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6.1 Rudiments

With the prior measure ⇧(á) on F (L, p, s), given observed data Y (n ) = (Y1, . . . , Yn )0, inference about f 0 is carried
out via the posterior distribution

⇧(A|Y (n ) , { x i } n
i =1 ) =

R
A

Qn
i =1 ⇧f (Yi |x i )d⇧(f )R Qn

i =1 ⇧f (Yi |x i )d⇧(f )
, ! A " B

where B is a ! -field on F (L, p, s) and where ⇧f (Yi |x i ) is the likelihood function for the output Yi under f .

6.2 Posterior Concentration Rate

First, we show that the posterior concentrates at the optimal (near-minimax) rate. We modify the result in
Polson and Rockova (2018) to our prior which di↵ers in two aspects: (1) the top layer is fully connected, (2) the
top layer coe�cients are assigned a Gaussian prior. First, we show that our fully-connected top layer networks
can approximate f 0 as well as the networks considered in Polson and Rockova (2018) (i.e. with a sparse top
layer). The following Lemma demonstrates how one can construct a fully connected top layer network from any
network considered in PR18 so that their outputs are the same. A graphical illustration of this construction can
be found in Figure 3.
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Lemma 6.1. Assume a sparse networkf DL
B ! " F̃ (L, p⇤, s⇤) of the form (6) in PR18 with a sparsity pattern " ,

where F̃ (L, p⇤, s⇤) is deÞned in Section 4 of PR18. Withp⇤ = (p, p⇤1, . . . , p⇤L , 1) " NL +2 and |" | = s⇤, there
exists at least one networkf DL

B " F (L + 1,p, s) with p = (p, p⇤1, . . . , p⇤L , p⇤L , 1) " NL +3 and |" | = s # s⇤ + 2p⇤L
such that f DL

B ! (x ) = f DL
B (x ) for any x " Rp.

Proof. We construct one function f DL
B that satisfies the stated conditions. We denote B = { (Wl , bl ) : 1 # l #

L + 2} such that p = (p, p⇤1, . . . , p⇤L , p⇤L , 1) " NL +3 and choose the same deep coe�cients { Wl , bl } = { W ⇤
l , b⇤l } for

each 1 # l # L . The parameters of the top layer are set as WL +2 = 10p!
L
and bL +2 = b⇤L +1 . Choosing the matrix

WL +1 in a way such that W 0
L +1 1p!

L
= W ⇤0

L +1 we obtain

f DL
B (x ) = WL +2 ZL +1 + bL +2 = WL +2 WL +1 Z ⇤

L + b⇤L +1 = W ⇤
L +1 Z ⇤

L + b⇤L +1 = f DL
B ⇤ (x ).

The procedure we use to generate WL +1 from W ⇤
L +1 can be found in Algorithm 1.

Algorithm 1 Network Construction of F (L + 1,p, s) from F̃ (L, p⇤, s⇤)
1: We assume W ⇤

L +1 ,1 $= 0

2: Initialize { Wl , bl } L
l =1 = { W ⇤

l , b⇤l } L
l =1 , WL +1 = 0pL⇥pL , bL +1 = 0, WL +2 = I 0pL

, bL +2 = b⇤L +1

3: function h(j ) # the index of last connected node (up to j) in layer L+1 of f DL
B !

h(j ) := max{ k # j : WL +1 ,k $= 0}

4: function $(j ) # #nodes in layer L+1 in f DL
B that will be connected to ZL,h ( j )

5: $(j ) :=
PpL

i =1 I(h(i ) = h(j ))

6: procedure Generate WL +1 from W ⇤
L +1

7: for each j = 1 : pL do
8: if h(j ) = j then # when ZL,j previously connected in f DL

B !

9: WL +1 ,i,i =
W !

L+1 ,j

! ( j ) # connect ZL,j to ZL +1 ,j with the averaged weights

10: else # when ZL,j previously unconnected in f DL
B !

11: WL +1 ,j,h ( j ) =
W !

L+1 ,h( j)

! ( j ) # connect ZL,h ( j ) to ZL +1 ,j with the averaged weights

It turns out that the sparsity of this extended network satisfies

s = s⇤ + %WL +2 %0 + %WL +1 %0 &
��W ⇤

L +1

��
0 = s⇤ + 2p⇤L &

��W ⇤
L +1

��
0 # s⇤ + 2p⇤L .

With the construction from Lemma 7.1, our network class could achieve at least the same approximation error as
the one in Schmidt-Hieber (2017). To recover the posterior concentration rate results in Theorem 6.1 in PR18,
we impose the following conditions on (L, s, N )

8
<

:

L ⇤ ' log(n)
s⇤ . np/ (2 " + p)

N ⇤ ' np/ (2 " + p) / log(n)
(

8
<

:

L = L ⇤ + 1 ' log(n)
s # s⇤ + 2p⇤L = s⇤ + 24pN ⇤ . np/ (2 " + p) + np/ (2 " + p) p

log( n ) . np/ (2 " + p)

N = N ⇤ ' np/ (2 " + p) / log(n)

The assumptions on the network structure (depth, width and sparsity) maintain very similar for our new prior.

