Supplementary Materials for "Finite-Time Error Bounds for Biased Stochastic Approximation with Applications to Q-learning" by G. Wang and G. B. Giannakis

Remark. The equations (1)–(39) and Assumptions 1–4 are referenced with respect to the indexing used in the paper.

A Proof of Proposition 1

We start off the proof by introducing the following auxiliary function

$$g(k,T,\Theta_k) := \Theta_{k+T} - \Theta_k - \epsilon \sum_{j=k}^{k+T-1} f(\Theta_k, X_j), \quad \forall T \ge 1$$

$$\tag{40}$$

which is evidently well defined under our working Assumptions 1 and 3. Regarding the function $g(k, T, \Theta_k)$ above, we present the following useful bound, whose proof details are, however, postponed to Appendix E for readability.

Lemma 2. For any $\Theta_k \in \mathbb{R}^d$, the function $g(k, T, \Theta_k)$ satisfies for all $k \ge 0$

$$||g(k,T,\Theta_k)|| \le \epsilon^2 L^2 T^2 (1+\epsilon L)^{T-2}, \quad \forall T \ge 1.$$
 (41)

On the other hand, note from (8) that

$$g'(k,T,\Theta_k) = \Theta_{k+T} - \Theta_k - \epsilon T \bar{f}(\Theta_k)$$
(42)

which, in conjunction with (40), suggests that we can write

$$g'(k,T,\Theta_k) = g(k,T,\Theta_k) + \epsilon \sum_{\substack{j=k\\j=k}}^{k+T-1} f(\Theta_k,X_j) - \epsilon T\bar{f}(\Theta_k)$$
$$= g(k,T,\Theta_k) + \epsilon \sum_{\substack{j=k\\j=k}}^{k+T-1} \left(f(\Theta_k,X_j) - \bar{f}(\Theta_k) \right).$$
(43)

By taking expectation of both sides of (43) conditioned on the σ -field \mathcal{F}_k , along with the fact that Θ_k is \mathcal{F}_k -measurable, we obtain

$$\mathbb{E}\left[g'(k,T,\Theta_{k})\big|\mathcal{F}_{k}\right] = \mathbb{E}\left[g(k,T,\Theta_{k})\big|\mathcal{F}_{k}\right] + \epsilon \mathbb{E}\left[\sum_{j=k}^{k+T-1} \left(f(\Theta_{k},X_{j}) - \bar{f}(\Theta_{k})\right)\Big|\mathcal{F}_{k}\right] \\ = \mathbb{E}\left[g(k,T,\Theta_{k})\big|\mathcal{F}_{k}\right] + \epsilon T \left(\frac{1}{T}\sum_{j=k}^{k+T-1} \mathbb{E}\left[f(\Theta_{k},X_{j})\big|\mathcal{F}_{k}\right] - \bar{f}(\Theta_{k})\right) \\ \leq \epsilon LT\left[\epsilon LT(1+\epsilon L)^{T-2} + \sigma(T;k)\right] (\|\Theta_{k}\|+1)$$
(44)

where the last inequality follows from Lemma 2 as well as the property of the averaged operator \bar{f} in (7) under our working Assumption 3. This concludes the proof.

B Proof of Theorem 1

We prove this theorem by carefully constructing function for $W'(k, \Theta_k)$ from $W(\Theta_k)$ (recall under our working assumption 2 that $W(\Theta_k)$ exists and satisfies properties (52)—(6c)). Toward this objective, let us start with the following candidate

$$W'(k,\Theta_k) = \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k))$$
(45)

where, to make the dependence of $\Theta_{j\geq k}$ on Θ_k explicit, we maintain the notation $\Theta_j = \Theta_j(k, \Theta_k)$, which is understood as the state of the recursion (1) at time instant $j \geq k$, with an initial condition Θ_k at time instant k.

In the following, we will show that there exists and also determine a value for the parameter $T \in \mathbb{N}^+$ such that the inequalities (11) and (12) are satisfied.

For ease of exposition, we start by proving the second inequality (12). To this end, observe from the definition of $W'(k, \Theta_k)$ in (45) that

$$W'(k+1,\Theta_k + \epsilon f(\Theta_k, X_k)) - W'(k,\Theta_k) = \sum_{j=k+1}^{k+T} W(\Theta_j(k,\Theta_k)) - \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k))$$
$$= W(\Theta_{k+T}(k,\Theta_k)) - W(\Theta_k(k,\Theta_k))$$
$$= W(\Theta_{k+T}(k,\Theta_k)) - W(\Theta_k)$$
(46)

where the last equality is due to the fact that $\Theta_k(k, \Theta_k) = \Theta_k$.

