Supplementary Materials for
 "Finite-Time Error Bounds for Biased Stochastic Approximation with Applications to Q-learning" by G. Wang and G. B. Giannakis

Remark. The equations (1)-(39) and Assumptions 1-4 are referenced with respect to the indexing used in the paper.

A Proof of Proposition 1

We start off the proof by introducing the following auxiliary function

$$
\begin{equation*}
g\left(k, T, \Theta_{k}\right):=\Theta_{k+T}-\Theta_{k}-\epsilon \sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right), \quad \forall T \geq 1 \tag{40}
\end{equation*}
$$

which is evidently well defined under our working Assumptions 1 and 3. Regarding the function $g\left(k, T, \Theta_{k}\right)$ above, we present the following useful bound, whose proof details are, however, postponed to Appendix E for readability.
Lemma 2. For any $\Theta_{k} \in \mathbb{R}^{d}$, the function $g\left(k, T, \Theta_{k}\right)$ satisfies for all $k \geq 0$

$$
\begin{equation*}
\left\|g\left(k, T, \Theta_{k}\right)\right\| \leq \epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{T-2}, \quad \forall T \geq 1 \tag{41}
\end{equation*}
$$

On the other hand, note from (8) that

$$
\begin{equation*}
g^{\prime}\left(k, T, \Theta_{k}\right)=\Theta_{k+T}-\Theta_{k}-\epsilon T \bar{f}\left(\Theta_{k}\right) \tag{42}
\end{equation*}
$$

which, in conjunction with (40), suggests that we can write

$$
\begin{align*}
g^{\prime}\left(k, T, \Theta_{k}\right) & =g\left(k, T, \Theta_{k}\right)+\epsilon \sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)-\epsilon T \bar{f}\left(\Theta_{k}\right) \\
& =g\left(k, T, \Theta_{k}\right)+\epsilon \sum_{j=k}^{k+T-1}\left(f\left(\Theta_{k}, X_{j}\right)-\bar{f}\left(\Theta_{k}\right)\right) \tag{43}
\end{align*}
$$

By taking expectation of both sides of (43) conditioned on the σ-field \mathcal{F}_{k}, along with the fact that Θ_{k} is \mathcal{F}_{k} measurable, we obtain

$$
\begin{align*}
\mathbb{E}\left[g^{\prime}\left(k, T, \Theta_{k}\right) \mid \mathcal{F}_{k}\right] & =\mathbb{E}\left[g\left(k, T, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]+\epsilon \mathbb{E}\left[\sum_{j=k}^{k+T-1}\left(f\left(\Theta_{k}, X_{j}\right)-\bar{f}\left(\Theta_{k}\right)\right) \mid \mathcal{F}_{k}\right] \\
& =\mathbb{E}\left[g\left(k, T, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]+\epsilon T\left(\frac{1}{T} \sum_{j=k}^{k+T-1} \mathbb{E}\left[f\left(\Theta_{k}, X_{j}\right) \mid \mathcal{F}_{k}\right]-\bar{f}\left(\Theta_{k}\right)\right) \\
& \leq \epsilon L T\left[\epsilon L T(1+\epsilon L)^{T-2}+\sigma(T ; k)\right]\left(\left\|\Theta_{k}\right\|+1\right) \tag{44}
\end{align*}
$$

where the last inequality follows from Lemma 2 as well as the property of the averaged operator \bar{f} in (7) under our working Assumption 3. This concludes the proof.

B Proof of Theorem 1

We prove this theorem by carefully constructing function for $W^{\prime}\left(k, \Theta_{k}\right)$ from $W\left(\Theta_{k}\right)$ (recall under our working assumption 2 that $W\left(\Theta_{k}\right)$ exists and satisfies properties (52)-(6c)). Toward this objective, let us start with the following candidate

$$
\begin{equation*}
W^{\prime}\left(k, \Theta_{k}\right)=\sum_{j=k}^{k+T-1} W\left(\Theta_{j}\left(k, \Theta_{k}\right)\right) \tag{45}
\end{equation*}
$$

where, to make the dependence of $\Theta_{j \geq k}$ on Θ_{k} explicit, we maintain the notation $\Theta_{j}=\Theta_{j}\left(k, \Theta_{k}\right)$, which is understood as the state of the recursion (1) at time instant $j \geq k$, with an initial condition Θ_{k} at time instant k.
In the following, we will show that there exists and also determine a value for the parameter $T \in \mathbb{N}^{+}$such that the inequalities (11) and (12) are satisfied.