We formally state the posterior concentration result for our prior below.

Theorem 6.1. Assume f 0 " H "
p where p = O(1) as n ) * , % < p and %f 0%1 # F . Let L, s be as in (14),

and p = (p,12pN, . . . , 12pN, 1)0 " NL +2 , where N = CN +np/ (2 " + p) / log(n), for some CN > 0. Under the priors
from Section 2.1, the posterior distribution concentrates at the rate&n = n�"/ (2 " + p) log#(n) for some ' > 1 in
the sense that

⇧(f DL
B " F (L, p, s) : %f & f 0%n > M n &n | Y (n ) ) ) 0

in Pn
0 probability as n ) * for any M n ) * .
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Proof. The statement can be proved as in Rockova and Polson (2018) by verifying the following three conditions
(adopted from Ghosal and Van Der Vaart (2007))

sup
$>$n

logE
⇣ &
36

;A$,1 - F n ;%á%n
⌘

# n&2
n (24)

⇧(A$n,1) . e�dn$2
n (25)

⇧(F\F n ) # e�(d+2) n$2
n for some d > 2. (26)

We define Fn , for some Cn = Cnp/ (2 " + p) log2#(n) and C > 0, as

Fn = { f DL
B " F (L, p, s) : %WL +1 %2

2 + b2
L +1 # Cn } .

Here Fn / F (L, p, s) is an approximating space (a sieve) consisting of functions whose top layer weights are
contained in a ball of radius

0
Cn in RpL+1 . We show that this sieve contains most of the prior mass as required

in (26) for C > 0 large enough. Indeed, because p = O(1) and

pL + 1 = 12p N + 1 1 np/ (2 " + p) / log(n)

we have

⇧(F\F n ) = P
⇣

%WL +1 %2
2 + b2

L +1 > C n

⌘

= P(( 2
pL+1 > C n ) = P(e

1
4 %2

pL+1 > e
Cn

4 ) # e�
Cn

4 2(pL+1) / 2 ) 0.

Next, we want to verify the entropy condition (24). Because

{ f DL
B " F n : %f %1 # &} / { f DL

B " F n : %f %n # &}

we have

sup
$>$n

logE
⇣ &
36

; f " F n ;%á%1
⌘
. log

8
>>>>><

>>>>>:

0

@ 2
$n/ 36

V (L +1)

1

A
s�(pL+1)

| {z }
( I )

0

@
0

Cn
$n/ 36

V (L +1)

1

A
pL+1

| {z }
( II )

9
>>>>>=

>>>>>;

. (s+ 1) log

✓
72

&n
(L + 1)(12pN + 1)2(L +1)

◆
+ (pL + 1) log(np/ (2 " + p) log2#(n))

. np/ (2 " + p) log(n) log
�
n/ log#(n)

�
+ np/ (2 " + p) / log(n) log

�
n log(n)

�

. np/ (2 " + p) log2(n) . n&2
n

for some ' > 1, where

V =
L +1Y

l =0

(Pl + 1) (27)

and using the fact that s . np/ (2 " + p) and L 1 log(n).

The covering number E( $
36 ; f " F n ;%á%1) consists of two parts. The part (I) stands for the covering number

for the deep architecture, while the part (II) is the covering number for the top layer. The calculations of the
covering numbers are derived from Lemma 12 of Schmidt-Hieber (2017) which shows

��f DL
B & f DL

B !

��
1 # %B & B ⇤%1 V (L + 1)

with V defined as in (27). To make sure
��f DL

B & f DL
B !

��
1 # $n

36 , we want %B & B ⇤%1 # $n/ 36
2V (L +1) . Since all

deep parameters are bounded in absolute value by one, we can discretize the unit cube [&1, 1]s�pL�1 with a

grid of a diameter $n/ 36
2V (L +1) and obtain the covering number in part (I). For the top layer, the weights and the
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bias term are contained inside a (pL + 1)-dimensional ball with a radius
0

Cn . Part(II) for %á%1 is bounded by

the $n/ 36
2V (L +1) -covering number of a Euclidean ball of radius

0
Cn in (pL + 1)-dimensional space (Edmunds and

Triebel, 2008).

Last, we need to show that the prior concentrates enough mass around the truth in the sense of (25). From
Lemma 7.1 and Lemma 5.1 in PR18, we know that there exists a neural network f̂ öB " F n (L, p, s), such that

���f̂ öB & f 0

���
n

# &/2.

We denote the connectivity pattern of f̂ öB as "̂ (with ŝ = |"̂ |) and the corresponding set of coe�cients as B̂ .
Following the same arguments as in PR18, we have

{ f DL
B " F n (L, p, s) :

��f DL
B & f 0

��
n # &n } 2 { f DL

B " F n (L, p, "̂ ) :
��f DL

B & f 0
��

n # &n / 2} .

