Appendix

A provides the detailed derivation of the updates for Algorithm 1.
B provides the proofs of theorems stated in Section 3.
C provides details on the simulated data in Section 4.

A Derivation of the Nodewise Tensor Lasso Estimator

A. 1 Off-Diagonal updates

For $1 \leq i_{k}<j_{k} \leq m_{k}, T_{i_{k} j_{k}}\left(\boldsymbol{\Psi}_{k}^{\text {off }}\right)$ can be computed in closed form:

$$
\begin{equation*}
\left(T_{i_{k} j_{k}}\left(\boldsymbol{\Psi}_{k}\right)\right)_{i_{k} j_{k}}^{\text {off }}=\frac{S_{\frac{\lambda_{k}}{N}}\left(F_{\boldsymbol{X}_{,\left\{\Psi_{k}\right\}_{k=1}^{K}}^{K}}\right)}{\left(\frac{1}{N} \boldsymbol{\mathcal { X }}_{(k)} \boldsymbol{\mathcal { X }}_{(k)}^{T}\right)_{i_{k} i_{k}}+\left(\frac{1}{N} \boldsymbol{\mathcal { X }}_{(k)} \boldsymbol{\mathcal { X }}_{(k)}^{T}\right)_{j_{k} j_{k}}}, \tag{9}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
F_{\mathcal{X},\left\{\boldsymbol{\Psi}_{k}\right\}_{k=1}^{K}}=-\frac{1}{N}(& \left(\left(\mathcal{W}_{(k)} \circ \boldsymbol{\mathcal { X }}_{(k)}\right) \boldsymbol{\mathcal { X }}_{(k)}^{T}\right)_{i_{k} j_{k}}+\left(\left(\mathcal{W}_{(k)} \circ \boldsymbol{\mathcal { X }}_{(k)}\right) \boldsymbol{\mathcal { X }}_{(k)}^{T}\right)_{j_{k} i_{k}} \\
& +\left(\boldsymbol{\mathcal { X }}_{(k)}\left(\boldsymbol{\mathcal { X }} \times_{k} \boldsymbol{\Psi}_{k}^{\mathrm{off}, i_{k} j_{k}}\right)_{(k)}^{T}\right)_{j_{k} i_{k}}+\left(\boldsymbol{\mathcal { X }}_{(k)}\left(\boldsymbol{\mathcal { X }} \times_{k} \boldsymbol{\Psi}_{k}^{\mathrm{off}, i_{k} j_{k}}\right)_{(k)}^{T}\right)_{i_{k} j_{k}} \\
& +\sum_{l \neq k}\left(\boldsymbol{\mathcal { X }}_{(k)}\left(\boldsymbol{\mathcal { X }} \times_{l} \boldsymbol{\Psi}_{l}^{\mathrm{off}}\right)_{(k)}^{T}\right)_{i_{k} j_{k}}+\sum_{l \neq k}\left(\boldsymbol{\mathcal { X }}_{(k)}\left(\boldsymbol{\mathcal { X }} \times_{l} \boldsymbol{\Psi}_{l}^{\mathrm{off}}\right)_{(k)}^{T}\right)_{j_{k} i_{k}}
\end{array}\right) .
$$

Here the o operator denotes the Hadamard product between matrices; $\boldsymbol{\Psi}_{k}^{\text {off } i_{k} j_{k}}$ is $\boldsymbol{\Psi}_{k}^{\text {off }}$ with the $\left(i_{k}, j_{k}\right)$ entry being zero; and $S_{\lambda}(x):=\operatorname{sign}(x)(|x|-\lambda)_{+}$is the soft-thresholding operator.

A. 2 Diagonal updates

For \mathcal{W},

$$
\begin{equation*}
(T(\mathcal{W}))_{i_{[1: K]}}=\frac{-\left(\boldsymbol{\mathcal { X }}_{(N)}^{T} \boldsymbol{\mathcal { X }}_{(N)}\right)_{i_{[1: K]}}+\sqrt{\left(\boldsymbol{\mathcal { X }}_{(N)}^{T} \boldsymbol{\mathcal { Y }}_{(N)}\right)_{i_{[1: K]}}^{2}+4\left(\boldsymbol{\mathcal { X }}_{(N)} \boldsymbol{\mathcal { X }}_{(N)}^{T}\right)_{i_{[1: K]}}}}{2\left(\boldsymbol{\mathcal { X }}_{(N)} \boldsymbol{\mathcal { X }}_{(N)}^{T}\right)_{i_{[1: K]}}} \tag{10}
\end{equation*}
$$

Here we define $\mathcal{Y}:=\sum_{k=1}^{K}\left(\mathcal{X} \times_{k} \Psi_{k}^{\text {off }}\right)$. Equations (9) and (10) give necessary ingredients for designing a coordinate descent approach to minimizing the objective function in (4). The optimization procedure is summarized in Algorithm 1.