To upper bound the term in (46), we will focus on bound the first term $W(\Theta_{k+T}(k,\Theta_k))$. Recall from (8) that

$$\Theta_{k+T}(k,\Theta_k) = \Theta_k + \epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)$$

based on which we can find the second-order Taylor expansion of $W(\Theta_{k+T}(k,\Theta_k))$ (which is twice differentiable under Assumption 2) around Θ_k , as follows

$$W(\Theta_{k+T}(k,\Theta_k)) = W(\Theta_k) + \left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_k}\right)^\top \left[\epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)\right] + \left[\epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)\right]^\top \nabla^2 W(\Theta'_k) \left[\epsilon T \bar{f}(\Theta_k) + g'(k,T,\Theta_k)\right]$$
(47)

where we have employed the so-called mean-value theorem, suggesting that (47) holds with $\Theta'_k := \Theta_k + \eta [\epsilon T \overline{f}(\Theta_k) + g'(k, T, \Theta_k)]$ for some constant $\eta \in [0, 1]$.

Next, we will pursue an upper bound for each individual term on the right hand side of (47) by conditioning on the σ -field \mathcal{F}_k . Again, using the fact that Θ_k is \mathcal{F}_k -measurable and invoking (6b), we have that

$$\mathbb{E}\left[\epsilon T\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} \bar{f}(\Theta_{k}) \Big| \mathcal{F}_{k}\right] \leq -c_{3} \epsilon L T \|\Theta_{k}\|^{2}.$$

$$\tag{48}$$

One can further verify the following bounds

$$\mathbb{E}\left[\left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right)^{\top}g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right] = \left(\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right)^{\top}\mathbb{E}\left[g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right]$$
$$\leq \left\|\frac{\partial W}{\partial \theta}\Big|_{\Theta_{k}}\right\| \cdot \left\|\mathbb{E}\left[g'(k,T,\Theta_{k})\Big|\mathcal{F}_{k}\right]\right\|$$
(49)

$$\leq c_4 \|\Theta_k\| \cdot \epsilon LT \beta_k(T, \epsilon) (\|\Theta_k\| + 1) \tag{50}$$

$$\leq 2c_4 \epsilon LT \beta_k(T, \epsilon) (\|\Theta_k\|^2 + 1).$$
(51)

In particular, (49) uses the Cauchy-Schwartz inequality, (50) calls for Proposition 1, and the last one follows from the inequality $\|\theta\|(\|\theta\|+1) \le 2(\|\theta\|^2+1)$.

As far as the last term of (46) is concerned, it is clear that

$$\mathbb{E}\left\{\left[\epsilon T \bar{f}(\Theta_{k}) + g'(k, T, \Theta_{k})\right]^{\top} \nabla^{2} W(\Theta_{k}') \left[\epsilon T \bar{f}(\Theta_{k}) + g'(k, T, \Theta_{k})\right] \middle| \mathcal{F}_{k}\right\} \\
\leq c_{4} \mathbb{E}\left[\left\|\epsilon T \bar{f}(\Theta_{k}) + g'(k, T, \Theta_{k})\right\|^{2} \middle| \mathcal{F}_{k}\right] \tag{52}$$

$$\leq 2c_4\epsilon^2 T^2 \left\| \bar{f}(\Theta_k) \right\|^2 + 2c_4 \mathbb{E} \left[\left\| g'(k,T,\Theta_k) \right\|^2 \Big| \mathcal{F}_k \right]$$
(53)

$$\leq 2c_4\epsilon^2 T^2 L^2 \|\Theta_k\|^2 + 2c_4 \mathbb{E}\Big[\left\| g'(k, T, \Theta_k) \right\|^2 \Big| \mathcal{F}_k \Big]$$
(54)

where (52) leverages the upper bound on the Hessian matrix of $W(\theta)$ arising from the property (6c), (53) follows from the inequality $||a + b||^2 \leq 2(||a||^2 + ||b||^2)$ for any real-valued vectors $a, b \in \mathbb{R}^d$, and (54) uses the Lipschitz property of function $\overline{f}(\theta)$ that can be easily verified since $f(\theta, x)$ is Lipschitz in θ .

To further upper bound the last term of (54), we establish the following helpful result whose proof is also postponed to Appendix F for readability.

Lemma 3. The following bound holds for any fixed $\theta_k \in \mathbb{R}^d$

$$\mathbb{E}\Big[\left\|g'(k,T,\theta_k)\right\|^2 |\mathcal{F}_k\Big] \le \epsilon^2 L^2 T^2 \Big[\epsilon^2 L^2 T^2 (1+\epsilon L)^{2T-4} + 12\Big] \|\theta_k\|^2 + 8\epsilon^2 L^2 T^2.$$
(55)

Coming back to inequality (54), as $\mathbb{E}[\Theta_k | \mathcal{F}_k] = \Theta_k$, Lemma 3 now applies. Plugging (55) into (54), we establish an upper bound on the last term of (46) as follows

$$\mathbb{E}\left\{\left[\epsilon T \bar{f}(\Theta_k) + g'(k, T, \Theta_k)\right]^\top \nabla^2 W(\Theta'_k) \left[\epsilon T \bar{f}(\Theta_k) + g'(k, T, \Theta_k)\right] \middle| \mathcal{F}_k \right\} \\
\leq 2c_4 \epsilon^2 T^2 L^2 \left[\epsilon^2 L^2 T^2 (1 + \epsilon L)^{2T-4} + 13\right] \|\Theta_k\|^2 + 16c_4 \epsilon^2 L^2 T^2.$$
(56)