For ease of exposition, we start by proving the second inequality (12). To this end, observe from the definition of $W^{\prime}\left(k, \Theta_{k}\right)$ in (45) that

$$
\begin{align*}
W^{\prime}\left(k+1, \Theta_{k}+\epsilon f\left(\Theta_{k}, X_{k}\right)\right)-W^{\prime}\left(k, \Theta_{k}\right) & =\sum_{j=k+1}^{k+T} W\left(\Theta_{j}\left(k, \Theta_{k}\right)\right)-\sum_{j=k}^{k+T-1} W\left(\Theta_{j}\left(k, \Theta_{k}\right)\right) \\
& =W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)-W\left(\Theta_{k}\left(k, \Theta_{k}\right)\right) \\
& =W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)-W\left(\Theta_{k}\right) \tag{46}
\end{align*}
$$

where the last equality is due to the fact that $\Theta_{k}\left(k, \Theta_{k}\right)=\Theta_{k}$.
To upper bound the term in (46), we will focus on bound the first term $W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)$. Recall from (8) that

$$
\Theta_{k+T}\left(k, \Theta_{k}\right)=\Theta_{k}+\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)
$$

based on which we can find the second-order Taylor expansion of $W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)$ (which is twice differentiable under Assumption 2) around Θ_{k}, as follows

$$
\begin{align*}
W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)= & W\left(\Theta_{k}\right)+\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top}\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right] \\
& +\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right]^{\top} \nabla^{2} W\left(\Theta_{k}^{\prime}\right)\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right] \tag{47}
\end{align*}
$$

where we have employed the so-called mean-value theorem, suggesting that (47) holds with $\Theta_{k}^{\prime}:=\Theta_{k}+$ $\eta\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right]$ for some constant $\eta \in[0,1]$.

Next, we will pursue an upper bound for each individual term on the right hand side of (47) by conditioning on the σ-field \mathcal{F}_{k}. Again, using the fact that Θ_{k} is \mathcal{F}_{k}-measurable and invoking (6b), we have that

$$
\begin{equation*}
\mathbb{E}\left[\left.\epsilon T\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} \bar{f}\left(\Theta_{k}\right) \right\rvert\, \mathcal{F}_{k}\right] \leq-c_{3} \epsilon L T\left\|\Theta_{k}\right\|^{2} \tag{48}
\end{equation*}
$$

One can further verify the following bounds

$$
\begin{align*}
\mathbb{E}\left[\left.\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} g^{\prime}\left(k, T, \Theta_{k}\right) \right\rvert\, \mathcal{F}_{k}\right] & =\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} \mathbb{E}\left[g^{\prime}\left(k, T, \Theta_{k}\right) \mid \mathcal{F}_{k}\right] \\
& \leq\left\|\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right\| \cdot\left\|\mathbb{E}\left[g^{\prime}\left(k, T, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]\right\| \tag{49}\\
& \leq c_{4}\left\|\Theta_{k}\right\| \cdot \epsilon L T \beta_{k}(T, \epsilon)\left(\left\|\Theta_{k}\right\|+1\right) \tag{50}\\
& \leq 2 c_{4} \epsilon L T \beta_{k}(T, \epsilon)\left(\left\|\Theta_{k}\right\|^{2}+1\right) \tag{51}
\end{align*}
$$