A. 3 Derivation of updates

Note that for $1 \leq i_{k}<j_{k} \leq m_{k}, 1 \leq k \leq K$,

$$
\begin{aligned}
& Q_{N}\left(\left\{\boldsymbol{\Psi}_{k}\right\}_{k=1}^{K}\right) \\
& =(N / 2)\left(\sum_{i_{[1: k-1, k+1: K]}}\left(\boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}}{ }^{2}+\boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}}{ }^{2}\right)\right)\left(\left(\boldsymbol{\Psi}_{k}\right)_{i_{k} j_{k}}\right)^{2} \\
& +N F_{\mathcal{X},\{\boldsymbol{\Psi}\}_{k=1}^{K}}\left(\boldsymbol{\Psi}_{k}\right)_{i_{k} j_{k}}+\lambda_{k}\left|\left(\boldsymbol{\Psi}_{k}\right)_{i_{k} j_{k}}\right| \\
& + \text { terms independent of }\left(\boldsymbol{\Psi}_{k}\right)_{i_{k} j_{k}},
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{\mathcal{X},\{\Psi\}_{k=1}^{K}}=-\sum_{i_{[1: k-1, k+1: K]}}\left(\mathcal{W}_{i_{[1: K]}}^{i_{k}} \mathcal{X}_{i_{[1: K]}}^{i_{k}} \mathcal{X}_{i_{[1: K]}}^{j_{k}}+\mathcal{W}_{i_{[1: K]}}^{j_{k}} \mathcal{X}_{i_{[1: K]}}^{j_{k}} \mathcal{X}_{i_{[1: K]}}^{i_{k}}\right. \\
& +\left(\boldsymbol{\Psi}_{k}\right)_{i_{k}, \backslash\left\{i_{k}, j_{k}\right\}}^{T} \mathcal{X}_{i_{[1: K]}}^{\left\{i_{k}, j_{k}\right\}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}} \\
& +\left(\boldsymbol{\Psi}_{k}\right)_{j_{k}, \backslash\left\{i_{k}, j_{k}\right\}}^{T} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{\left\{i_{k}, j_{k}\right\}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}} \\
& +\sum_{l \in[1: k-1, k+1: K]}\left(\boldsymbol{\Psi}_{l}\right)_{i_{l}, \backslash i_{l}}^{T} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}, \backslash i_{l}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}} \\
& \left.+\sum_{l \in[1: k-1, k+1: K]}\left(\boldsymbol{\Psi}_{l}\right)_{i_{l}, \backslash i_{l}}^{T} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}, \backslash i_{l}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}}\right) .
\end{aligned}
$$

Here $\boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}}$ denotes the element of $\boldsymbol{\mathcal { X }}$ indexed by $i_{[1: K]}$ except that the k th index is replaced by i_{k} and $\boldsymbol{\mathcal { X }}_{i_{[1 / K]}}^{i_{k}, j_{l}}$ denotes the element of \mathcal{X} indexed by $i_{[1: K]}$ except that the k, l th indices are replaced by i_{k}, j_{l}. Note the following equivalence:

$$
\begin{aligned}
& \left.\sum_{i_{[1: k-1, k+1: K]}} \mathcal{W}_{i_{[1: K]}}^{i_{k}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}}=\left(\left(\boldsymbol{\mathcal { W }}_{(k)} \circ \boldsymbol{\mathcal { X }}_{(k)}\right) \boldsymbol{\mathcal { X }}_{(k)}^{T}\right)\right)_{i_{k} j_{k}} \\
& \sum_{i_{[1: k-1, k+1: K]}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}}=\left(\boldsymbol{\mathcal { X }}_{(k)} \boldsymbol{\mathcal { X }}_{(k)}^{T}\right)_{i_{k} j_{k}} \\
& \sum_{i_{[1: k-1, k+1: K]}}\left(\boldsymbol{\Psi}_{l}\right)_{i_{l},}^{T} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{i_{k}, .} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{j_{k}}=\left(\boldsymbol{\mathcal { X }}_{(k)}\left(\boldsymbol{\mathcal { X }} \times_{l} \boldsymbol{\Psi}_{l}\right)_{(k)}^{T}\right)_{j_{k} i_{k}},
\end{aligned}
$$

where \mathcal{W} is a tensor of the same dimensions of \mathcal{X}, formed by tensorize values in \mathcal{W}, and in the case of $N>1$ the last mode of \mathcal{W} is the observation mode similarly to \mathcal{X} but with exact replicates. Using the tensor notation and standard sub-differential method, Equation (9) then follows.
For $\mathcal{W}_{\left.i_{[1: K]}\right]}$, using similar tensor operations,

$$
\begin{aligned}
& \frac{\partial}{\partial \mathcal{W}_{i_{[1: K]}}} Q_{N}\left(\mathcal{W},\left\{\boldsymbol{\Psi}_{k}^{\text {off }}\right\}_{k=1}^{K}\right)=0 \\
& \left.\Longleftrightarrow-\frac{1}{\mathcal{W}_{i_{[1: K]}}}+\mathcal{W}_{i_{[1: K]}}^{2} \boldsymbol{\mathcal { X }}_{i_{[1: K]}}^{2}+\mathcal{W}_{i_{[1: K]}}\left(\boldsymbol{\mathcal { X }}_{i_{[1: K]}} \sum_{k=1}^{K}\left(\boldsymbol{\mathcal { X }} \times_{k} \boldsymbol{\Psi}_{k}^{\text {off }}\right)_{i_{[1: K]}}\right)\right)=0 \\
& \Longleftrightarrow \mathcal{W}_{i_{[1: K]}}^{2}\left(\boldsymbol{\mathcal { X }}_{(N)}^{T} \boldsymbol{\mathcal { X }}_{(N)}\right)_{i_{[1: K]}}+\mathcal{W}_{i_{[1: K]}}\left(\boldsymbol{\mathcal { X }}_{(N)}^{T} \sum_{k=1}^{K}\left(\boldsymbol{\mathcal { X }} \times_{k} \boldsymbol{\Psi}_{k}^{\text {off }}\right)\right)_{i_{[1: K]}}-1=0
\end{aligned}
$$

which is a quadratic equation in $\mathcal{W}_{i_{[1: K]}}$ and since $\mathcal{W}_{i_{[1: K]}}>0$, so the positive root has been retained as the solution. Note that the estimation for one entry of \mathcal{W} is independent of the other entries. So during the estimation process we update all the entries at once by noting that $\operatorname{diag}\left(\boldsymbol{\mathcal { X }}_{(N)}^{T} \boldsymbol{\mathcal { X }}_{(N)}\right)=\left(\left(\boldsymbol{\mathcal { X }}_{(N)}^{T} \boldsymbol{\mathcal { X }}_{(N)}\right)_{i_{[1: K]}}, \forall i_{[1: K]}\right)$.