Putting together the bounds in (48), (51), and (56), it follows from (47) that

$$\mathbb{E}\left[W(\Theta_{k+T}(k,\Theta_{k})) - W(\Theta_{k})|\mathcal{F}_{k}\right] \\
= \mathbb{E}\left[\epsilon T\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} \bar{f}(\Theta_{k}) + \left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} g'(k,T,\Theta_{k}) \left|\mathcal{F}_{k}\right] \\
+ \mathbb{E}\left\{\left[\epsilon T \bar{f}(\Theta_{k}) + g'(k,T,\Theta_{k})\right]^{\top} \nabla^{2} W(\Theta_{k}') \left[\epsilon T \bar{f}(\Theta_{k}) + g'(k,T,\Theta_{k})\right] \left|\mathcal{F}_{k}\right\} \\
\leq -\epsilon L T\left\{c_{3} - 2c_{4}\beta_{k}(T,\epsilon) - 2c_{4}\epsilon L T\left[\epsilon^{2}L^{2}T^{2}(1+\epsilon L)^{2T-4} + 13\right]\right\} \|\Theta_{k}\|^{2} \\
+ 2c_{4}\epsilon L T \beta_{k}(T,\epsilon) + 16c_{4}\epsilon^{2}L^{2}T^{2} \\
= -\epsilon L T\left[c_{3} - c_{4}\rho_{k}(T,\epsilon)\right] \|\Theta_{k}\|^{2} + c_{4}\epsilon L T \kappa_{k}(T,\epsilon)$$
(57)

where in the last equality, we have defined for notational brevity the following two functions

$$\rho_k(T,\epsilon) := 2\beta_k(T,\epsilon) + 2\epsilon LT \left[\epsilon^2 L^2 T^2 (1+\epsilon L)^{2T-4} + 13 \right]$$
(58)

$$\kappa_k(T,\epsilon) := 2\beta_k(T,\epsilon) + 16\epsilon LT \tag{59}$$

both of which depend on parameters $T \in \mathbb{N}^+$ and $\epsilon > 0$.

In the sequel, we will show that there exist parameters $\epsilon > 0$ and $T \ge 1$ such that the coefficient of (57) obeys $c_3 - c_4\rho_k(T,\epsilon) > 0$ for all $k \in \mathbb{N}^+$. Formally, such a result is summarized in Proposition 2 below, whose proof is relegated to Appendix G.

Proposition 2. Consider functions $\beta_k(T, \epsilon)$ and $\rho_k(T, \epsilon)$ defined in (10) and (58), respectively. Then for any $\delta > 0$, there exist constants $\epsilon_{\delta} > 0$ and $T_{\delta} \ge 1$, such that the following inequality holds for each $\epsilon \in (0, \epsilon_{\delta})$

$$\sigma(T_{\delta}, k) < \rho_k(T_{\delta}, \epsilon) < \rho_0(T_{\delta}, \epsilon) < \rho_0(T_{\delta}, \epsilon_{\delta}) \le \delta, \quad \forall k \ge 1.$$
(60)

As such, by taking any $\delta < c_3/c_4$, feasible parameter values T^* and ϵ_c can be obtained according to (114) and (116), respectively. Now by choosing

$$T^* = T_\delta \tag{61}$$

$$\epsilon_c = \epsilon_\delta \tag{62}$$

it follows that

$$c'_{3} := LT^{*} [c_{3} - c_{4}\rho_{0}(T^{*}, \epsilon_{\delta})] = LT^{*} (c_{3} - c_{4}\delta) > 0.$$
(63)

It follows from (57) that

$$\mathbb{E}\left[W(\Theta_{k+T}(k,\Theta_k)) - W(\Theta_k) \middle| \mathcal{F}_k\right] \leq -c'_3 \epsilon \|\Theta_k\|^2 + c_4 \epsilon L T^* \kappa_k(T^*,\epsilon) = -c'_3 \epsilon \|\Theta_k\|^2 + c'_4 \epsilon^2 + c'_5 \sigma(T^*;k)\epsilon$$
(64)

where we have defined constants $c'_4 := c_4 LT^* [2L(1 + \epsilon_{\delta}L)^{T^*-2} + 16LT^*]$, and $c'_5 := 2c_4 LT^*$. Finally, recalling (46), we deduce that

$$\mathbb{E}\left[W'(k+1,\Theta_k+\epsilon f(\Theta_k,X_k)) - W'(k,\Theta_k)\big|\mathcal{F}_k\right] \le -c_3'\epsilon \|\Theta_k\|^2 + c_4'\epsilon^2 + c_5'\sigma(T^*;k)\epsilon$$
(65)

concluding the proof of (12).