We now denote with ! " RT and !̂ " RT the vectorized nonzero coe�cients in B and B̂ that have the sparsity
pattern "̂ . We use " (! ) to pin down the sparsity pattern of ! . Using Lemma 12 of Schmidt-Hieber (2017) we
have

�
f DL

B " F n (L, p, "̂ ) :
��f DL

B & f 0
��

n # &n / 2
 

2
⇢

! " RT : " () ) = "̂ and
���! & !̂

���
1

#
&n

2V (L + 1)

�
. (28)

Altogether, we can write

⇧(f DL
B " F n (L, p, ŝ) :

��f DL
B & f 0

��
n # &n ) >

⇧(f DL
B " F n (L, p, "̂ ) :

��f DL
B & f 0

��
n # &n / 2)

�T �pL�1
ös�pL�1

�

>
1�T �pL�1

ös�pL�1

�⇧
✓

! " RT : " () ) = "̂ and
���! & !̂

���
1

#
&n

2V (L + 1)

◆
.

We note that with ŝ 1 np/ (2 " + p) , L 1 log(n) and N 1 np/ (2 " + p) / log(n)

1�T �pL�1
ös�pL�1

� . e�(L +1)ös log(12 pN ) > e�D 1 log 2 (n )np/(2 ↵+ p)

for some D1 > 0. In addition, under the uniform prior on the deep coe�cients and the standard normal prior
on the top layer, we can write

⇧

✓
! " RT : " () ) = "̂ and

���! & !̂
���
1

#
&n

2V (L + 1)

◆
.
✓

&n

2V (L + 1)

◆ös�pL�1 Y

j>T �pL�1

⇧

✓���) j & )̂ j

��� #
&n

2V (L + 1)

◆

=

✓
&n

2V (L + 1)

◆ös�pL�1 Y

j>T �pL�1

Z ✏n
2V ( L+1)

� ✏n
2V ( L+1)

d⇧() j & )̂ j ). (29)

where the last T & pL & 1 coe�cients in ! are the top layer weights and bias as shown in (9).

We want to recenter the normal distribution at 0 rather than )̂ j by using the following inequality

dN ()̂ j , 1)
dN (0, 1

2 )
= e�

1
2 (&j�ö&j ) 2 + &2

j = e
1
2 (&j+ ö&j ) 2�ö&2

j . e�
ö&2
j .

Then we can continue with the lower bound for (29) as follows

(29) .
✓

&n

2V (L + 1)

◆ös�pL�1

e�
P

j>T " pL" 1
ö&2
j

 Z ✏n
2V ( L+1)

� ✏n
2V ( L+1)

dN
✓
0,

1

2

◆!pL+1

.
✓

&n

2V (L + 1)

◆ös�pL�1

e�Cn

✓
e�( ✏n

2V ( L+1) ) 2 &n0
*V (L + 1)

◆pL+1

.
✓

2
0
2*

◆pL+1 ✓ &n

2V (L + 1)

◆ös

e�Cne
� ( pL+1) ✏n

4(12 pN+1) ( L+1) ( L+1) . e�D 2 np/(2 ↵+ p) log 2 (n )
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for some D2 > 0 and recall that Cn = Cnp/ (2 " + p) log2#(n).Thus we can combine the bounds and conclude that

e�(D 1 + D 2 )np/(2 ↵+ p) log 2 (n ) . e�dn$2
n for some ' > 1 and d > D 1 + D2. The proof is now complete.

It is worth noting that the same concentration rate still holds if we use N (0, 1) prior on all parameters. We could
define

Fn = {%) %2
2 # Cn } .

The prior mass condition in (26) is

⇧(F\F n ) = P(( 2
s > C n ) # e�C1 np/(2 ↵+ p) log 2�(n ) .

The entropy condition in (24) is

sup
$>$n

logE(
&
36

, f " F n ;%á%1) . log

8
<

:

0

@
0

Cn
$n/ 36

V (L +1)

1

A
s9=

;

. (s+ 1) log

✓
72

&n
(L + 1)(12pN + 1)2(L +1)

◆
+ s log(Cnp/ (2 " + p) log2#(n))

. np/ (2 " + p) log(n) log
�
n/ log#(n)

�
+ np/ (2 " + p) log(n log(n))

. n&2
n

for some ' > 1, using the fact that s . np/ (2 " + p) and L 1 log(n).

The prior concentration condition in (25) can be proved by changing (29) into

⇧() " RT : " () ) = "̂,
X

j

) 2
j # Cn and

���) & )̂
���
1

#
&n

2V (L + 1)
)

. e�
P

j
ö&2
j

 Z ✏n
2V ( L+1)

� ✏n
2V ( L+1)

dN (0,
1

2
)

!ös

. e�Cn

✓
e�( ✏n

2V ( L+1) ) 2 &n0
*V (L + 1)

◆ös

. e�Cn

✓
&n0

*V (L + 1)

◆ös

e
� ös✏n

4(12 pN+1) ( L+1) ( L+1) . e�Dn p/(2 ↵+ p) log 2 (n ) .

