally spaced in the interval
[�1, 1] (here we haveB = 1), where k = 5 pairwise
comparisons are observed between each pair of items
under the BTL model. We estimate the parameters
using the MLE, and plot the bias on each item across
5000 iterations of the simulation in Fig. 1 (striped red).
The MLE shows a systematic bias: it induces a nega-
tive bias (under-estimation) on the large positive pa-
rameters, and a positive bias (over-estimation) on the
large negative parameters. In the applications of inter-
est, the MLE thus systematically underestimates the
abilities of the top players/students/items and overes-
timates the abilities of those at the bottom.

In this paper, we theoretically quantify the bias in-
curred by the MLE as follows.
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Figure 1: Biases on items of di!erent parameters, induced
by the MLE ( B = 1) and our stretched-MLE ( A = 2). Our
estimator signiÞcantly reduces the maximum magnitude
of the bias across the items. Note that this Þgure plots
the bias including its sign: A positive bias means over-
estimation of the parameter, and a negative bias means
under-estimation of the parameter. Each bar is a mean
over 5000 iterations.

Estimator Bias Mean squared
error

Standard
MLE b✓( B )

"( 1!
dk

)
(Thm. 2.1(a))

O( 1
k )

minimax-optimal
(Hajek et al., 2014;
Shah et al., 2016)

Unconstrained
MLE b✓( " ) UndeÞned 1

Stretched
MLE b✓( A )

eO( 1
dk )

(Thm. 2.1(b))

O( 1
k )

minimax-optimal
(Thm. 2.2(b))

Table 1: Theoretical guarantees for the MLE b✓( B ) , un-
constrained MLE b✓( " ) and the proposed stretched-MLE
b✓( A ) (with a constant A such that A > B). The proposed
stretched-MLE achieves a better rate on bias, while retain-
ing minimax optimality in terms of accuracy. Recall that
d denotes the number of items and k denotes the number
of comparisons per pair.

Theorem 1.1 (MLE bias lower bound; Informal) .
The MLE (3) incurs a bias $("! (B ) ) lower bounded as
$( 1&

dk
).

As shown by our results to follow, this bias is subop-
timal. Our proof for this result indicates that the bias
is incurred because the MLE operates under the ac-
curately speciÞed model with the box constraint atB .
That is, the MLE ÒclipsÓ the estimate to lie within the
set #B . This issue is visible in the simulation of Fig. 1
where the bias is the largest when the true values of
the parameters are near the boundaries±B . For ex-
ample, consider a true parameter whose value equals
B . The estimate of this parameter sometimes equals
the largest allowed valueB (due to the box constraint),
and sometimes is smaller thanB (due to the random-
ness of the data). Therefore, in expectation, the es-
timate of this parameter incurs a negative bias. An
analogous argument explains the positive bias when
the true parameter equals or is close to�B .

1.4 Contribution II: Proposed stretched
estimator and its theoretical guarantees

Our goal is to design an estimator with a lower bias
while maintaining high accuracy. Since the MLE (3)
is already widely studied and used, it is also desir-
able from a practical and computational standpoint
that the new estimator is a simple modiÞcation of the
MLE (3). With this motivation in mind, an intuitive
approach is to consider the MLE but without the box
constraint Òk! k#  B Ó. We call this estimator with-
out the box constraint as the Òunconstrained MLEÓ
and denote it by "! (# ) , as removing the box constraint

is equivalent to setting the box constraint to 1:

"! (# ) = argmin
! $ ! 1

"(! ), (5)

where ## := {! 2 Rd
|

' d
i =1 ! i = 0}. The uncon-

strained MLE "! (# ) incurs an unbounded error in terms
of accuracy. This is because with non-zero probability
an item beats all others. Then the unconstrained MLE
estimates the parameter of this item as1, thereby in-
ducing an unbounded mean squared error.

Consequently, in this work, we propose the following
simple modiÞcation to the MLE which is a middle
ground between the MLE and the unconstrained MLE.
SpeciÞcally, we consider a Òstretched-MLEÓ associated
to a parameter A such that A > B . Given the param-
eter A, the stretched-MLE is identical to the MLE (3)
but ÒstretchesÓ the box constraint toA:

"! (A ) = argmin
! $ ! A

"(! ), (6)

where #A := {! 2 Rd
| k! k#  A and

' d
i =1 ! i =

0}. That is, # A simply replaces the box constraint
k! k#  B in (2) by the ÒstretchedÓ box constraint
k! k#  A.