Now, we turn to show the first inequality. It is evident from the properties of $W(\Theta_k)$ in Assumption 2 that

$$W'(k,\Theta_k) = \sum_{j=k}^{k+T-1} W(\Theta_j(k,\Theta_k)) \ge W(\Theta_k(k,\Theta_k))$$
$$\ge c_1 \|\Theta_k(k,\Theta_k)\|^2$$
$$= c_1 \|\Theta_k\|^2$$
(66)

where the second inequality follows from (6a), and the last equality from the fact that $\Theta_k(k, \Theta_k) = \Theta_k$. Therefore, by taking $c'_1 = c_1$, we have shown that the first part of inequality (11) holds true. For the second part, it follows that

$$\|\Theta_{j+1}\| = \|\Theta_j + \epsilon f(\Theta_j, X_j)\| \le (1 + \epsilon L) \|\Theta_j\| + \epsilon L, \quad \forall j \ge k$$
(67)

yielding by means of telescoping series

$$\begin{aligned} \|\Theta_{j}(k,\Theta_{k})\| &\leq (1+\epsilon L)^{j-k} \|\Theta_{k}\| + \sum_{j=1}^{j-k} (1+\epsilon L)^{j-1} \epsilon L \\ &\leq (1+\epsilon L)^{j-k} \|\Theta_{k}\| + (1+\epsilon L)^{j-k} - 1, \quad \forall j \geq k. \end{aligned}$$

Using further the inequality $(a + b)^2 \le 2(a^2 + b^2)$, we deduce that

$$\|\Theta_j(k,\Theta_k)\|^2 \le 2(1+\epsilon L)^{2(j-k)} \|\Theta_k\|^2 + 2\left[(1+\epsilon L)^{j-k} - 1\right]^2.$$
(68)

Taking advantage of the properties of $W(\Theta_k)$ in Assumption 2 and (68), it follows that

$$W'(k,\Theta_k) = \sum_{\substack{j=k\\j=k}}^{k+T-1} W(\Theta_j(k,\Theta_k))$$

$$\leq \sum_{\substack{j=k\\j=k}}^{k+T-1} c_2 \|\Theta_j(k,\Theta_k)\|^2$$

$$\leq 2c_2 \sum_{\substack{j=k\\j=k}}^{k+T-1} (1+\epsilon L)^{2(j-k)} \|\Theta_k\|^2 + 2c_2 \sum_{\substack{j=k\\j=k}}^{k+T-1} \left[(1+\epsilon L)^{j-k} - 1 \right]^2.$$
(69)

Let us now examine the two coefficients of (69) more carefully. Note that

$$\sum_{j=k}^{k+T-1} (1+\epsilon L)^{2(j-k)} = \frac{(1+\epsilon L)^{2T}-1}{(1+\epsilon L)^2 - 1} = T \frac{2+(2T-1)(1+\epsilon' L)^{2T-2}\epsilon L}{2+\epsilon L}$$
(70)

$$\sum_{j=k}^{k+T-1} \left[(1+\epsilon L)^{j-k} - 1 \right]^2 = \sum_{j=k+1}^{k+T-1} \left[(j-k)\epsilon L \left(1 + \frac{1}{2}(j-k-1)\left(1 + \epsilon'_{j-k}L \right)^{j-k-2}\epsilon L \right) \right]^2$$
(71)

$$= (\epsilon L)^2 \sum_{j=1}^{T-1} j^2 \left[1 + \frac{1}{2} (j-1) \left(1 + \epsilon'_j L \right)^{j-2} \right]^2$$
(72)

where both (70) and (71) follow from the mean-value theorem $(1 + \epsilon L)^{j-k} = 1 + (j-k)\epsilon L + \frac{1}{2}(j-k-1)(1 + \epsilon'_{j-k}L)^{j-k-2}(\epsilon L)^2$ for any $j-k \ge 1$ and some constants $\epsilon'_j \in [0, \epsilon]$.

According to Proposition 2, or more specifically, the inequalities (61) and (62), we see that $\epsilon'_j \leq \epsilon \leq \epsilon_{\delta}$ for all $1 \leq j \leq T - 1$.

On the other hand, it is easy to check that both terms [(70) and (72)] are monotonically increasing functions of $\epsilon > 0$. Therefore, if we define constants

$$c_{2}' := 2c_{2}T^{*} \frac{2 + (2T^{*} - 1)(1 + \epsilon_{\delta}L)^{2T^{*} - 2}\epsilon_{\delta}L}{2 + \epsilon_{\delta}L}$$
(73)

$$c_2'' := 2c_2 \sum_{j=1}^{T^*-1} j^2 \left[1 + \frac{1}{2} (j-1)(1+\epsilon_{\delta}L)^{j-2} \right]^2$$
(74)

which are independent of ϵ , then we draw from (69), (70), and (72) that

$$W'(k,\Theta_k) \le c'_2 \|\Theta_k\|^2 + c''_2 (\epsilon L)^2.$$
 (75)

concluding the proof of the second part of (11).