B Proofs of Main Theorems

We first list some properties of the loss function.
Lemma B.1. The following is true for the loss function:
(i) There exist constants $0<\Lambda_{\text {min }}^{L} \leq \Lambda_{\text {max }}^{L}<\infty$ such that for $\mathcal{S}_{k}:=\left\{\left(i_{k}, j_{k}\right): 1 \leq i_{k}<j_{k} \leq m_{k}\right\}, k=1, \ldots, K$,

$$
\Lambda_{\min }^{L} \leq \lambda_{\min }\left(\bar{L}_{\mathcal{S}_{k}, \mathcal{S}_{k}}^{\prime}(\overline{\boldsymbol{\beta}})\right) \leq \lambda_{\max }\left(\bar{L}_{\mathcal{S}_{k}, \mathcal{S}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right) \leq \Lambda_{\max }^{L}
$$

(ii) There exists a constant $K(\overline{\boldsymbol{\beta}})<\infty$ such that for all $1 \leq i_{k}<j_{k} \leq m_{k}, \bar{L}_{i_{k} j_{k}, i_{k} j_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) \leq K(\overline{\boldsymbol{\beta}})$
(iii) There exist constant $M_{1}(\overline{\boldsymbol{\beta}}), M_{2}(\overline{\boldsymbol{\beta}})<\infty$, such that for any $1 \leq i_{k}<j_{k} \leq m_{k}$

$$
\operatorname{Var}_{\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}}\left(L_{i_{k} j_{k}}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right) \leq M_{1}(\overline{\boldsymbol{\beta}}), \operatorname{Var}_{\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}}\left(L_{i_{k} j_{k}, i_{k} j_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right) \leq M_{2}(\overline{\boldsymbol{\beta}})
$$

(iv) There exists a constant $0<g(\overline{\boldsymbol{\beta}})<\infty$, such that for all $(i, j) \in \mathcal{A}_{k}$

$$
\bar{L}_{i j, i j}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})-\bar{L}_{i j, \mathcal{A}_{k}^{i j}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\left[\bar{L}_{\mathcal{A}_{k}^{i j}, \mathcal{A}_{k}^{i j}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\right]^{-1} \bar{L}_{\mathcal{A}_{k}^{i j}, i j}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}) \geq g(\overline{\boldsymbol{\beta}})
$$

where $\mathcal{A}_{k}^{i j}:=\mathcal{A}_{k} /\{(i, j)\}$.
(v) There exists a constant $M(\overline{\boldsymbol{\beta}})<\infty$, such that for any $(i, j) \in \mathcal{A}_{k}^{c}$

$$
\left\|\bar{L}_{i j, \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\left[\bar{L}_{\mathcal{A}_{k}, \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\right]^{-1}\right\|_{2} \leq M(\overline{\boldsymbol{\beta}}) .
$$

proof of Lemma B.1. We prove $(i) .(i i-v)$ are then direct consequences, and the proofs follow from the proofs of B1.1-B1.4 in Peng et al. (2009), with the modifications being that the indexing is now with respect to each k for $1 \leq k \leq K$.
Consider the loss function in matrix form as in (5). Then $\bar{L}_{\mathcal{S}_{k}, \mathcal{S}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}})$ is equivalent to $\frac{\partial^{2}}{\partial \boldsymbol{\Psi}_{k}^{\text {off }} \partial \boldsymbol{\Psi}_{k}^{\text {off }}} L\left(\boldsymbol{\mathcal { W }},\left\{\boldsymbol{\Psi}_{k}^{\text {off }}\right\}_{k=1}^{K}\right)$, which is

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \boldsymbol{\Psi}_{k}^{\text {off }} \partial \boldsymbol{\Psi}_{k}^{\text {off }}}(\left.\operatorname{tr}\left(\mathbf{\Psi}_{k}^{T} \mathbf{S} \boldsymbol{\Psi}_{k}\right)+\text { first order terms in } \boldsymbol{\Psi}_{k}+\text { terms independent of } \boldsymbol{\Psi}_{k}\right) \\
&= \frac{\partial^{2}}{\partial \boldsymbol{\Psi}_{k}^{\text {off }} \partial \mathbf{\Psi}_{k}^{\text {off }}}\left(\operatorname{tr}\left(\left(\mathbf{\Psi}_{k}^{\text {off }}+\operatorname{diag}\left(\mathbf{\Psi}_{k}\right)\right)^{T} \mathbf{S}\left(\mathbf{\Psi}_{k}^{\text {off }}+\operatorname{diag}\left(\mathbf{\Psi}_{k}\right)\right)\right)+\text { first order terms in } \boldsymbol{\Psi}_{k}^{\text {off }}\right. \\
&\left.\quad+\text { terms independent of } \boldsymbol{\Psi}_{k}^{\text {off }}\right) \\
&= \frac{\partial^{2}}{\partial \boldsymbol{\Psi}_{k}^{\text {off }} \partial \mathbf{\Psi}_{k}^{\text {off }}}\left(\operatorname{tr}\left(\left(\mathbf{\Psi}_{k}^{\text {off }}\right)^{T} \mathbf{S} \boldsymbol{\Psi}_{k}^{\text {off }}\right)+\text { first order terms in } \boldsymbol{\Psi}_{k}^{\text {off }}+\text { terms independent of } \boldsymbol{\Psi}_{k}^{\text {off }}\right) \\
&=\mathbf{S}=\frac{1}{N} \operatorname{vec}(\boldsymbol{\mathcal { X }})^{T} \operatorname{vec}(\boldsymbol{\mathcal { X }}) .
\end{aligned}
$$