Theorem 6.2. (adaptive priors) Assume f 0 " H "
p , where p = O(1) as n ) * , % < p, and %f 0%1 # F . Let

L 1 log(n) and assume priors for N and s as in (20) and (21). Assume the prior off as given by (7) and (8).
Then the posterior distribution concentrates at the rate+n = n�"/ (2 " + p) log#(n) for ' > 1 in the sense that

⇧(f " F (L ) : %f & f 0%L > M n +n | Y (n ) ) ) 0

in Pn
0 probability as n ) * for any M n ) * .

The proof for Theorem 7.2 follows the same techniques used in Theorem 6.2 of PR18. And this adaptive results
also hold for networks with standard normal priors on all weights.

6.3 Preparations for Main Theorems

The general framework for first-order approximation of functionals is as follows

Theorem 6.3. (Castillo and Rousseau, 2015) Consider the modelPn
0 , a real-valued functional f )  (f ) and

3á, á4L , (1)
0 , Wn , as deÞned above. Suppose that (16) is satisÞed, and denote

 ̂ =  (f 0) +
Wn ( 

(1)
0 )

0
n

, V0 =
��� (1)

0

���
2

L
.
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Let ⇧ be a prior distribution on f . Let An be any measurable set such that

⇧(An | Y (n ) ) = 1 + oP (1), as n ) * .

Then for any real t with f t as

f t = f &
t (1)

00
n

,

we could write

E! [et
p

n ("( f )�ö") | Y (n ) , An ] = eoP (1)+ t 2 V0 / 2

R
A n

e' n( f t)�' n( f 0 )d!( f )

R
A n

e' n( f )�' n( f 0 )d!( f )
.

Moreover, if R
A n

e' n( f t)�' n( f 0 )d!( f )

R
A n

e' n( f )�' n( f 0 )d!( f )
= 1 + oP (1), ! t " R (30)

is satisÞed, then the posterior distribution of
0

n( (f )&  ̂) is asymptotically normal and mean-zero, with variance
V0.

Proof. Set Rn (á, á) = 0, (2)
0 = 0, µn = 0 in Theorem 2.1 of Castillo and Rousseau (2015).

Projection of Functions The intuition of our projection conditional on (", Z ) is to maintain the same par-
titions for the shifted function in (17) and perform the change of measurelocally. We first give the notation for
Z L , which are the nodes in the top layer. Let ZLj , j = 1, . . . , pL denote the j th node in L th layer, which can be
written as a sum of local linear functions, respectively:

ZLj (x ) =
K LX

k=1

I(x " ⌦j
k ){ )̃ j #

k x + %̃j
k }

here the partitions {⌦j
k } K L

k=1 and coe�cients { )̃ j
k , %̃j

k } K L
k=1 are determined by { Wl , bl } L

l =1 .

For simplicity of notation, we denote WL +1 = (w1, . . . , wpL)
0. Then the output can be written as:

f (x ) =
pLX

j =1

wj ZLj (x ) + bL +1

=
K LX

k1 =1

á á á
K LX

kpL
=1

I

0

@x "
pL\

j =1

⌦j
kj

1

A

8
<

:

0

@
pLX

j =1

wj )̃ j #

kj

1

A x +

0

@
pLX

j =1

wj %̃j
kj

+ bL +1

1

A

9
=

; .

We denote the projection of function a(x ) conditional on { Wl , bl } L
l =1 with a(

[Z ], since conditional on { Wl , bl } L
l =1

is equivalent to conditional on (", Z ):

(W a, ba) = argminWL+1 ,bL+1 2Fn(L, p ,(,Z ) %W ZL (x ) + b& a(x )%L ,

a(
[Z ](x ) = W aZL (x ) + ba.

The projection a(
[Z ] can also be viewed as the best approximation to a conditional on (", Z ).

Similarly, we denote projection of f 0 onto { Wl , bl } L
l =1 as f (

0[Z ]:

(W 0, b0) = argminWL+1 ,bL+1 2Fn(L, p ,(,Z ) %W ZL (x ) + b& f 0(x )%L , (31)

f (
0[Z ](x ) = W 0ZL (x ) + b0. (32)

Note that f " { W ZL (x ) + b : W " RpL , b " R} , so naturally we have
���f (

0[Z ] & f 0

���
L

# %f & f 0%L .
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6.4 Proof of Theorem 3.1

We will perform the analysis locally on the sets An 5 AM n
n from (15) for some M n ) * . We use the fact

that convergence of Laplace transforms for all t in probability implies convergence in distribution in probability
(Castillo and Rousseau, 2015). The posterior decomposes into a mixture of laws with weights ⇧(" | Y (n ) ), where

" is the vector encoding the connectivity pattern with prior in (10). We denote with I n,( = E! [et
p

n ("( f )�ö") |
Y (n ) , An , " ] and write

I n : = E! [et
p

n ("( f )�ö") | Y (n ) , An ] =
X

( 2Vp ,s

⇧(" | Y (n ) , An )I n,( .