C Proof of Lemma 1

Taking expectation of both sides of (11) conditioned on \mathcal{F}_k gives rise to

$$\mathbb{E}\left[W'(k,\Theta_k)|\mathcal{F}_k\right] \le c_2' \|\Theta_k\|^2 + c_2''(\epsilon L)^2.$$
(76)

On the other hand, it is evident from (12) that

$$\mathbb{E}\left[W'(k+1,\Theta_{k+1})|\mathcal{F}_{k}\right] \leq \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] - c_{3}'\epsilon\|\Theta_{k}\|^{2} + c_{4}'\epsilon^{2} + c_{5}'\sigma(T^{*};k)\epsilon \\
= \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] - \frac{c_{3}'\epsilon}{c_{2}'}\left[c_{2}'\|\Theta_{k}\|^{2} + c_{2}''(\epsilon L)^{2}\right] + \frac{c_{3}'}{c_{2}'}c_{2}''\epsilon(\epsilon L)^{2} + c_{4}'\epsilon^{2} + c_{5}'\sigma(T^{*};k)\epsilon \\
\leq \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] - \frac{c_{3}'\epsilon}{c_{2}'}\mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] + \frac{c_{3}'}{c_{2}'}c_{2}''\epsilon_{\delta}(\epsilon L)^{2} + c_{4}'\epsilon^{2} + c_{5}'\sigma(T^{*};k)\epsilon \tag{77}$$

$$= \left(1 - \frac{c'_{3}\epsilon}{c'_{2}}\right) \mathbb{E}\left[W'(k,\Theta_{k})|\mathcal{F}_{k}\right] + c''_{4}\epsilon^{2} + c'_{5}\sigma(T^{*};k)\epsilon$$

$$\tag{78}$$

where, in order to obtain (77), we have employed the inequality in (76), and used the fact that $\epsilon < \epsilon_{\delta}$ to derive (78); and the last equality follows from $c''_4 := c'_4 + c'_3 c''_2 \epsilon_{\delta} L^2 / c'_2$.

Finally, taking expectation of both sides of (78) with respect to the σ -field \mathcal{F}_k , concludes the proof.

D Proof of Theorem 2

Let us start with a basic Lemma, whose proof is elementary and is hence omitted here.

Lemma 4. Consider the recursion $z_{t+1} = az_t + b$, where $a \neq 1$ and b are given constants. Then the following holds for all $t \geq t_0 \geq 0$

$$z_t = a^{t-t_0} z_{t_0} + \frac{b(a^{t-t_0} - 1)}{a - 1}.$$
(79)

Proof of Theorem 2 is established in two phases depending on the k values. Specifically, let us define $k_{\epsilon} := \min\{k \in \mathbb{N}^+ | \sigma(T^*; k) \le \epsilon\}$; then the first phase is from k = 0 to k_{ϵ} , while the second phase consists of all $k > k_{\epsilon}$.

Phase I $(k \leq k_{\epsilon})$. We have from 2 that $\sigma(T^*; k) \leq \delta$ for all $0 \leq k \leq k_{\epsilon}$. Then, fixing $t_0 = 0$, and substituting $a := 1 - c'_3 \epsilon / c'_2 > 0$ and $b := c''_4 \epsilon^2 + c'_5 \delta \epsilon$ in (79), the recursion $\{\mathbb{E}[W'(k, \Theta_k)]\}$ in (14) can be recursively expressed as follows

$$\mathbb{E}\left[W'(k,\Theta_{k})\right] \leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right) \mathbb{E}\left[W'(k-1,\Theta_{k-1})\right] + c_{4}''\epsilon^{2} + c_{5}'\delta\epsilon$$

$$\leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}\left[W'(0,\Theta_{0})\right] + \left[1 - \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k}\right] \frac{c_{2}'}{c_{3}'} \left(c_{4}''\epsilon + c_{5}'\delta\right)$$

$$\leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}\left[W'(0,\Theta_{0})\right] + \frac{c_{2}'}{c_{2}'} \left(c_{4}''\epsilon + c_{5}'\delta\right)$$

$$(80)$$

$$\leq \left(1 - \frac{c_2'}{c_2'}\right)^k \mathbb{E}\left[W'(0, \Theta_0)\right] + \frac{c_3'}{c_3'}(c_4' \epsilon + c_5')$$

$$\leq \left(1 - \frac{c_3' \epsilon}{c_2'}\right)^k \mathbb{E}\left[W'(0, \Theta_0)\right] + \frac{c_2'}{c_3'}(c_4'' + c_5')\delta$$
(81)

$$\leq c_{2}' \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k} \|\Theta_{0}\|^{2} + c_{2}''L^{2}\epsilon^{2} + c_{6}\delta$$
(82)

where the last inequality follows from $\epsilon \leq \delta$ and the fact [cf. (11)] that

$$\mathbb{E}[W'(0,\Theta_0)] \le c_2' \mathbb{E}[\|\Theta_0\|^2] + c_2'' \epsilon^2 L^2 \le c_2' \|\Theta_0\|^2 + c_2'' \epsilon^2 L^2$$
(83)

where the initial guess $\Theta_0 \in \mathbb{R}^d$ is assumed given for simplicity; and $c_6 := c_2(c''_4 + c'_5)/c'_3$. On the other hand, using (11), the term $\mathbb{E}[W'(k, \Theta_k)]$ can be lowered bounded as follows

$$\mathbb{E}\left[W'(k,\Theta_k)\right] \ge c_1' \|\Theta_k\|^2 \tag{84}$$

which, combined with (82), yields the finite-time error bound for iterations $k \leq k_{\epsilon}$

$$\mathbb{E}[\|\Theta_k\|^2] \le \frac{c_2'}{c_1'} \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^k \|\Theta_0\|^2 + \frac{c_2''L^2}{c_1'}\epsilon^2 + \frac{c_6}{c_1'}\delta.$$
(85)