Thus $\bar{L}_{\mathcal{S}_{k}, \mathcal{S}_{k}}^{\prime \prime}(\boldsymbol{\beta})=E_{\mathcal{W}, \boldsymbol{\beta}}(\mathbf{S})$. Then for any non-zero $\mathbf{a} \in \mathbb{R}^{p}$, we have

$$
\mathbf{a}^{T} \bar{L}_{\mathcal{S}_{k}, \mathcal{S}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) \mathbf{a}=\mathbf{a}^{T} \overline{\boldsymbol{\Sigma}} \mathbf{a} \geq\|\mathbf{a}\|_{2}^{2} \lambda_{\min }(\overline{\boldsymbol{\Sigma}})
$$

Similarly, $\mathbf{a}^{T} \bar{L}_{\mathcal{S}_{k}, \mathcal{S}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) \mathbf{a} \leq\|\mathbf{a}\|_{2}^{2} \lambda_{\max }(\overline{\boldsymbol{\Sigma}})$. By (A2), $\overline{\boldsymbol{\Sigma}}$ has bounded eigenvalues, thus the lemma is proved.

Lemma B.2. Suppose conditions (A1-A2) hold, then for any $\eta>0$, there exist constant $c_{0, \eta}, c_{1, \eta}, c_{2, \eta}, c_{3, \eta}$, such that for any $u \in \mathbb{R}^{q_{k}}$ the following events hold with probability at least $1-O(\exp (-\eta \log p))$ for sufficiently large N :
(i) $\left\|L_{N, \mathcal{A}_{k}}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{2} \leq c_{0, \eta} \sqrt{q_{k} \frac{\log p}{N}}$
(ii) $\left|u^{T} L_{N, \mathcal{A}_{k}}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right| \leq c_{1, \eta}\|u\|_{2} \sqrt{q_{k} \frac{\log p}{N}}$
(iii) $\left|u^{T} L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \mathcal{X}) u-u^{T} \bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u\right| \leq c_{2, \eta}\|u\|_{2}^{2} q_{k} \sqrt{\frac{\log p}{N}}$
(iv) $\left|L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u-\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u\right| \leq c_{3, \eta}\|u\|_{2}^{2} q_{k} \sqrt{\frac{\log p}{N}}$
proof of Lemma B.2. (i) By Cauchy-Schwartz inequality,

$$
\left\|L_{N, \mathcal{A}_{k}}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{2} \leq \sqrt{q_{k}} \max _{i \in \mathcal{A}_{k}}\left|L_{N, i}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \mathcal{X})\right|
$$

Then note that

$$
\begin{aligned}
& L_{N, i}^{\prime}(\mathcal{W}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }}) \\
& =\sum_{i_{[1: k-1, k+1: K]}}\left(e_{i_{[1: k-1]}, p, i_{[k+1: K]}}(\boldsymbol{\mathcal { W }}, \boldsymbol{\beta}) \boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, q, i_{[k+1: K]}}+e_{i_{[1: k-1]}, q, i_{[k+1: K]}}(\boldsymbol{\mathcal { W }}, \boldsymbol{\beta}) \boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, p, i_{[k+1: K]}}\right),
\end{aligned}
$$

where $e_{i_{[1: k-1]}, p, i_{[k+1: K]}} \boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, q, i_{[k+1: K]}}(\mathcal{W}, \boldsymbol{\beta})$ is defined by

$$
w_{i_{[1: k-1]}, p, i_{[k+1: K]}} \boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, p, i_{[k+1: K]}}+\sum_{j_{k} \neq p}\left(\boldsymbol{\Psi}_{k}\right)_{p, j_{k}} \boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, j_{k}, i_{[k+1: K]}}+\sum_{l \neq k} \sum_{j_{l} \neq i_{l}}\left(\boldsymbol{\Psi}_{l}\right)_{i_{l}, j_{l}} \boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, p, i_{[k+1: K]}} .
$$

Then evaluated at the true parameter values $(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})$, we have $e_{i_{[1: k-1]}, p, i_{[k+1: K]}}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})$ uncorrelated with $\boldsymbol{\mathcal { X }}_{i_{[1: k-1]}, \backslash p, i_{[k+1: K]}}$ and $E_{(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})}\left(e_{i_{[1: k-1]}, p, i_{[k+1: K]}}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\right)=0$. Also, since $\boldsymbol{\mathcal { X }}$ is subgaussian and $\operatorname{Var}\left(L_{N, i}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right)$ is bounded by Lemma C.1. $\forall i, L_{N, i}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})$ has subexponential tails. Thus, by Bernstein inequality,

$$
\begin{aligned}
& P\left(\left\|L_{N, \mathcal{A}_{k}}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{2} \leq c_{0, \eta} \sqrt{q_{k} \frac{\log p}{N}}\right) \\
& \geq P\left(\sqrt{q_{k}} \max _{i \in \mathcal{A}_{k}}\left|L_{N, i}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right| \leq c_{0, \eta} \sqrt{q_{k} \frac{\log p}{N}}\right) \geq 1-O(\exp (-\eta \log p))
\end{aligned}
$$