Next, we want to show that on the event An and uniformly for all " " V p ,s

I n,( = eoP (1)+ t 2 V0 / 2(1 + o(1)) as n ) *

so that I n = eoP (1)+ t 2 V0 / 2(1 + o(1)).

We choose " such that F (L, p, " ) - An $= 6 and for f " F (L, p, " ) - An we expand the linear functional as
 (f ) &  (f 0) = 3a, f & f 04L which yields

 (1)
0 = a,

r (f, f 0) = 0.

The remainder condition (16) is thus trivially satisfied. To verify the second condition (17), we choose the shifted
function f t as

f t = f &
ta
0

n
.

Due to the fact that our class of neural networks has a top linear layer, the function f t shares the same deep
connectivity structure as f where only the top layer intercepts bt

L +1 have been shifted. The change of measure
thus only influences bL +1 where bt

L +1 = bL +1 & tap
n . Next, we can write

I n,( = e
t2
2 kak2

L 7

R
A n

e' n( f t)�' n( f 0 ) d⇧(f | " )
R

A n
e' n( f )�' n( f 0 ) d⇧(f | " )

(33)

= e
t2
2 kak2

L 7

R
f t+ ta$

n
2A n

e' n( f t)�' n( f 0 ) d⇧(f t | " ) d!( f |( )
d!( f t|( )

R
A n

e' n( f )�' n( f 0 ) d⇧(f | " )
. (34)

Next, we show that the ratio above converges to 1 as n ) * . We have

d⇧(f | " )
d⇧(f t | " )

=
d⇧({ Wl , bl } L

l =1 , WL +1 , bL +1 | " )
d⇧({ Wl , bl } L

l =1 , WL +1 , bt
L +1 | " )

=
d⇧({ Wl , bl } L

l =1 | " )d⇧(WL +1 )d⇧(bL +1 )

d⇧({ Wl , bl } L
l =1 | " )⇧(WL +1 )⇧(bt

L +1 )
=

d⇧(bL +1 )

d⇧(bt
L +1 )

d⇧(bL +1 )

d⇧(bt
L +1 )

=
, (bL +1 )

, (bL +1 & tap
n )

= exp

⇢
&
1

2


b2

L +1 & (bL +1 &
ta
0

n
)2
��

= exp

✓
&

atbL +10
n

+
t2a2

2n

◆

Next, we note (from the definition of the sieve Fn and Cn in the proof of Theorem 7.1)

|bL +1 |
0

n
#

0
Cn0
n

. n� ↵
2↵+ p log �(n ) .

Going back to (33), we now have for some c > 0

e�c n
" ↵

2↵+ p log �(n )+ t2 a2
2n + t2

2 kak2
L 7

⇧
⇣

f + tap
n " An | Y (n ) , "

⌘

⇧
⇣

f " An | Y (n ) , "
⌘ # I n,(

# ec n
" ↵

2↵+ p log �(n )+ t2 a2
2n + t2

2 kak2
L 7

⇧
⇣

f + tap
n " An | Y (n ) , "

⌘

⇧
⇣

f " An | Y (n ) , "
⌘ . (35)
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Next, from

%f & f 0%L &

����
ta
0

n

����
L

#

����f +
ta
0

n
& f 0

����
L

# %f & f 0%L +

����
ta
0

n

����
L

it is clear that
⇢

f : %f & f 0%L # M n +n &

����
ta
0

n

����
L

�
/
⇢

f :

����f +
ta
0

n
& f 0

����
L

# M n +n

�
/
⇢

f : %f & f 0%L # M n +n +

����
ta
0

n

����
L

�

This yields

⇧

✓
f : %f & f 0%L # +n &

����
ta
0

n

����
L

| Y (n ) , "
◆

# ⇧

✓
f : f +

ta
0

n
" An | Y (n ) , "

◆

# ⇧

✓
f : %f & f 0%L # +n +

����
ta
0

n

����
L

| Y (n ) , "
◆

.

Since the concentration rate is slower than 1/
0

n, i.e. +n = n�"/ (2 " + p) log#(n) & n�1/ 2, we have ⇧(f + tap
n "

An ) ) ⇧(f " An ), as n ) * . From the sandwich inequality (35), we have I n,( ) e
t2 %a%2

L
2 for any t " R as

n ) * .