The bias induced by the stretched-MLE (with A = 2)
in the previous experiment is also shown in Fig. 1 (solid
blue). Note that the maximum bias (at the leftmost
item with the largest negative parameter, or the right-
most item with the largest positive parameter) is sig-
niÞcantly reduced compared to the MLE. Moreover,
the bias induced by the stretched-MLE looks qualita-
tively more evened out across the items.

Our second main theoretical result proves that the
stretched-MLE indeed incurs a signiÞcantly lower bias.
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Theorem 1.2 (Stretched-MLE bias upper bound; In-
formal). When B = 1 , the stretched-MLE (6) with
A = 2 incurs a bias $("! (A ) ) upper bounded as(O( 1

dk ).

Given the signiÞcant bias reduction by our estima-
tor, a natural question is about the accuracy of the
stretched-MLE, particularly given the unbounded er-
ror incurred by the unconstrained MLE. We prove
that our stretched-MLE is able to maintain the same
minimax-optimal rate on the mean squared error as
the standard MLE.

Theorem 1.3 (Stretched-MLE accuracy upper
bound; Informal) . When B = 1 , the stretched-
MLE (6) with A = 2 incurs a mean squared error
#("! (A ) ) upper bounded asO( 1

k ), which is minimax-
optimal.

This result shows a win-win by our stretched-MLE:
reducing the bias while retaining the accuracy guaran-
tee. The comparison of the MLE and the stretched-
MLE in terms of accuracy and bias is summarized in
Table 1. Another attractive feature of our result is
that the proposed stretched-MLE is a simple modiÞ-
cation of the standard MLE, which can easily be in-
corporated in any existing implementation. While our
modiÞcation to the estimator is simple to implement,
our theoretical analyses and the proofs are non-trivial.

The MLE and the stretched-MLE also relate to the
concepts of proper vs. improper learning in learning
theory. The MLE can be considered a proper estima-
tor that is required to output an estimate from true
set #B . The stretched-MLE is an improper estimator
that outputs an estimate in the ÒstretchedÓ set #A ,
and the unconstrained MLE is a (fully) improper esti-
mator that is allowed to output any arbitrary estimate.

1.5 Related work

The logistic nature (1) of the BTL model relates our
work to studies of logistic regression (e.g., Portnoy,
1988; He and Shao, 2000; Fan et al., 2019), among
which the work on high-dimensional logistic regres-
sion (Sur and Candès, 2019; Salehi et al., 2019; Zhao
et al., 2020) is the most closely related to ours. The
papers (Sur and Candès, 2019; Zhao et al., 2020) con-
sider an unconstrained MLE in logistic regression, and
shows its bias in the opposite direction as compared to
our results on the standard MLE (constrained) in the
BTL model. SpeciÞcally, the papers (Sur and Candès,
2019; Zhao et al., 2020) show that the large positive
coe"cients are overestimated, and the large negative
coe"cients are underestimated. There are several ad-
ditional key di!erences between the results in Sur and
Candès (2019) as compared to the present paper. The
paper (Sur and Candès, 2019) studies the asymptotic

bias of the unconstrained MLE, showing that the un-
constrained MLE is not consistent. On the other hand,
we operate in a regime where the MLE is still consis-
tent, and study Þnite-sample bounds. Moreover, the
paper (Sur and Candès, 2019) assumes that the predic-
tor variables are i.i.d. Gaussian. On the other hand,
in the BTL model the probability that item i beats
item j can be written as 1

1+ e
�xT

ij✓
⇤ , where each pre-

dictor variable xij 2 Rd has entry i equal to 1, entry
j equal to �1, and the remaining entries equal to 0.
A subsequent paper (Salehi et al., 2019) considers a
regularized MLE in logistic regression where the regu-
larizer can reduce the asymptotic bias.