In particular, (49) uses the Cauchy-Schwartz inequality, (50) calls for Proposition 1, and the last one follows from the inequality $\|\theta\|(\|\theta\|+1) \leq 2\left(\|\theta\|^{2}+1\right)$.
As far as the last term of (46) is concerned, it is clear that

$$
\begin{align*}
& \mathbb{E}\left\{\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right]^{\top} \nabla^{2} W\left(\Theta_{k}^{\prime}\right)\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right] \mid \mathcal{F}_{k}\right\} \\
\leq & c_{4} \mathbb{E}\left[\left\|\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right\|^{2} \mid \mathcal{F}_{k}\right] \tag{52}\\
\leq & 2 c_{4} \epsilon^{2} T^{2}\left\|\bar{f}\left(\Theta_{k}\right)\right\|^{2}+2 c_{4} \mathbb{E}\left[\left\|g^{\prime}\left(k, T, \Theta_{k}\right)\right\|^{2} \mid \mathcal{F}_{k}\right] \tag{53}
\end{align*}
$$

$$
\begin{equation*}
\leq 2 c_{4} \epsilon^{2} T^{2} L^{2}\left\|\Theta_{k}\right\|^{2}+2 c_{4} \mathbb{E}\left[\left\|g^{\prime}\left(k, T, \Theta_{k}\right)\right\|^{2} \mid \mathcal{F}_{k}\right] \tag{54}
\end{equation*}
$$

where (52) leverages the upper bound on the Hessian matrix of $W(\theta)$ arising from the property (6 c), (53) follows from the inequality $\|a+b\|^{2} \leq 2\left(\|a\|^{2}+\|b\|^{2}\right)$ for any real-valued vectors $a, b \in \mathbb{R}^{d}$, and (54) uses the Lipschitz property of function $\bar{f}(\theta)$ that can be easily verified since $f(\theta, x)$ is Lipschitz in θ.
To further upper bound the last term of (54), we establish the following helpful result whose proof is also postponed to Appendix F for readability.
Lemma 3. The following bound holds for any fixed $\theta_{k} \in \mathbb{R}^{d}$

$$
\begin{equation*}
\mathbb{E}\left[\left\|g^{\prime}\left(k, T, \theta_{k}\right)\right\|^{2} \mid \mathcal{F}_{k}\right] \leq \epsilon^{2} L^{2} T^{2}\left[\epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{2 T-4}+12\right]\left\|\theta_{k}\right\|^{2}+8 \epsilon^{2} L^{2} T^{2} \tag{55}
\end{equation*}
$$

Coming back to inequality (54), as $\mathbb{E}\left[\Theta_{k} \mid \mathcal{F}_{k}\right]=\Theta_{k}$, Lemma 3 now applies. Plugging (55) into (54), we establish an upper bound on the last term of (46) as follows

$$
\begin{align*}
& \mathbb{E}\left\{\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right]^{\top} \nabla^{2} W\left(\Theta_{k}^{\prime}\right)\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right] \mid \mathcal{F}_{k}\right\} \\
& \leq 2 c_{4} \epsilon^{2} T^{2} L^{2}\left[\epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{2 T-4}+13\right]\left\|\Theta_{k}\right\|^{2}+16 c_{4} \epsilon^{2} L^{2} T^{2} \tag{56}
\end{align*}
$$

Putting together the bounds in (48), (51), and (56), it follows from (47) that

$$
\begin{align*}
& \mathbb{E}\left[W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)-W\left(\Theta_{k}\right) \mid \mathcal{F}_{k}\right] \\
= & \mathbb{E}\left[\left.\epsilon T\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} \bar{f}\left(\Theta_{k}\right)+\left(\left.\frac{\partial W}{\partial \theta}\right|_{\Theta_{k}}\right)^{\top} g^{\prime}\left(k, T, \Theta_{k}\right) \right\rvert\, \mathcal{F}_{k}\right] \\
& +\mathbb{E}\left\{\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right]^{\top} \nabla^{2} W\left(\Theta_{k}^{\prime}\right)\left[\epsilon T \bar{f}\left(\Theta_{k}\right)+g^{\prime}\left(k, T, \Theta_{k}\right)\right] \mid \mathcal{F}_{k}\right\} \\
\leq & -\epsilon L T\left\{c_{3}-2 c_{4} \beta_{k}(T, \epsilon)-2 c_{4} \epsilon L T\left[\epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{2 T-4}+13\right]\right\}\left\|\Theta_{k}\right\|^{2} \\
& +2 c_{4} \epsilon L T \beta_{k}(T, \epsilon)+16 c_{4} \epsilon^{2} L^{2} T^{2} \\
= & -\epsilon L T\left[c_{3}-c_{4} \rho_{k}(T, \epsilon)\right]\left\|\Theta_{k}\right\|^{2}+c_{4} \epsilon L T \kappa_{k}(T, \epsilon) \tag{57}
\end{align*}
$$