6.5 Proof of Theorem 3.2

Similar to the linear functional case, the posterior decomposes into a mixture of laws with weights ⇧(" | Y (n ) ),
where " is the vector encoding the connectivity pattern with a prior in (10). We can write

I n : = E! [et
p

n ("( f )�ö") | Y (n ) , An ] =
X

( 2Vp ,s

⇧(" | Y (n ) , An )I n,( (36)

where

I n,( := E! [et
p

n ("( f )�ö") | Y (n ) , An , " ].

We further decompose each I n,( by conditioning on the deep weights { Wl , bl } L
l =1 . We can write

⇧({ Wl , bl } L +1
l =1 | Y (n ) , An , " ) = ⇧(WL +1 , bL +1 | { Wl , bl } L

l =1 , Y (n ) , An , " )⇧({ Wl , bl } L
l =1 | Y (n ) , An , " )

= ⇧(WL +1 , bL +1 | Y (n ) , An , ", Z )⇧(Z | Y (n ) , An , " ),

since Z = { Zl } L
l =1 is fully determined by { Wl , bl } L

l =1 and we can thereby replace conditioning on { Wl , bl } L
l =1 by

conditioning on Z . We can further dissect I n,( by conditioning on Z

I n,( =

Z
I Z

n,( d⇧(Z | Y (n ) , An , " ), where I Z
n,( :=

Z
et

p
n ("( f )�ö") d⇧(WL +1 , bL +1 | Y (n ) , An , ", Z ).

In the rest of the proof, we show that I Z
n,( ) exp(&t2V0/ 2) uniformly for all " and Z such that f " An . This

can be done in two steps. First, we show that conditional on (Y (n ) , An , ", Z ),  (f ) asymptotically centers at
a local (", Z )-dependent centering point  ̂(

Z with a local (", Z )-dependent variance V (
Z (both defined later). In

the second step, we show that the local centering points  ̂(
Z are close to the global centering point  ̂ and that

the local variances V (
Z converge to V0 uniformly for all " and Z such that f " An .

We define the (", Z )-dependent local centering point and variance as

 ̂(
Z =  (f 0) +

Wn (2f (
0[Z ])0

n
and V (

Z = 4
���f (

0[Z ]

���
2

L
, (37)

where f (
0[Z ] is the % á %L projection of f 0 on the set of deep learning networks f with a connectivity pattern "

and hidden nodes Z defined in (32).
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For any f " F (L, p, " ), the squared L 2-norm functional can be expanded as

 (f ) &  (f 0) = 23f 0, f & f 04L + %f & f 0%2
L

= 23f (
0[Z ], f & f 04L + %f & f 0%2

L + 23f 0 & f (
0[Z ], f & f 04L .

Note that
���f (

0[Z ] & f 0

���
L

# %f & f 0%L for any f which has a connectivity pattern " and hidden nodes Z .

This expansion yields the first-order and remainder terms

 (1)
0 = 2f (

0[Z ],

r (f, f 0) = %f & f 0%2
L + 23f 0 & f (

0[Z ], f & f 04L .

To ensure asymptotical normality of  (f ), we first need to ensure the local shape condition in (16). Assuming
that the smoothness %satisfies

% > p/2 (38)

we have for f " An with a connectivity " and hidden nodes Z

r (f, f 0) = %f & f 0%2
L + 23f 0 & f (

0[Z ], f & f 04L

# 2%f & f 0%2
L +

���f 0 & f (
0[Z ]

���
2

L

# 3%f & f 0%2
L . +2

n = n� 2↵
2↵+ p log2# = o

✓
1

0
n

◆
.

Next, to verify the second su�cient condition (17) we define the shifted function f t as

f t = f &
2tf (

0[Z ]0
n

.

Then we use the local centering point  ̂(
Z in (37) to define

Ĩ Z
n,( :=E! [et

p
n ("( f )�ö" �

Z ) | Y (n ) , An , ", Z ] (39)

=e
2t 2

���f �
0[ Z]

���
2

L 7

R
A n

e' n( f t)�' n( f 0 ) d⇧(f | ", Z )
R

A n
e' n( f )�' n( f 0 ) d⇧(f | ", Z )

=e
2t 2

���f �
0[ Z]

���
2

L 7

R
f t+

2tf�
0[ Z]$
n

2A n

e' n( f t)�' n( f 0 ) d⇧(f t | ", Z ) d!( f |(,Z )
d!( f t|(,Z )

R
A n

e' n( f )�' n( f 0 ) d⇧(f | ", Z )

For simplicity of notation, we first denote - = (WL +1 , bL +1 )0 " RpL+1 and - t = (W t
L +1 , bt

L +1 )
0 " RpL+1 and

� = (W 0, b0)0 as defined in (31). Then we can simply write - t = - & 2tp
n�.