A common way to achieve bias reduction is to em-
ploy Þnite-sample correction, such as Jackknife (Que-
nouille, 1949) and other methods (Cox and Snell, 1968;
Anderson and Richardson, 1979; Firth, 1993) to the
MLE (or other estimators). These methods operate
in a low-dimensional regime (smalld) where the MLE
is asymptotically unbiased. Informally, these methods
use a Taylor expansion, write the expression for the
bias as an inÞnite sum, and modify the estimator in
a variety of ways to eliminate the lower-order terms
in this bias expression. However, since the expression
is an inÞnite sum, eliminating the Þrst term does not
guarantee a low rate of the bias. Moreover, since the
Taylor expansion terms in the inÞnite sum are implicit
functions of ! ! , eliminating lower-order terms does not
directly translate to explicit worst-case guarantees.

Returning to the pairwise-comparison setting, in addi-
tion to the mean squared error, past work has also con-
sidered accuracy in terms of the"1 norm error (Agar-
wal et al., 2018) and the "# norm error (Chen and
Suh, 2015; Jang et al., 2017; Chen et al., 2019). The"#

bound for a regularized MLE is analyzed in Chen et al.
(2019). Our proof for bounding the bias of the stan-
dard MLE (unregularized) relies on a high-probability
"# bound for the unconstrained MLE (unregularized).
It is important to note that the bound for the regular-
ized MLE from Chen et al. (2019) does not carry to
the unregularized MLE, because the proof from Chen
et al. (2019) relies on the strong convexity of the reg-
ularizer. On the other hand, our intermediate result
provides a partial answer to the open question in Chen
et al. (2019) about the "# norm for the unregularized
MLE (Lemma A.5 in Appendix A): We establish an
"# bound for the unregularized MLE when pobs = 1,
which has the same rate as that of the regularized MLE
in (Chen et al., 2019).

Another common occurrence of bias is regression to-
wards the mean (Stigler, 1997). It is the phenomenon
that random variables taking large (or small) values
in one measurement are likely to take more moderate
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(closer to average) values in subsequent measurements.
On the contrary, we consider items whose indices are
Þxed (and are not order statistics). For Þxed indices,
our results suggest that under the BTL model, the bias
(under-estimation of large true values) is in the oppo-
site direction as that in regression towards the mean
(over-estimation of large observed values).

Finally, there is a vast literature on di!erent notions
of fairness in various problems such as classiÞcation
and resource allocation (e.g. Barocas et al., 2019,
Chapter 3; Marsh and Schilling, 1994 and references
therein). While other notions of fairness are of interest
for future research, in this work we focus on the clas-
sical statistical notion of bias to capture our intuition
of minimizing the maximum disparity in estimation.

2 Main results

In this section, we formally provide our main theoret-
ical results on bias and on the mean squared error.

2.1 Bias

Recall that d denotes the number of items andk de-
notes the number of comparisons per pair of items.
The true parameter vector is ! !

2 # B for some pre-
speciÞed constantB > 0. The following theorem pro-
vides bounds on the bias of the standard MLE"! (B )

and that of our stretched-MLE "! (A ) with parameter
A. SpeciÞcally, it shows that if A is a Þnite constant
strictly greater than B , then our stretched-MLE has
a much smaller bias than the MLE whend and k are
su"ciently large.

Theorem 2.1. (a) There exists a constantc > 0 that
depends only on the constantB , such that

$("! (B ) ) �
c

p
dk

, (7a)

for all d � d0 and all k � k0, where d0 and k0 are
constants that depend only on the constantB .

(b) Let A be any Þnite constant such thatA > B .
There exists a constantc > 0 that depends only
on the constantsA and B , such that

$("! (A ) )  c
logd + log k

dk
, (7b)

for all d � d0 and all k � k0, where d0 and k0

are constants that depend only on the constantsA
and B .

We note that in Theorem 2.1(b), we allow A to be any
positive constant as long asA > B . Therefore, the dif-
ference betweenA and B can be any arbitrarily small
constant. It is perhaps surprising that stretching the

box constraint only by a small constant yields such a
signiÞcant improvement in the bias. We provide intu-
ition behind this result in Section 2.1.1. The complete
proof is provided in Appendix A.

2.1.1 Intuition for Theorem 2.1

In this section, we provide intuition why stretching the
box constraint from B to A signiÞcantly reduces the
bias. SpeciÞcally, we consider a simpliÞed setting with
d = 2 items. Due to the centering constraint, we have
! !