where in the last equality, we have defined for notational brevity the following two functions

$$
\begin{align*}
& \rho_{k}(T, \epsilon):=2 \beta_{k}(T, \epsilon)+2 \epsilon L T\left[\epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{2 T-4}+13\right] \tag{58}\\
& \kappa_{k}(T, \epsilon):=2 \beta_{k}(T, \epsilon)+16 \epsilon L T \tag{59}
\end{align*}
$$

both of which depend on parameters $T \in \mathbb{N}^{+}$and $\epsilon>0$.
In the sequel, we will show that there exist parameters $\epsilon>0$ and $T \geq 1$ such that the coefficient of (57) obeys $c_{3}-c_{4} \rho_{k}(T, \epsilon)>0$ for all $k \in \mathbb{N}^{+}$. Formally, such a result is summarized in Proposition 2 below, whose proof is relegated to Appendix G.
Proposition 2. Consider functions $\beta_{k}(T, \epsilon)$ and $\rho_{k}(T, \epsilon)$ defined in (10) and (58), respectively. Then for any $\delta>0$, there exist constants $\epsilon_{\delta}>0$ and $T_{\delta} \geq 1$, such that the following inequality holds for each $\epsilon \in\left(0, \epsilon_{\delta}\right)$

$$
\begin{equation*}
\sigma\left(T_{\delta}, k\right)<\rho_{k}\left(T_{\delta}, \epsilon\right)<\rho_{0}\left(T_{\delta}, \epsilon\right)<\rho_{0}\left(T_{\delta}, \epsilon_{\delta}\right) \leq \delta, \quad \forall k \geq 1 \tag{60}
\end{equation*}
$$

As such, by taking any $\delta<c_{3} / c_{4}$, feasible parameter values T^{*} and ϵ_{c} can be obtained according to (114) and (116), respectively. Now by choosing

$$
\begin{align*}
T^{*} & =T_{\delta} \tag{61}\\
\epsilon_{c} & =\epsilon_{\delta} \tag{62}
\end{align*}
$$

it follows that

$$
\begin{equation*}
c_{3}^{\prime}:=L T^{*}\left[c_{3}-c_{4} \rho_{0}\left(T^{*}, \epsilon_{\delta}\right)\right]=L T^{*}\left(c_{3}-c_{4} \delta\right)>0 \tag{63}
\end{equation*}
$$

It follows from (57) that

$$
\begin{align*}
\mathbb{E}\left[W\left(\Theta_{k+T}\left(k, \Theta_{k}\right)\right)-W\left(\Theta_{k}\right) \mid \mathcal{F}_{k}\right] & \leq-c_{3}^{\prime} \epsilon\left\|\Theta_{k}\right\|^{2}+c_{4} \epsilon L T^{*} \kappa_{k}\left(T^{*}, \epsilon\right) \\
& =-c_{3}^{\prime} \epsilon\left\|\Theta_{k}\right\|^{2}+c_{4}^{\prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \tag{64}
\end{align*}
$$

where we have defined constants $c_{4}^{\prime}:=c_{4} L T^{*}\left[2 L\left(1+\epsilon_{\delta} L\right)^{T^{*}-2}+16 L T^{*}\right]$, and $c_{5}^{\prime}:=2 c_{4} L T^{*}$.
Finally, recalling (46), we deduce that

$$
\begin{equation*}
\mathbb{E}\left[W^{\prime}\left(k+1, \Theta_{k}+\epsilon f\left(\Theta_{k}, X_{k}\right)\right)-W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right] \leq-c_{3}^{\prime} \epsilon\left\|\Theta_{k}\right\|^{2}+c_{4}^{\prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \tag{65}
\end{equation*}
$$

concluding the proof of (12).