Phase II $(k > k_{\epsilon})$. Using now the fact that $\sigma(T^*; k) \leq \epsilon$ due to the definition of k_{ϵ} , the recursion $\{\mathbb{E}[W'(k, \Theta_k)]\}$ for all $k > k_{\epsilon}$ becomes

$$\mathbb{E}\left[W'(k+1,\Theta_{k+1})\right] \le \left(1 - \frac{c'_3\epsilon}{c'_2}\right) \mathbb{E}\left[W'(k,\Theta_k)\right] + c''_4\epsilon^2 + c'_5\sigma(T^*;k)\epsilon$$
(86)

$$\leq \left(1 - \frac{c'_3\epsilon}{c'_2}\right) \mathbb{E}\left[W'(k,\Theta_k)\right] + (c''_4 + c'_5)\epsilon^2.$$
(87)

Letting $t_0 = k_{\epsilon}$, and replacing a and b in (79) by constants $(1 - c'_3 \epsilon / c'_2)$ and $(c''_4 + c'_5)\epsilon^2$ accordingly, we arrive at

$$\mathbb{E}[W'(k,\Theta_{k})] \leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \mathbb{E}[W'(k_{\epsilon},\Theta_{k_{\epsilon}})] + \left[1 - \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}}\right] \frac{c_{2}'}{c_{3}'} (c_{4}'' + c_{5}')\epsilon$$

$$\leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \left[\left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k_{\epsilon}} \mathbb{E}[W'(0,\Theta_{0})] + \frac{c_{2}'}{c_{3}'} (c_{4}'' + c_{5}')\right] + \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}[W'(0,\Theta_{0})] + \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\delta + \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}[W'(0,\Theta_{0})] + \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\delta + \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}[W'(0,\Theta_{0})] + \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\delta + \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}[W'(0,\Theta_{0})] + \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\delta + \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}[W'(0,\Theta_{0})] + \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\delta + \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k} \mathbb{E}[W'(0,\Theta_{0})] + \left(1 - \frac{c_{2}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} \frac{c_{2}'(c_{4}'' + c_{5}')}{c_{3}'}\epsilon$$

$$\leq c_{2}' \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k} \|\Theta_{0}\|^{2} + c_{2}''\epsilon^{2}L^{2} + \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k-k_{\epsilon}} c_{6}\delta + c_{6}\epsilon$$
(89)

where we have used the following bound at $k = k_{\epsilon}$ from Phase I in (80) along with (83)

$$\mathbb{E}[W'(k_{\epsilon},\Theta_{k_{\epsilon}})] \leq \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k_{\epsilon}} \mathbb{E}\left[W'(0,\Theta_{0})\right] + \left[1 - \left(1 - \frac{c_{3}'\epsilon}{c_{2}'}\right)^{k_{\epsilon}}\right] \frac{c_{2}'}{c_{3}'} \left(c_{4}''\epsilon + c_{5}'\delta\right). \tag{90}$$

Plugging (84) into (89), yields the finite-time error bound for $k \ge k_{\epsilon}$

$$\mathbb{E}\left[\|\Theta_k\|^2\right] \le \frac{c_2'}{c_1'} \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^k \|\Theta_0\|^2 + \frac{c_2''L^2}{c_1'}\epsilon^2 + \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^{k-k_\epsilon} \frac{c_6}{c_1'}\delta + \frac{c_6}{c_1'}\epsilon$$
(91)

which converges to a small (size- ϵ) neighborhood of the optimal solution $\Theta^* = 0$ at a linear rate.

Combining the results in the two phases, we deduce the following error bound that holds at any $k \in \mathbb{N}^+$

$$\mathbb{E}\left[\|\Theta_k\|^2\right] \le \frac{c_2'}{c_1'} \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^k \|\Theta_0\|^2 + \frac{c_2''L^2}{c_1'}\epsilon^2 + \left(1 - \frac{c_3'\epsilon}{c_2'}\right)^{\max\{k-k_\epsilon,0\}} \frac{c_6}{c_1'}\delta + \frac{c_6}{c_1'}\epsilon \tag{92}$$

concluding the proof of Theorem 2.