2 = �! !
1 for the true parameters, and we have"! 2 =

�"! 1 for any estimator "! that satisÞes the centering
constraint. Therefore, it su"ces to focus only on item
1. Denote µ as the random variable representing the
fraction of times that item 1 beats item 2, and denote
the true probability that item 1 beats item 2 as µ! :=

1
1+ e�( ✓⇤1 �✓⇤2 ) . We consider the true parameter of item 1

as ! !
1 2 [�B, B ]. Then we haveµ!

2 [µ" , µ+ ], where
µ" = 1

1+ e2B and µ+ = 1
1+ e�2B . The standard MLE

"! (B ) , the stretched-MLE "! (A ) and the unconstrained
MLE "! (# ) can be solved in closed form:

"! (B )
1 (µ) =

)
**+

**,

�B if µ 2 [0, µ" ]

�
1
2 log

-
1
µ � 1

.
if µ 2 (µ" , µ+ )

B if µ 2 [µ+ , 1].

"! (A )
1 (µ) =

)
***+

***,

�A if µ 2

/
0, 1

1+ e2A

0

�
1
2 log

-
1
µ � 1

.
if µ 2

-
1

1+ e2A , 1
1+ e�2A

.

A if µ 2

/
1

1+ e�2A , 1
0

.

"! (# )
1 (µ) = �

1
2

log
$

1
µ

� 1
%

.

See Fig. 2a for a comparison of these three estimators.

Now we consider the bias incurred by these three esti-
mators. For intuition, let us consider the case! !

1 = B ,
which incurs the largest bias in our simulation of
Fig. 1. If the observation µ were noiseless (and thus
equals the true probability µ+ ), then all three estima-
tors would output the true parameter B . However, the
observation µ is noisy, and only concentrates around
µ+ . To investigate how these three estimators behave
di!erently under this noise, we zoom in to the region
around µ = µ+ indicated by the grey box in Fig. 2a.
(Note that the observation µ can lie outside the grey
box, but for intuition we ignore this low-probability
event due to concentration.)

The behaviors of the three estimators in the grey box
are shown in Fig. 2b, Fig. 2c and Fig. 2d, respectively.
For each of these estimators, the blue dots on the x-
axis denotes the noisy observation ofµ across di!erent
iterations, and the blue dots on the estimator function
denotes the corresponding noisy estimates. The ex-
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Figure 2: Intuition on the sources of bias. (a) The estimators standard MLE b✓( B ) , stretched-MLE b✓( A ) and unconstrained
MLE b✓( " ) (on item 1), as a function of µ when there are d = 2 items. We consider ✓# = [ B,�B], under which the true
probability that item 1 beats item 2 is µ+ . We zoom in to the region around µ = µ+ indicated by the grey box. (b)
The standard MLE b✓( B ) incurs a negative bias, because the estimate is required to be at mostB. (c) The unconstrained
MLE b✓( " ) incurs a positive bias by JensenÕs inequality, because the estimator function is convex onµ 2 (0.5, 1). (d) Our
estimator balances out the negative bias and the positive bias.

pected value of the estimator is a mean over the blue
dots on the estimator function. For the standard MLE
"! (B ) (Fig. 2b), the box constraint requires that the es-
timate shall never exceedB . We call this phenomenon
the ÒclippingÓ e!ect, which introduces a negative bias.
For the unconstrained MLE "! (# ) (Fig. 2c), since the
estimator function is convex, by JensenÕs inequality,
the unconstrained MLE "! (# ) introduces a positive
bias. Our proposed stretched-MLE"! (A ) (Fig. 2d) lies
in the middle between the standard MLE and the un-
constrained MLE. Therefore, the stretched-MLE bal-
ances out the negative bias from the ÒclippingÓ e!ect
and the positive bias from the convexity of the esti-
mator function, thereby yielding a smaller bias on the
item parameter. In practice, one can numerically tune
the parameter A to minimize the bias across all possi-
ble parameter vector ! !

2 # B . Simulation results on
di!erent values of A are included in Section 3.