Now, we turn to show the first inequality. It is evident from the properties of $W\left(\Theta_{k}\right)$ in Assumption 2 that

$$
\begin{align*}
W^{\prime}\left(k, \Theta_{k}\right)=\sum_{j=k}^{k+T-1} W\left(\Theta_{j}\left(k, \Theta_{k}\right)\right) & \geq W\left(\Theta_{k}\left(k, \Theta_{k}\right)\right) \\
& \geq c_{1}\left\|\Theta_{k}\left(k, \Theta_{k}\right)\right\|^{2} \\
& =c_{1}\left\|\Theta_{k}\right\|^{2} \tag{66}
\end{align*}
$$

where the second inequality follows from (6a), and the last equality from the fact that $\Theta_{k}\left(k, \Theta_{k}\right)=\Theta_{k}$. Therefore, by taking $c_{1}^{\prime}=c_{1}$, we have shown that the first part of inequality (11) holds true. For the second part, it follows that

$$
\begin{equation*}
\left\|\Theta_{j+1}\right\|=\left\|\Theta_{j}+\epsilon f\left(\Theta_{j}, X_{j}\right)\right\| \leq(1+\epsilon L)\left\|\Theta_{j}\right\|+\epsilon L, \quad \forall j \geq k \tag{67}
\end{equation*}
$$

yielding by means of telescoping series

$$
\begin{aligned}
\left\|\Theta_{j}\left(k, \Theta_{k}\right)\right\| & \leq(1+\epsilon L)^{j-k}\left\|\Theta_{k}\right\|+\sum_{j=1}^{j-k}(1+\epsilon L)^{j-1} \epsilon L \\
& \leq(1+\epsilon L)^{j-k}\left\|\Theta_{k}\right\|+(1+\epsilon L)^{j-k}-1, \quad \forall j \geq k
\end{aligned}
$$

Using further the inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, we deduce that

$$
\begin{equation*}
\left\|\Theta_{j}\left(k, \Theta_{k}\right)\right\|^{2} \leq 2(1+\epsilon L)^{2(j-k)}\left\|\Theta_{k}\right\|^{2}+2\left[(1+\epsilon L)^{j-k}-1\right]^{2} \tag{68}
\end{equation*}
$$

Taking advantage of the properties of $W\left(\Theta_{k}\right)$ in Assumption 2 and (68), it follows that

$$
\begin{align*}
W^{\prime}\left(k, \Theta_{k}\right) & =\sum_{j=k}^{k+T-1} W\left(\Theta_{j}\left(k, \Theta_{k}\right)\right) \\
& \leq \sum_{j=k}^{k+T-1} c_{2}\left\|\Theta_{j}\left(k, \Theta_{k}\right)\right\|^{2} \\
& \leq 2 c_{2} \sum_{j=k}^{k+T-1}(1+\epsilon L)^{2(j-k)}\left\|\Theta_{k}\right\|^{2}+2 c_{2} \sum_{j=k}^{k+T-1}\left[(1+\epsilon L)^{j-k}-1\right]^{2} . \tag{69}
\end{align*}
$$

Let us now examine the two coefficients of (69) more carefully. Note that

$$
\begin{align*}
\sum_{j=k}^{k+T-1}(1+\epsilon L)^{2(j-k)} & =\frac{(1+\epsilon L)^{2 T}-1}{(1+\epsilon L)^{2}-1}=T \frac{2+(2 T-1)\left(1+\epsilon^{\prime} L\right)^{2 T-2} \epsilon L}{2+\epsilon L} \tag{70}\\
\sum_{j=k}^{k+T-1}\left[(1+\epsilon L)^{j-k}-1\right]^{2} & =\sum_{j=k+1}^{k+T-1}\left[(j-k) \epsilon L\left(1+\frac{1}{2}(j-k-1)\left(1+\epsilon_{j-k}^{\prime} L\right)^{j-k-2} \epsilon L\right)\right]^{2} \tag{71}
\end{align*}
$$