E Proof of Lemma 2

When T = 1 and for any $\Theta_k \in \mathbb{R}^d$, one can easily check that

$$g(k, 1, \Theta_k) = \Theta_{k+1} - \Theta_k - \epsilon f(\Theta_k, X_k) = 0$$

implying $G_1 := ||g(k, 1, \Theta_k)|| = 0$. To proceed, let us start by introducing the function

$$h(k,T,\Theta_k) := \sum_{j=k}^{k+T-1} f(\Theta_k, X_j)$$

which can be bounded as follows

$$\left\| h(k, T, \Theta_k) \right\| = \left\| \sum_{j=k}^{k+T-1} f(\Theta_k, X_j) \right\| \le \sum_{j=k}^{k+T-1} \left\| f(\Theta_k, X_j) \right\|$$
$$\le L \sum_{j=k}^{k+T-1} (\|\Theta_k\| + 1)$$
$$= TL(\|\Theta_k\| + 1)$$
(93)

where the second inequality follows from (5) in Assumption 1. It is evident that

$$g(k, T+1, \Theta_k) = \Theta_{k+T+1} - \Theta_k - \epsilon \sum_{j=k}^{k+T} f(\Theta_k, X_j)$$

= $\Theta_{k+T} + \epsilon f(\Theta_{k+T}, X_{k+T}) - \Theta_k - \epsilon \left[f(\Theta_k, X_{k+T_0}) + \sum_{j=k}^{k+T-1} f(\Theta_k, X_j) \right]$
= $g(k, T, \Theta_k) + \epsilon \left[f(\Theta_{k+T}, X_{k+T}) - f(\Theta_k, X_{k+T}) \right].$ (94)

By means of triangle inequality, it follows that

$$G_{T+1} = \|g(k, T+1, \Theta_k)\| \le \|g(k, T, \Theta_k)\| + \epsilon \|f(\Theta_{k+T}, X_{k+T}) - f(\Theta_k, X_{k+T})\| \le G_T + \epsilon L \|\Theta_{k+T} - \Theta_k\|$$
(95)

$$\leq G_T + \epsilon L \|\Theta_{k+T} - \Theta_k\|$$

$$\leq G_T + \epsilon L \left[\epsilon \|h(k, T, \Theta_k)\| + \|g(k, T, \Theta_k)\|\right]$$
(95)
(96)

$$\leq (1+\epsilon L)G_T + \epsilon^2 L^2 T(\|\Theta_k\| + 1) \tag{97}$$

$$\leq \epsilon^{2} L^{2} (\|\Theta_{k}\| + 1) \sum_{k=0}^{T} (1 + \epsilon L)^{T-k} k$$
(98)

where the inequality (95) follows from the Lipschitz continuity of $f(\theta, x)$ in θ , (96) from the fact that $\Theta_{k+T} = \Theta_k + \epsilon h(k, T, \Theta_k) + g(k, T, \Theta_k)$, (97) from (93) as well as the definition $G_T := ||g(k, T, \Theta_k)||$, and the last inequality is obtained by telescoping series and uses $G_1 = 0$.

Lemma 5. Given any positive constant $d \neq 1$, the following holds for all $T \geq 1$

$$S_{T+1} = \sum_{k=0}^{T} k d^k = \frac{d(1-d^T)}{(1-d)^2} - \frac{T d^{T+1}}{1-d}.$$
(99)

Taking $d = (1 + \epsilon L)^{-1}$ in (99), then (98) can be simplified as follows

$$G_T \le \epsilon^2 L^2 (1 + \epsilon L)^{T-1} (\|\Theta_k\| + 1) \sum_{k=0}^{T-1} (1 + \epsilon L)^{-k} k$$

= $[(1 + \epsilon L)^T - \epsilon LT - 1] (\|\Theta_k\| + 1).$ (100)

To further simplify this bound, the Taylor expansion along with the mean-value theorem confirms that the following holds for some $\epsilon' \in (0, 1)$

$$(1 + \epsilon L)^{T} = 1 + \epsilon LT + \frac{1}{2}T(T - 1)(1 + \epsilon' L)^{T-2}(\epsilon L)^{2}, \quad \forall T \ge 1$$
(101)

or equivalently,

$$(1 + \epsilon L)^T - 1 - \epsilon LT = \frac{1}{2}T(T - 1)(1 + \epsilon' L)^{T-2}(\epsilon L)^2$$
(102)

$$\leq \epsilon^2 L^2 T^2 (1 + \epsilon L)^{T-2}. \tag{103}$$

F Proof of Lemma 3

Recalling that $g'(k, T, \Theta_k) = g(k, T, \Theta_k) + \epsilon \sum_{j=k}^{k+T-1} [f(\Theta_k, X_j) - \bar{f}(\Theta_k)]$, we have

$$\left\|g'(k,T,\Theta_{k})\right\|^{2} = \left\|g(k,T,\Theta_{k}) + \epsilon \sum_{j=k}^{k+T-1} \left(f(\Theta_{k},X_{j}) - \bar{f}(\Theta_{k})\right)\right\|^{2}$$

$$\leq 2 \left\|g(k,T,\Theta_{k})\right\|^{2} + 2\epsilon^{2}T^{2} \left\|\frac{1}{T}\sum_{j=k}^{k+T-1} f(\Theta_{k},X_{j}) - \bar{f}(\Theta_{k})\right\|^{2}$$

$$\leq 4 \left[(1+\epsilon L)^{T} - \epsilon LT - 1\right]^{2} \left(\|\Theta_{k}\|^{2} + 1\right)$$