(iii) By Cauchy-Schwartz,

$$
\begin{aligned}
& \left|u^{T} L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u-u^{T} \bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u\right| \\
& \leq\|u\|_{2}\left\|u^{T} L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-u^{T} \bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right\|_{2} \\
& \leq\|u\|_{2} \sqrt{q_{k}} \max _{i}\left|u^{T} L_{N, \mathcal{A}_{k}, i}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-u^{T} \bar{L}_{\mathcal{A}_{k}, i}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right| \\
& =\|u\|_{2} \sqrt{q_{k}}\left|u^{T} L_{N, \mathcal{A}_{k}, i_{\max }}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-u^{T} \bar{L}_{\mathcal{A}_{k}, i_{\max }}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right| \\
& =\|u\|_{2} \sqrt{q_{k}}\left|\sum_{j=1}^{q_{k}}\left(u_{j} L_{N, j, i_{\max }}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-u_{j} \bar{L}_{j, i_{\max }}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right)\right| \\
& \left.\leq\|u\|_{2} q_{k}\left|u_{j_{\max }}\right| \mid L_{N, j_{\max }, i_{\max }}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\bar{L}_{j_{\max }^{\prime}, i_{\max }}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right) \mid \\
& \left.\leq\|u\|_{2}^{2} q_{k} \mid L_{N, j_{\max }, i_{\max }}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \mathcal{X})-\bar{L}_{j_{\max }^{\prime}, i_{\max }}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right) \mid
\end{aligned}
$$

Then by Bernstein inequality,

$$
\begin{aligned}
& P\left(\left|u^{T} L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u-u^{T} \bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u\right| \leq c_{2, \eta}\|u\|_{2}^{2} q_{k} \sqrt{\frac{\log p}{N}}\right) \\
& \left.\geq P\left(\|u\|_{2}^{2} q_{k} \mid L_{N, j_{\max }, i_{\max }}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\bar{L}_{j_{\max }, i_{\max }}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right) \left\lvert\, \leq c_{2, \eta}\|u\|_{2}^{2} q_{k} \sqrt{\frac{\log p}{N}}\right.\right) \\
& \geq 1-O(\exp (-\eta \log p))
\end{aligned}
$$

(ii) and (iv) can be proved using similar arguments.

Lemma C.3. and C.4. are used later to prove Theorem 1.
Lemma B.3. Assuming conditions of Theorem 1. Then there exists a constant $C_{1}(\overline{\boldsymbol{\beta}})>0$ such that for any $\eta>0$, there exists a global minimizer of the restricted problem (8) within the disc:

$$
\left\{\boldsymbol{\beta}:\|\boldsymbol{\beta}-\overline{\boldsymbol{\beta}}\|_{2} \leq C_{1}(\overline{\boldsymbol{\beta}}) \sqrt{K} \max _{k} \sqrt{q_{k}} \lambda_{N, k}\right\}
$$

with probability at least $1-O(\exp (-\eta \log p))$ for sufficiently large N.
proof of Lemma B.3. Let $\alpha_{N}=\max _{k} \sqrt{q_{k}} \lambda_{N, k}$. Further for $1 \leq k \leq K$ let $C_{k}>0$ and $u^{k} \in \mathbb{R}^{m_{k}\left(m_{k}-1\right) / 2}$ such that $u_{\mathcal{A}_{k}^{c}}^{k}=0,\left\|u^{k}\right\|_{2}=C_{k}$, and $u=\left(u_{1}, \ldots, u_{K}\right)$ with $\sqrt{K} \min _{k} C_{k} \leq\|u\|_{2} \leq \sqrt{K} \max _{k} C_{k}$.
Then by Cauchy-Schwartz and triangle inequality, we have

$$
\left\|\overline{\boldsymbol{\beta}}^{k}+\alpha_{N} u^{k}-\alpha_{N} u^{k}\right\|_{1} \leq\left\|\overline{\boldsymbol{\beta}}^{k}+\alpha_{N} u^{k}\right\|_{1}+\alpha_{N}\left\|u^{k}\right\|_{1}
$$

and

$$
\left\|\overline{\boldsymbol{\beta}}^{k}\right\|_{1}-\left\|\overline{\boldsymbol{\beta}}^{k}+\alpha_{N} u^{k}\right\|_{1} \leq \alpha_{N}\left\|u^{k}\right\|_{1} \leq \alpha_{N} \sqrt{q_{k}}\left\|u^{k}\right\|_{2}=C_{k} \alpha_{N} \sqrt{q_{k}}
$$

Thus,

$$
\begin{aligned}
& Q_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \boldsymbol{\mathcal { X }},\left\{\lambda_{N, k}\right\}_{k=1}^{K}\right)-Q_{N}\left(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }},\left\{\lambda_{N, k}\right\}_{k=1}^{K}\right) \\
& =L_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \mathcal{X}\right)-L_{N}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\sum_{k=1}^{K} \lambda_{N, k}\left(\left\|\overline{\boldsymbol{\beta}}^{k}\right\|_{1}-\left\|\overline{\boldsymbol{\beta}}^{k}+\alpha_{N} u^{k}\right\|_{1}\right) \\
& \geq L_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \boldsymbol{\mathcal { X }}\right)-L_{N}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\sum_{k=1}^{K} \lambda_{N, k} C_{k} \alpha_{N} \sqrt{q_{k}} \\
& \geq L_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \boldsymbol{\mathcal { X }}\right)-L_{N}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\alpha_{N} K \max _{k} C_{k} \sqrt{q_{k}} \lambda_{N, k} \\
& \geq L_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \boldsymbol{\mathcal { X }}\right)-L_{N}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-K \alpha_{N}^{2} \max _{k} C_{k} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
& L_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \boldsymbol{\mathcal { X }}\right)-L_{N}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})=\alpha_{N} u_{\mathcal{A}}^{T} L_{N, \mathcal{A}}^{\prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})+\frac{1}{2} \alpha_{N}^{2} u_{\mathcal{A}}^{T} L_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}} \\
& =\alpha_{N} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} L_{N, \mathcal{A}_{k}}^{\prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})+\frac{1}{2} \alpha_{N}^{2} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}_{k}}^{k} \\
& =\alpha_{N} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} L_{N, \mathcal{A}_{k}}^{\prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})+\frac{1}{2} \alpha_{N}^{2} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T}\left(L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\bar{L}_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right) u_{\mathcal{A}_{k}}^{k} \\
& +\frac{1}{2} \alpha_{N}^{2} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} \bar{L}_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}_{k}}^{k} \\
& \geq \frac{1}{2} \alpha_{N}^{2} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} \bar{L}_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}_{k}}^{k}-\alpha_{N} K\left(\max _{k} c_{1, \eta}\left\|u_{\mathcal{A}_{k}}^{k}\right\|_{2} \sqrt{q_{k} \frac{\log p}{N}}\right) \\
& -\frac{1}{2} \alpha_{N}^{2} K\left(\max _{k} c_{2, \eta}\left\|u_{\mathcal{A}_{k}}^{k}\right\|_{2}^{2} q_{k} \sqrt{\frac{\log p}{N}}\right) .
\end{aligned}
$$