$$
\begin{equation*}
=(\epsilon L)^{2} \sum_{j=1}^{T-1} j^{2}\left[1+\frac{1}{2}(j-1)\left(1+\epsilon_{j}^{\prime} L\right)^{j-2}\right]^{2} \tag{72}
\end{equation*}
$$

where both (70) and (71) follow from the mean-value theorem $(1+\epsilon L)^{j-k}=1+(j-k) \epsilon L+\frac{1}{2}(j-k-1)(1+$ $\left.\epsilon_{j-k}^{\prime} L\right)^{j-k-2}(\epsilon L)^{2}$ for any $j-k \geq 1$ and some constants $\epsilon_{j}^{\prime} \in[0, \epsilon]$.
According to Proposition 2, or more specifically, the inequalities (61) and (62), we see that $\epsilon_{j}^{\prime} \leq \epsilon \leq \epsilon_{\delta}$ for all $1 \leq j \leq T-1$.

On the other hand, it is easy to check that both terms [(70) and (72)] are monotonically increasing functions of $\epsilon>0$. Therefore, if we define constants

$$
\begin{align*}
& c_{2}^{\prime}:=2 c_{2} T^{*} \frac{2+\left(2 T^{*}-1\right)\left(1+\epsilon_{\delta} L\right)^{2 T^{*}-2} \epsilon_{\delta} L}{2+\epsilon_{\delta} L} \tag{73}\\
& c_{2}^{\prime \prime}:=2 c_{2} \sum_{j=1}^{T^{*}-1} j^{2}\left[1+\frac{1}{2}(j-1)\left(1+\epsilon_{\delta} L\right)^{j-2}\right]^{2} \tag{74}
\end{align*}
$$

which are independent of ϵ, then we draw from (69), (70), and (72) that

$$
\begin{equation*}
W^{\prime}\left(k, \Theta_{k}\right) \leq c_{2}^{\prime}\left\|\Theta_{k}\right\|^{2}+c_{2}^{\prime \prime}(\epsilon L)^{2} . \tag{75}
\end{equation*}
$$

concluding the proof of the second part of (11).

C Proof of Lemma 1

Taking expectation of both sides of (11) conditioned on \mathcal{F}_{k} gives rise to

$$
\begin{equation*}
\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right] \leq c_{2}^{\prime}\left\|\Theta_{k}\right\|^{2}+c_{2}^{\prime \prime}(\epsilon L)^{2} . \tag{76}
\end{equation*}
$$

On the other hand, it is evident from (12) that

$$
\begin{align*}
& \mathbb{E}\left[W^{\prime}\left(k+1, \Theta_{k+1}\right) \mid \mathcal{F}_{k}\right] \\
\leq & \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]-c_{3}^{\prime} \epsilon\left\|\Theta_{k}\right\|^{2}+c_{4}^{\prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \\
= & \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\left[c_{2}^{\prime}\left\|\Theta_{k}\right\|^{2}+c_{2}^{\prime \prime}(\epsilon L)^{2}\right]+\frac{c_{3}^{\prime}}{c_{2}^{\prime} \prime \prime} \epsilon(\epsilon L)^{2}+c_{4}^{\prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \\
\leq & \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}} \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]+\frac{c_{3}^{\prime}}{c_{2}^{\prime}} c_{2}^{\prime \prime} \epsilon_{\delta}(\epsilon L)^{2}+c_{4}^{\prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \tag{77}\\
= & \left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right) \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right) \mid \mathcal{F}_{k}\right]+c_{4}^{\prime \prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \tag{78}
\end{align*}
$$

where, in order to obtain (77), we have employed the inequality in (76), and used the fact that $\epsilon<\epsilon_{\delta}$ to derive (78); and the last equality follows from $c_{4}^{\prime \prime}:=c_{4}^{\prime}+c_{3}^{\prime} c_{2}^{\prime \prime} \epsilon_{\delta} L^{2} / c_{2}^{\prime}$.

Finally, taking expectation of both sides of (78) with respect to the σ-field \mathcal{F}_{k}, concludes the proof.

