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Appendix

A provides the detailed derivation of the updates for Algorithm 1.

B provides the proofs of theorems stated in Section 3.

C provides details on the simulated data in Section 4.

A Derivation of the Nodewise Tensor Lasso Estimator

A.1 Off-Diagonal updates
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Here we define Y :=
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. Equations (9) and (10) give necessary ingredients for designing

a coordinate descent approach to minimizing the objective function in (4). The optimization procedure is
summarized in Algorithm 1.
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where W is a tensor of the same dimensions of X , formed by tensorize values in W , and in the case of N > 1

the last mode of W is the observation mode similarly to X but with exact replicates. Using the tensor notation
and standard sub-differential method, Equation (9) then follows.
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B Proofs of Main Theorems

We first list some properties of the loss function.
Lemma B.1. The following is true for the loss function:
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(ii) and (iv) can be proved using similar arguments.

Lemma C.3. and C.4. are used later to prove Theorem 1.
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such that the upper bound is minimized, then for N sufficiently
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large, the following holds
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with probability at least 1�O(exp(�⌘ log p)), which means any solution to the problem defined in (8) is within
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2

 ↵
N

kuk
2

 ↵
N

p
Kmax

k

C
k

} with probability at least 1�O(exp(�⌘ log p)).
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By triangle inequality and similar proof strategies as in Lemma B.3., for sufficiently large N
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proof of Theorem 1. By the Karush-Kuhn-Tucker condition, for any solution ˆ� of (8), it satisfies
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Then by Lemmas B.4., for any ⌘ > 0, for N sufficiently large, all solutions of (8) are inside the disc {� :
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where v
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By the incoherence condition outlined in condition (A3), for any (i, j) 2 A
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Thus, following straightforwardly (with the modification that we are considering each A
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instead of A) from the
proofs of Theorem 2 of Peng et al. (2009), the remaining terms in (13) can be shown to be all o(�
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), and the
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with probability at least 1�O(exp(�⌘ log p)) for sufficiently large
N . Thus, it has been proved that for sufficiently large N , no wrong edge will be included for each true edge set
A

k

and hence, no wrong edge will be included in A = [
k

A
k

.

proof of Theorem 3. By Theorem 1 and Theorem 2, with probability tending to 1, any solution of the restricted
problem is also a solution of the original problem. On the other hand, by Theorem 2 and the KKT condition,
with probability tending to 1, any solution of the original problem is also a solution of the restricted problem.
Therefore, Theorem 3 follows.

C Simulated Precision Matrix

1. AR1(⇢): The covariance matrix of the form A = (⇢|i�j|
)

ij

for ⇢ 2 (0, 1).

2. Star-Block (SB): A block-diagonal covariance matrix, where each block’s precision matrix corresponds
to a star-structured graph with ( 

k

)

ij

= 1. Then, for ⇢ 2 (0, 1), we have that A

ij

= ⇢ if (i, j) 2 E and
A

ij

= ⇢2 for (i, j) 62 E, where E is the corresponding edge set.

3. Erdos-Renyi random graph (ER): The precision matrix is initialized at A = 0.25I, and d edges are
randomly selected. For the selected edge (i, j), we randomly choose  2 [0.6, 0.8] and update A

ij

= A

ji

!
A

ij

�  and A

ii

! A

ii

+  , A
jj
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+  .