2.2 Accuracy

Given the result of Theorem 2.1 on the bias reduction
of the estimator "! (A ) , we revisit the mean squared er-
ror. Past work (Hajek et al., 2014; Shah et al., 2016)
has shown that the standard MLE "! (B ) is minimax-
optimal in terms of the mean squared error. The fol-
lowing theorem shows that this minimax-optimality
also holds for our proposed stretched-MLE"! (A ) , where
A is any constant such that A > B . The theorem
statement and its proof follows Theorem 2 from (Shah
et al., 2016), after some modiÞcation to accommodate
the new bounding box parameterA.

Theorem 2.2. (a) [Theorem 2(a) from Shah et al.
(2016)] There exists a constantc > 0 that depends
only on the constant B , such that any estimator

"! has a mean squared error lower bounded as

#("! ) �
c
k

, (8a)

for all k � k0, wherek0 is a constant that depends
only on the constantB .

(b) Let A be any Þnite constant such thatA > B .
There exists a constantc > 0 that depends only
on the constantsA and B , such that

#("! (A ) ) 
c
k

. (8b)

Theorem 2.2 shows that using the estimator "! (A )

retains the minimax-optimality achieved by "! (B ) in
terms of the mean squared error. Combining Theo-
rem 2.1 and Theorem 2.2 shows the Pareto improve-
ment of our estimator "! (A ) : the estimator "! (A ) de-
creases the rate of the bias, while still performing op-
timally on the mean squared error.

The proof of Theorem 2.2 closely mimics the proof
of Theorem 2(b) from Shah et al. (2016), replacing
the steps involving the domain #B by the stretched
domain # A . The details are provided in Appendix B.

3 Simulations

In this section, we explore our problem space and com-
pare the standard MLE and our proposed stretched-
MLE by simulations. Both estimators are solutions to
convex optimization problems, so we use the CVXPY
package for ease of implementation (for faster methods
such as Minorization Maximization (MM), see Hunter,
2004; Hajek et al., 2014). In what follows, we set
B = 1, and unless speciÞed otherwise we setA = 2
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Figure 3: Performance of estimators
for various values of d, with k = 5
and A = 2. Each point is a mean
over 10000 iterations.
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Figure 4: Performance of estimators
for various values of k, with d = 10
and A = 2. Each point is a mean
over 10000 iterations.

and ! ! = [1 , � 1
d" 1 , � 1

d" 1 , . . . , � 1
d" 1 ]. We also evalu-

ate the performance of other values of! ! subsequently.
Error bars in all the plots represent the standard error
of the mean.

(i) Dependence on d: We vary the number of items
d, while Þxing k = 5. The results are shown in Fig. 3.
Observe that the stretched-MLE has a signiÞcantly
smaller bias, and performs on par with the MLE in
terms of the mean squared error whend is large. More-
over, the simulations also suggest the rate of bias as of
order 1&

d
for the MLE and 1

d for the stretched-MLE,
as predicted by our theoretical results.

(ii) Dependence on k: We vary the number of com-
parisonsk per pair of items, while Þxing d = 10. The
results are shown in Fig. 4. As in the simulation (i)
with varying d, we observe that the stretched-MLE has
a signiÞcantly smaller bias, and performs on par with
the MLE in terms of the mean squared error. More-
over, the simulations also suggest the rate of bias as of
order 1&

k
for the MLE and 1

k for the stretched-MLE,
as predicted by our theoretical results.

(iii) Di!erent settings of the true parameter ! ! :
Our theoretical result considers the worst-case bias
and accuracy. In this simulation, we empirically com-
pare the performance of the stretched-MLE under dif-
ferent settings of the true parameter vector ! ! (recall
that setting A = 1 is equivalent to the standard MLE).
SpeciÞcally, we consider the following values of! ! :

• Worst case: ! ! = [1 , � 1
d" 1 , . . . , � 1

d" 1 ].

• Worst case (0.5): ! ! = [0 .5, � 0.5
d" 1 , . . . , � 0.5

d" 1 ].
• Bipolar: half of the values are 1, and the other

half are �1.
• Linear: the values are equally spaced in the in-

terval [�1, 1].
• All zeros: all parameters are 0.