Here the first equality is due to the second order expansion of the loss function and the inequality is due to Lemma B.2. For sufficiently large N, by assumption that $\lambda_{N, k} \sqrt{N / \log p} \rightarrow \infty$ if $m_{k} \rightarrow \infty$ and $\sqrt{\log p / N}=o(1)$, the second term in the last line above is $o\left(\alpha_{N} \sqrt{q_{k}} \lambda_{N, k}\right)=o\left(\alpha_{N}^{2}\right)$; the last term is $o\left(\alpha_{N}^{2}\right)$. Therefore, for sufficiently large N

$$
\begin{aligned}
Q_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \boldsymbol{\mathcal { X }},\left\{\lambda_{N, k}\right\}_{k=1}^{K}\right)-Q_{N}\left(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }},\left\{\lambda_{N, k}\right\}_{k=1}^{K}\right) & \geq \frac{1}{2} \alpha_{N}^{2} \sum_{k=1}^{K}\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} \bar{L}_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}_{k}}^{k} \\
& -K \alpha_{N}^{2} \max _{k} C_{k} \\
& \geq \frac{1}{2} \alpha_{N}^{2} K \min _{k}\left(\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} \bar{L}_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}_{k}}^{k}\right) \\
& -K \alpha_{N}^{2} \max _{k} C_{k},
\end{aligned}
$$

with probability at least $1-O\left(N^{-\eta}\right)$. By Lemma B.1., for each $k,\left(u_{\mathcal{A}_{k}}^{k}\right)^{T} \bar{L}_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}_{k}}^{k} \geq \Lambda_{\text {min }}^{L}\left\|u_{\mathcal{A}_{k}}^{k}\right\|_{2}^{2}=$ $\Lambda_{\min }^{L}\left(C_{k}\right)^{2}$. So, if we choose $\min _{k} C_{k}$ and $\max _{k} C_{k}$ such that the upper bound is minimized, then for N sufficiently
large, the following holds

$$
\inf _{u: u_{\left(\mathcal{A}_{k}\right)}=0,\left\|u^{k}\right\|_{2}=C_{k}, k=1, \ldots, K} Q_{N}\left(\overline{\boldsymbol{\beta}}+\alpha_{N} u, \mathcal{X},\left\{\lambda_{N, k}\right\}_{k=1}^{K}\right)>Q_{N}\left(\overline{\boldsymbol{\beta}}, \mathcal{X},\left\{\lambda_{N, k}\right\}_{k=1}^{K}\right),
$$

with probability at least $1-O(\exp (-\eta \log p))$, which means any solution to the problem defined in (8) is within the disc $\left\{\boldsymbol{\beta}:\|\boldsymbol{\beta}-\overline{\boldsymbol{\beta}}\|_{2} \leq \alpha_{N}\|u\|_{2} \leq \alpha_{N} \sqrt{K} \max _{k} C_{k}\right\}$ with probability at least $1-O(\exp (-\eta \log p))$.

Lemma B.4. Assuming conditions of Theorems 1. Then there exists a constant $C_{2}(\overline{\boldsymbol{\beta}})>0$, such that for any $\eta>0$, for sufficiently large N, the following event holds with probability at least $1-O(\exp (-\eta \log p))$: if for any $\boldsymbol{\beta} \in S=\left\{\boldsymbol{\beta}:\|\boldsymbol{\beta}-\overline{\boldsymbol{\beta}}\|_{2} \geq C_{2}(\overline{\boldsymbol{\beta}}) \sqrt{K} \max _{k} \sqrt{q_{k}} \lambda_{N, k}, \boldsymbol{\beta}_{\mathcal{A}_{N}^{c}}=0\right\}$, then $\left\|L_{N, \mathcal{A}_{N}}^{\prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{2}>\sqrt{K} \max _{k} \sqrt{q_{k}} \lambda_{N, k}$.
proof of Lemma B.4. Let $\alpha_{N}=\max _{k} \sqrt{q_{k}} \lambda_{N, k}$. For $\boldsymbol{\beta} \in S$, we have $\boldsymbol{\beta}=\overline{\boldsymbol{\beta}}+\alpha_{N} u$, with $u_{(\mathcal{A})^{c}}$ and $\|u\|_{2} \geq C_{2}(\overline{\boldsymbol{\beta}})$. Note that by Taylor expansion of $L_{N, \mathcal{A}}^{\prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})$ at $\overline{\boldsymbol{\beta}}$

$$
\begin{aligned}
L_{N, \mathcal{A}}^{\prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})= & L_{N, \mathcal{A}}^{\prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})+\alpha_{N} L_{N, \mathcal{A}}^{\prime \prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}} \\
= & L_{N, \mathcal{A}}^{\prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})+\alpha_{N}\left(L_{N, \mathcal{A}}^{\prime \prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})-\bar{L}_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\boldsymbol{\beta}})\right) u_{\mathcal{A}} \\
& +\alpha_{N} \bar{L}_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u_{\mathcal{A}} .
\end{aligned}
$$