(104)

$$+ 4\epsilon^{2}T^{2} \left\| \frac{1}{T} \sum_{j=k}^{k+T-1} f(\Theta_{k}, X_{j}) \right\|^{2} + 4\epsilon^{2}T^{2} \left\| \bar{f}(\Theta_{k}) \right\|^{2}$$
(105)

where we have used the property $||a + b||^2 \le 2(||a||^2 + ||b||^2)$ for any real-valued vectors a, b in deriving (104) and (105), as well as Proposition 1.

Squaring both sides of (102) yields

$$\left[(1+\epsilon L)^T - 1 - \epsilon TL \right]^2 = \frac{1}{4} T^2 (T-1)^2 (\epsilon L)^4 (1+\epsilon' L)^{2T-4} \le \frac{1}{4} \epsilon^4 L^4 T^4 (1+\epsilon L)^{2T-4}.$$
(106)

Thus, the first term of (105) can be upper bounded by

$$4\left[(1+\epsilon L)^{T}-\epsilon LT-1\right]^{2}(\|\Theta_{k}\|^{2}+1) \leq \epsilon^{4}L^{4}T^{4}(1+\epsilon L)^{2T-4}(\|\Theta_{k}\|^{2}+1).$$
(107)

Regarding the second term of (105), we have that

$$\left\|\frac{1}{T}\sum_{j=k}^{k+T-1} f(\Theta_k, X_j)\right\|^2 \le \frac{1}{T}\sum_{j=k}^{k+T-1} \left\|f(\Theta_k, X_j)\right\|^2$$
(108)

$$\leq \frac{1}{T} \sum_{i=k}^{k+T-1} L^2 (\|\Theta_k\| + 1)^2 \tag{109}$$

$$\leq 2L^2 \|\Theta_k\|^2 + 2L^2 \tag{110}$$

where (108) and (110) follow from the inequality $\|\sum_{i=1}^{n} z_i\|^2 \le n \sum_{i=1}^{n} \|z_i\|^2$ for all real-valued vectors $\{z_i\}_{i=1}^{n}$, and (109) from our working assumption on function $f(\theta, x)$.

With regards to the last term of (105), it follows directly from the Lipschitz property of the average operator $\bar{f}(\theta)$ that

$$\left\|\bar{f}(\Theta_k)\right\|^2 \le L^2 \|\Theta_k\|^2.$$
(111)

Substituting the bounds in (107), (110), and (111) into (105), we arrive at

$$\|g'(k,T,\Theta_k)\|^2 \le \epsilon^2 L^2 T^2 \Big[\epsilon^2 L^2 T^2 (1+\epsilon L)^{2T-4} + 12\Big] \|\Theta_k\|^2 + 8\epsilon^2 L^2 T^2$$
(112)

concluding the proof.

G Proof of Proposition 2

We prove this claim by construction. By definition, it follows that for all $k \in \mathbb{N}^+$

$$\rho_k(T,\epsilon) \le \rho_0(T,\epsilon) = 2\epsilon LT \left[(1+\epsilon L)^{T-2} + 13 \right] + 2(\epsilon LT)^3 (1+\epsilon L)^{2T-4} + 2\sigma(T;0).$$
(113)

Under the assumption that $\lim_{T\to+\infty} \sigma(T;0) = 0$, the function value $\sigma(T;0) \ge 0$ can be made arbitrarily small by taking a sufficiently large integer $T \in \mathbb{N}^+$ in constructing the function $W'(k, \Theta_k)$. Without loss of generality, let us work with T such that

$$T_{\delta} := \min\left\{ T \in \mathbb{N}^+ \left| \sigma(T; 0) \le \frac{\delta}{4} \right\}.$$
(114)

It is clear that $T_{\delta} \geq 1$. Define function

$$\nu(\epsilon) := \epsilon L T_{\delta} \left[\left(1 + \epsilon L \right)^{T_{\delta} - 2} + 13 \right] + \left(\epsilon L T_{\delta} \right)^3 \left(1 + \epsilon L \right)^{2T_{\delta} - 4}$$
(115)

which can be easily shown to be a monotonically decreasing function of $\epsilon > 0$, and which attains its minimum $\nu = 0$ at $\epsilon = 0$. Let ϵ_{δ} be the unique solution to the equation

$$\nu(\epsilon) = \frac{\delta}{4}, \quad \epsilon > 0. \tag{116}$$

As a result, for all $\epsilon \in (0, \epsilon_{\delta}]$, it holds that

$$\nu(\epsilon) \le \frac{\delta}{4}.\tag{117}$$

Combining (114) and (117) concludes the proof of Proposition 2.