We Þx d = 10 and k = 5, varying A 2 [0.5, 3] under
di!erent settings of the true parameter vector ! ! . The
results are shown in Fig. 5. Two high-level takeaways
from the empirical evaluations are that the bias gener-
ally reduces with an increase inA till past B , and that
the mean squared error remains relatively constant be-
yond A = 1 in the plotted range. In more detail, for
the bias, we observe that the performance primarily
depends on the largest magnitude of the items (that
is, k! !

k# ). For the settings worst case, bipolar and
linear (where k! !

k# = 1), the bias keeps decreasing
when A is past B = 1. For the setting worst-case
(0.5) (where k! !

k# = 0 .5), the bias keeps decreasing
when A is past 0.5. This makes sense since in this
case we e!ectively haveB = 0 .5 (although the algo-
rithm would not know this in practice). The bias for
the setting all zerosstays small across values ofA. For
the mean squared error, the increase when A is past
1 is relatively small under most of the settings of the
true parameter vector ! ! . The bipoloar setting has the
largest increase in the mean squared error. Under this
setting, all parameters! !

i take values at the boundaries
±B , and therefore the estimates of all parameters are
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Figure 5: Performance of estima-
tors for various values of A and
various settings of ✓# , with d =
10 and k = 5. Setting A = 1 is
equivalent to the standard MLE.
Each point is a mean over 5000
iterations.
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Figure 6: Performance of estima-
tors for various values of d un-
der sparse observations, withA =
2. A number of k = 5 compar-
isons are observed between any
pair independently with proba-
bility pobs = 1!

d
and none other-

wise. Each point is a mean over
10000 iterations.

a!ected by the box constraint.

(iv) Sparse observations: So far we have considered
a league format wherek comparisons are observed be-
tween any pair of items. Now we consider a random-
design setup, wherek comparisons are observed be-
tween any pair of items independently with probabil-
ity pobs 2 (0, 1), and none otherwise (Negahban et al.,
2016; Chen et al., 2019). In our simulations, we set
pobs = 1&

d
and k = 5. We discard an iteration if the

graph is not connected, since the problem is not iden-
tiÞable under such a graph. The results are shown in
Fig. 6. We observe that the stretched-MLE continues
to outperform MLE in terms of bias, and perform on
par in terms of the mean squared error.

4 Conclusions and discussions

In this work, we show that the widely-used MLE is
suboptimal in terms of bias, and propose a class of
estimators called the Òstretched-MLEÓ, which prov-
ably reduces the bias while maintaining the minimax-
optimality in terms of accuracy. These results on the
performance of the MLE and the stretched-MLE are of
both theoretical and practical interest. From the the-
oretical point of view, our analysis and proofs provide
insights on the cause of the bias, explain why stretch-
ing the box alleviates this cause, and prove theoreti-
cal guarantees in bias reduction by stretching the box.
Our results on the beneÞts of the stretched-MLE thus
suggest theoreticians to consider the stretched-MLE

for analysis instead of the standard MLE.

From the practical point of view, when the constant
B is unknown, practitioners often estimate the value
of B by Þtting the data or from past experience. Our
results thus suggest that one should estimateB le-
niently, as an estimation smaller than or equal to the
true B causes signiÞcant bias. Moreover, our proposed
estimator is a simple modiÞcation to the MLE, which
can be incorporated into any existing implementation
at ease.

Our results lead to several open problems. First, it is
of interest to extend our theoretical analysis to settings
with sparse observations. For example, one may con-
sider a random-design setup, wherek comparisons are
observed between any pair independently with proba-
bility pobs and none otherwise (Negahban et al., 2016;
Chen et al., 2019) (also see simulation (iv) in Sec-
tion 3). In terms of the bias under this random-design
setup, we think that the lower-bound for MLE and
the upper-bound for our stretched-MLE depend ond
and k also as $( 1&

dk
) and (O( 1

dk ) respectively; we think
that the dependence of the stretched-MLE onpobs is
no worse than that of the standard MLE. Second, it
is of interest to extend our results to other paramet-
ric models such as the Thurstone model (Thurstone,
1927), and other notions of fairness. Finally, in ap-
plications where the estimated parameters need to lie
in a certain range (such as exam scores in between 0
and 100), it is of interest to consider how to map the
estimates by the stretched-MLE to the required range.
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