By triangle inequality and similar proof strategies as in Lemma B.3., for sufficiently large N

$$
\begin{aligned}
\left\|L_{N, \mathcal{A}}^{\prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})\right\|_{2} \geq & \left\|L_{N, \mathcal{A}}^{\prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }})\right\|_{2}+\alpha_{N}\left\|L_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\mathcal{W}}, \boldsymbol{\beta}, \boldsymbol{\mathcal { X }}) u_{\mathcal{A}}-\bar{L}_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u_{\mathcal{A}}\right\|_{2} \\
& +\alpha_{N}\left\|\bar{L}_{N, \mathcal{A} \mathcal{A}}^{\prime}(\overline{\boldsymbol{\beta}}) u_{\mathcal{A}}\right\|_{2} \\
\geq & \alpha_{N}\left\|\bar{L}_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u_{\mathcal{A}}\right\|_{2}+o\left(\alpha_{N}\right)
\end{aligned}
$$

with probability at least $1-O(\exp (-\eta \log p))$. By Lemma B.1., $\left\|\bar{L}_{N, \mathcal{A} \mathcal{A}}^{\prime \prime}(\overline{\boldsymbol{\beta}}) u_{\mathcal{A}}\right\|_{2} \geq \Lambda_{\min }^{L}(\overline{\boldsymbol{\beta}})\left\|u_{\mathcal{A}}\right\|_{2}$. Therefore, taking $C_{2}(\overline{\boldsymbol{\beta}})$ to be $1 / \Lambda_{\text {min }}^{L}(\overline{\boldsymbol{\beta}})+\epsilon$ completes the proof.
proof of Theorem 1. By the Karush-Kuhn-Tucker condition, for any solution $\hat{\boldsymbol{\beta}}$ of (8), it satisfies $\left\|L_{N, \mathcal{A}_{k}}^{\prime}(\mathcal{W}, \hat{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{\infty} \leq \lambda_{N, k}$. Thus,

$$
\begin{aligned}
\left\|L_{N, \mathcal{A}_{N}}^{\prime}(\mathcal{W}, \hat{\boldsymbol{\beta}}, \mathcal{X})\right\|_{2} & \leq \sqrt{K} \max _{k}\left\|L_{N, \mathcal{A}_{k}}^{\prime}(\mathcal{W}, \hat{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{2} \\
& \leq \sqrt{K} \max _{k} \sqrt{q_{k}}\left\|L_{N, \mathcal{A}_{k}}^{\prime}(\mathcal{W}, \hat{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})\right\|_{\infty} \\
& \leq \sqrt{K} \max _{k} \sqrt{q_{k}} \lambda_{N, k} .
\end{aligned}
$$

Then by Lemmas B.4., for any $\eta>0$, for N sufficiently large, all solutions of (8) are inside the disc $\{\boldsymbol{\beta}$: $\left.\|\boldsymbol{\beta}-\overline{\boldsymbol{\beta}}\|_{2} \leq C_{2}(\overline{\boldsymbol{\beta}}) \max _{k} \sqrt{q_{k}} \lambda_{N, k}, \boldsymbol{\beta}_{\mathcal{A}_{N}^{c}}=0\right\}$ with probability at least $1-O(\exp (-\eta \log p))$. If we further assume that $\min _{(i, j) \in \mathcal{A}_{k}}\left|\overline{\boldsymbol{\beta}}_{i, j}\right| \geq 2 C(\overline{\boldsymbol{\beta}}) \max _{k} \sqrt{q_{k}} \lambda_{N, k}$ for each k, then

$$
\begin{aligned}
& 1-O(\exp (-\eta \log p)) \\
& \leq P_{\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}}\left(\left\|\hat{\boldsymbol{\beta}}^{\mathcal{A}}-\overline{\boldsymbol{\beta}}^{\mathcal{A}}\right\|_{2} \leq C_{2}(\overline{\boldsymbol{\beta}}) \max _{k} \sqrt{q_{k}} \lambda_{N, k}, \min _{(i, j) \in \mathcal{A}_{k}}\left|\overline{\boldsymbol{\beta}}_{i, j}\right| \geq 2 C(\overline{\boldsymbol{\beta}}) \max _{k} \sqrt{q_{k}} \lambda_{N, k}, \forall k\right) \\
& \leq P_{\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}}\left(\operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{i_{k} \mathcal{A}_{k}}^{\mathcal{A}_{k}}\right)=\operatorname{sign}\left(\overline{\boldsymbol{\beta}}_{\boldsymbol{i}_{k} j_{k}}^{\mathcal{A}_{k}}\right), \forall\left(i_{k}, j_{k}\right) \in \mathcal{A}_{k}, \forall k\right) .
\end{aligned}
$$

proof of Theorem 2. Let $\mathcal{E}_{N, k}=\left\{\operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{i_{k} j_{k}}^{\mathcal{A}_{k}}\right)=\operatorname{sign}\left(\overline{\boldsymbol{\beta}}_{i_{k} j_{k}}^{\mathcal{A}_{k}}\right)\right\}$. Then by Theorem 1, $P_{\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}}\left(\mathcal{E}_{N, k}\right) \geq 1-$ $O(\exp (-\eta \log p))$ for large N. On $\mathcal{E}_{N, k}$, By the KKT condition and the expansion of $L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right)$ at $\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}$