Since all parameters are a-priori independent and there is no sparsity structure placed on { WL +1 , bL +1 } , the
prior ratio d!( f |(,Z )

d!( f t|(,Z ) can be calculated as

d⇧(f | ", Z )

d⇧(f t | ", Z )
=

d⇧(WL +1 )

d⇧(W t
L +1 )

d⇧(bL +1 )

d⇧(bt
L +1 )

=
d⇧(- )
d⇧(- t )

=

pL+1Y

i =1

exp

⇢
&
1

2


- 2 & (- i &

2t
0

n
�i )

2
��

= exp

(pL+1X

i =1


&- i

�i t0
n
+

2t2�2
i

n

�)
.
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Similar to our previous proof, we have under the assumption % > p/2

�����

pL+1X

i =1

- i
�i t0

n

����� #
t

0
n

%- %2 %�%2 . Cn0
n
= o(1), (40)

where we used the fact that both f and f (
0[Z ] are contained in An and thereby have their top coe�cients contained

in a ball of radius
0

Cn (recall the definition of Cn in the proof of Theorem 7.1).

Now, using the fact that

%f & f 0%L & 2

�����
tf (

0[Z ]0
n

�����
L

#

�����f +
2tf (

0[Z ]0
n

& f 0

�����
L

# %f & f 0%L + 2

�����
tf (

0[Z ]0
n

�����
L

we have

⇧

 
f : %f & f 0%L # +n & 2

�����
tf (

0[Z ]0
n

�����
L

| Y (n ) , ", Z

!

# ⇧

 
f +

2tf (
0[Z ]0
n

" An | Y (n ) , ", Z

!
# ⇧

 
f : %f & f 0%L # +n + 2

�����
tf (

0[Z ]0
n

�����
L

| Y (n ) , ", Z

!
.

Again, since the concentration rate is slower than 1/
0

n, i.e. +n = n�"/ (2 " + p) log#(n) & n�1/ 2, we have

⇧(f +
2tf �

0[ Z]p
n " An | Y (n ) , ", Z )

⇧(An | Y (n ) , ", Z )
) 1, ! t " R. (41)

Hence, with (38), (40) and (41), one concludes Ĩ Z
n,( ) e

2t 2
���f �

0[ Z]

���
2

L as n ) * using a similar sandwich inequality
in (35). In other words, we have

Ĩ Z
n,( = et 2 V �

Z / 2(1 + o(1)). (42)

Recall the definition of a local centering point  ̂(
Z and a local variance V (

Z in (37). Then we can write

I Z
n,( = E! [et

p
n ("( f )�ö") | Y (n ) , An , ", Z ]

= E! [et
p

n [("( f )�ö" �
Z )+( ö" �

Z�ö")] | Y (n ) , An , ", Z ]

= Ĩ Z
n,( 7 et

p
n ( ö" �

Z�ö")

= (1 + o(1))et 2 V �
Z / 2+ t

p
n ( ö" �

Z�ö")

= (1 + o(1))et 2 V0 / 2+ t 2 (V �
Z �V0 ) / 2+ t

p
n ( ö" �

Z�ö") .

The proof will be complete once we show the following condition uniformly for all " such that f " An

I n,( =

Z
I Z

n,( d⇧(Z | Y (n ) , An , " )

= (1 + o(1))et 2 V0 / 2
Z

et 2 (V �
Z �V0 ) / 2+ t

p
n ( ö" �

Z�ö") d⇧(Z | Y (n ) , An , " ) ) et 2 V0 / 2, as n ) * .

This is equivalent to showing

Z
et 2 (V �

Z �V0 ) / 2+ t
p

n ( ö" �
Z�ö") d⇧(Z | Y (n ) , An , " ) = 1 + oP (1). (43)
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Since we work conditionally on the set An , we have %f (
0[Z ] & f 0%L . +n and thereby

0
n( ̂ &  ̂(

Z ) = Wn (f
(
0[Z ] & f 0) = oP (1),

|V (
z & V | = 4

����
���f (

0[Z ]

���
2

L
& %f 0%2

L

����

. 2%f 0%L

���f (
0[Z ] & f 0

���
L
+
���f (

0[Z ] & f 0

���
2

L

.
���f (

0[Z ] & f 0

���
L

# +n

under the assumption that %f 0%L # F .

Using the smoothness assumption (38), we have +2
n = o

⇣
1p
n

⌘
. We can bound the integral in (43) using the

uniform bounds on
0

n( ̂ &  ̂(
Z ) and |V (

z & V | as

(43) =

Z
et 2 ) n/ 2+ t⇥oP (1) d⇧(Z | Y (n ) , An , " )

=et 2 ) n/ 2+ t⇥oP (1) = eoP (1) = 1 + oP (1).

Putting the pieces together, we write I n from (36) as

I n =
X

( 2Vp ,s

⇧(" | Y (n ) , An )I n,( =
X

( 2Vp ,�

⇧(" | Y (n ) , An )et 2 V0 / 2(1 + oP (1)) = et 2 V0 / 2(1 + oP (1))

which completes the proof.

6.6 Proof of Theorem 4.1

For our proof for Theorem 4.1, the analysis is locally conducted on the set

AM
n = { f " F (L ) : %f & f 0%L # M n +n } (44)

with +n = n�"/ (2 " + p) log#(n) for some M > 0 and ' > 0. And from the results in Theorem 7.2, we know
⇧(AM

n | Y (n ) ) = 1 + op(1) for any M n ) * .

Conditioning on An in (44), the posterior consists of a mixture of laws conditional on N, s and "

I n = E! [et
p

n ("( f )�ö") | Y (n ) , An ]

=
1X

N =1

⇧(N | Y (n ) , An )
TX

s=1

⇧(s | Y (n ) , An , N )
X

( 2Vp ,s

⇧(" | Y (n ) , An , N, s)I n,s,(

=
N nX

N =1

⇧(N | Y (n ) , An )
snX

s=1

* (s | Y (n ) , An , N )
X

( 2Vp ,s

⇧(" | Y (n ) , An , N, s)I n,s,( + op(1)

where we denote with
I n,s,( = E! [et

p
n ("( f )�ö") | Y (n ) , An , N, s, " ].

The second equality follows from the fact that ⇧(N > N n | Y (n ) ) ) 0 and ⇧(s > s n | Y (n ) ) ) 0 in Pn
0 probability

as n ) * , using Corollary 6.1 of Polson and Rockova (2018). Thereby the set An eventually excludes all the
deep learning mappings outside the sieve.

Linear functionals For  (f ) = 3a, f 4L , when a(á) is a constant function, following the same strategy as in
the proof of Theorem 3.1, we have

I n,s,( = et 2kak2
L/ 2(1 + o(1))

and thereby the BvM holds.
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Squared L 2-norm functionals For  (f ) = %f %2
2, we use the same strategy as in the proof of Theorem 3.2.

For %" ( p
2 , p), we have

���f N,s,(
0[Z ] & f 0

���
2

L
# %f & f 0%2

L = o
✓

1
0

n

◆
(45)

here f N,s,(
0[Z ] denotes the projection of f 0 onto deep learning networks with a fixed sparsity and hidden structure

(", Z ) where |" | = s and the width equals N (similarly as in (32)). The inequality (45) holds for all f with a
deep structure determined by (", Z ).

The following arguments are similar to the proof of Theorem 3.2 but will be conditional on N and s. Since

⇧({ Wl , bl } L +1
l =1 | Y (n ) , An , N, s, " ) = ⇧(WL +1 , bL +1 | Y (n ) , An , N, s, ", Z )d⇧(Z | Y (n ) , An , N, s, " )

we can rewrite I n,s,( as

I n,s,( =

Z ✓Z
et

p
n ("( f )�ö") d⇧(WL +1 , bL +1 | Y (n ) , An , N, s, ", Z )

◆
d⇧(Z | Y (n ) , An , N, s, " )

= (1 + o(1))e2t 2kf 0k2
L

Z
et 2 (V N,s,�

Z �V0 ) / 2+ t
p

n ( ö" N,s,�
Z �ö") d⇧(Z | Y (n ) , An , N, s, " )

where

 ̂N,s,(
Z =  (f 0) +

1
0

n
Wn (2f N,s,(

0[Z ] ), V N,s,(
Z = 4

���f N,s,(
0[Z ]

���
2

L
.

and the term (1 + o(1)) comes from similar considerations as in (42).

Now we need to show I n,s,( ) e2t 2kf 0k2
L for all N, s and " in the local neighborhood An . In other words,

sup
N N n

sup
ssn

sup
( 2Vp ,s

Z
et 2 (V N,s,�

Z �V0 ) / 2+ t
p

n ( ö" N,s,�
Z �ö") d⇧(Z | Y (n ) , An , N, s, " ) = oP (1). (46)

Then we can write for % > p/2

0
n( ̂N,s,( &  ̂) = Wn (f

N,s,(
0[Z ] & f 0) = oP (1),

|VN,s,( & V0| = 4

����
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0[Z ]

���
2

L
& %f 0%2

L

����

. 2%f 0%L

���f N,s,(
0[Z ] & f 0

���
L
+
���f N,s,(

0[Z ] & f 0

���
2

L

.
���f N,s,(

0[Z ] & f 0

���
L

# +n .

With % > p/2, (46) is satisfied. Aggregating the sum of I N,s,( over N, s and " , we have

I n =
N nX

N =1

⇧(N | Y (n ) , An )
snX

s=1

⇧(s | Y (n ) , An , N )
X

( 2Vp ,s

⇧(" | Y (n ) , An , N, s)I n,s,( + oP (1)

=
N nX

N =1

⇧(N | Y (n ) , An )
snX

s=1

⇧(s | Y (n ) , An , N )
X

( 2Vp ,s

⇧(" | Y (n ) , An , N, s)(1 + o(1))e2t 2kf 0k2
L+ oP (1) + oP (1).

As a result, we have I n ) e2t 2kf 0k2
L for all t " R as n ) * , which concludes the proof for the L 2-norm functional

case.