$$
\begin{aligned}
-\lambda_{N, k} & \operatorname{sign}\left(\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right) \\
& =L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right) \\
& =L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right)+L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }}) v_{N, k} \\
& =\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime} v_{N, k}+L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right)+\left(L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}\right) v_{N, k},
\end{aligned}
$$

where $v_{N, k}=\hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}-\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}$. By rearranging the terms

$$
\begin{align*}
& v_{N, k}= \\
& -\lambda_{N, k}\left[\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}\right]^{-1} \operatorname{sign}\left(\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)-\left[\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}\right]^{-1}\left[L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right)+D_{N, \mathcal{A}_{k} \mathcal{A}_{k}}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right) v_{N, k}\right], \tag{11}
\end{align*}
$$

where $D_{N, \mathcal{A}_{k} \mathcal{A}_{k}}=L_{N, \mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}, \boldsymbol{\mathcal { X }})-\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}$. Next, for fixed $(i, j) \in \mathcal{A}_{k}^{c}$, by expanding $L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{X}\right)$ at $\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}$

$$
\begin{equation*}
L_{N, i j}^{\prime}\left(\overline{\mathcal{W}}, \hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right)=L_{N, i j}^{\prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right)+L_{N, i j, \mathcal{A}_{k}}^{\prime \prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \mathcal{X}\right) v_{N, k} . \tag{12}
\end{equation*}
$$

Then combining (11) and (12) we get

$$
\begin{align*}
& L_{N, i j}^{\prime}\left(\overline{\mathcal{W}}, \hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right) \\
& =-\lambda_{N, k} \bar{L}_{i j, \mathcal{A}_{k}}^{\prime \prime}\left(\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)\left[\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}\right]^{-1} \operatorname{sign}\left(\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)-\bar{L}_{i j, \mathcal{A}_{k}}^{\prime \prime}\left(\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)\left[\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}\right]^{-1} L_{N, \mathcal{A}_{k}}^{\prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right) \\
& +\left[D _ { N , i j , \mathcal { A } _ { k } } \left(\overline{\left.\left.\boldsymbol{\mathcal { W }}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)-\bar{L}_{i j,, \mathcal{A}_{k}}^{\prime \prime}\left(\overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)\left[\bar{L}_{\mathcal{A}_{k} \mathcal{A}_{k}}^{\prime \prime}\right]^{-1} D_{N, \mathcal{A}_{k} \mathcal{A}_{k}}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}\right)\right] v_{N, k}}\right.\right. \tag{13}\\
& +L_{N, i j}^{\prime}\left(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \boldsymbol{\mathcal { X }}\right) .
\end{align*}
$$

By the incoherence condition outlined in condition (A3), for any $(i, j) \in \mathcal{A}_{k}$,

$$
\left|\bar{L}_{i j, \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\left[\bar{L}_{\mathcal{A}_{k}, \mathcal{A}_{k}}^{\prime \prime}(\overline{\mathcal{W}}, \overline{\boldsymbol{\beta}})\right]^{-1} \operatorname{sign}\left(\overline{\boldsymbol{\beta}}_{\mathcal{A}_{k}}\right)\right| \leq \delta<1 .
$$

Thus, following straightforwardly (with the modification that we are considering each \mathcal{A}_{k} instead of \mathcal{A}) from the proofs of Theorem 2 of Peng et al. (2009), the remaining terms in (13) can be shown to be all $o\left(\lambda_{N, k}\right)$, and the event $\max _{(i, j) \in \mathcal{A}_{\mathcal{L}}^{c}}\left|L_{N, i j}^{\prime}\left(\overline{\mathcal{W}}, \hat{\boldsymbol{\beta}}^{\mathcal{A}_{k}}, \mathcal{X}\right)\right|<\lambda_{N, k}$ with probability at least $1-O(\exp (-\eta \log p))$ for sufficiently large N. Thus, it has been proved that for sufficiently large N, no wrong edge will be included for each true edge set \mathcal{A}_{k} and hence, no wrong edge will be included in $\mathcal{A}=\cup_{k} \mathcal{A}_{k}$.
proof of Theorem 3. By Theorem 1 and Theorem 2, with probability tending to 1 , any solution of the restricted problem is also a solution of the original problem. On the other hand, by Theorem 2 and the KKT condition, with probability tending to 1 , any solution of the original problem is also a solution of the restricted problem. Therefore, Theorem 3 follows.

C Simulated Precision Matrix

1. $\mathbf{A R 1}(\rho)$: The covariance matrix of the form $\mathbf{A}=\left(\rho^{|i-j|}\right)_{i j}$ for $\rho \in(0,1)$.
2. Star-Block (SB): A block-diagonal covariance matrix, where each block's precision matrix corresponds to a star-structured graph with $\left(\boldsymbol{\Psi}_{k}\right)_{i j}=1$. Then, for $\rho \in(0,1)$, we have that $\mathbf{A}_{i j}=\rho$ if $(i, j) \in E$ and $\mathbf{A}_{i j}=\rho^{2}$ for $(i, j) \notin E$, where E is the corresponding edge set.
3. Erdos-Renyi random graph (ER): The precision matrix is initialized at $\mathbf{A}=0.25 \mathbf{I}$, and d edges are randomly selected. For the selected edge (i, j), we randomly choose $\psi \in[0.6,0.8]$ and update $\mathbf{A}_{i j}=\mathbf{A}_{j i} \rightarrow$ $\mathbf{A}_{i j}-\psi$ and $\mathbf{A}_{i i} \rightarrow \mathbf{A}_{i i}+\psi, \mathbf{A}_{j j} \rightarrow \mathbf{A}_{j j}+\psi$.