D Proof of Theorem 2

Let us start with a basic Lemma, whose proof is elementary and is hence omitted here.
Lemma 4. Consider the recursion $z_{t+1}=a z_{t}+b$, where $a \neq 1$ and b are given constants. Then the following holds for all $t \geq t_{0} \geq 0$

$$
\begin{equation*}
z_{t}=a^{t-t_{0}} z_{t_{0}}+\frac{b\left(a^{t-t_{0}}-1\right)}{a-1} . \tag{79}
\end{equation*}
$$

Proof of Theorem 2 is established in two phases depending on the k values. Specifically, let us define $k_{\epsilon}:=$ $\min \left\{k \in \mathbb{N}^{+} \mid \sigma\left(T^{*} ; k\right) \leq \epsilon\right\}$; then the first phase is from $k=0$ to k_{ϵ}, while the second phase consists of all $k>k_{\epsilon}$.

Phase $I\left(k \leq k_{\epsilon}\right)$. We have from 2 that $\sigma\left(T^{*} ; k\right) \leq \delta$ for all $0 \leq k\left(\leq k_{\epsilon}\right)$. Then, fixing $t_{0}=0$, and substituting $a:=1-c_{3}^{\prime} \epsilon / c_{2}^{\prime}>0$ and $b:=c_{4}^{\prime \prime} \epsilon^{2}+c_{5}^{\prime} \delta \epsilon$ in (79), the recursion $\left\{\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right]\right\}$ in (14) can be recursively expressed as follows

$$
\begin{align*}
\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right] & \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right) \mathbb{E}\left[W^{\prime}\left(k-1, \Theta_{k-1}\right)\right]+c_{4}^{\prime \prime} \epsilon^{2}+c_{5}^{\prime} \delta \epsilon \\
& \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k} \mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right]+\left[1-\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k}\right] \frac{c_{2}^{\prime}}{c_{3}^{\prime}}\left(c_{4}^{\prime \prime} \epsilon+c_{5}^{\prime} \delta\right) \tag{80}\\
& \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k} \mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right]+\frac{c_{2}^{\prime}}{c_{3}^{\prime}}\left(c_{4}^{\prime \prime} \epsilon+c_{5}^{\prime} \delta\right) \\
& \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k} \mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right]+\frac{c_{2}^{\prime}}{c_{3}^{\prime}}\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right) \delta \tag{81}\\
& \leq c_{2}^{\prime}\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k}\left\|\Theta_{0}\right\|^{2}+c_{2}^{\prime \prime} L^{2} \epsilon^{2}+c_{6} \delta \tag{82}
\end{align*}
$$

where the last inequality follows from $\epsilon \leq \delta$ and the fact [cf. (11)] that

$$
\begin{equation*}
\mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right] \leq c_{2}^{\prime} \mathbb{E}\left[\left\|\Theta_{0}\right\|^{2}\right]+c_{2}^{\prime \prime} \epsilon^{2} L^{2} \leq c_{2}^{\prime}\left\|\Theta_{0}\right\|^{2}+c_{2}^{\prime \prime} \epsilon^{2} L^{2} \tag{83}
\end{equation*}
$$

where the initial guess $\Theta_{0} \in \mathbb{R}^{d}$ is assumed given for simplicity; and $c_{6}:=c_{2}\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right) / c_{3}^{\prime}$.
On the other hand, using (11), the term $\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right]$ can be lowered bounded as follows

$$
\begin{equation*}
\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right] \geq c_{1}^{\prime}\left\|\Theta_{k}\right\|^{2} \tag{84}
\end{equation*}
$$

which, combined with (82), yields the finite-time error bound for iterations $k \leq k_{\epsilon}$

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Theta_{k}\right\|^{2}\right] \leq \frac{c_{2}^{\prime}}{c_{1}^{\prime}}\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k}\left\|\Theta_{0}\right\|^{2}+\frac{c_{2}^{\prime \prime} L^{2}}{c_{1}^{\prime}} \epsilon^{2}+\frac{c_{6}}{c_{1}^{\prime}} \delta \tag{85}
\end{equation*}
$$

Phase II $\left(k>k_{\epsilon}\right)$. Using now the fact that $\sigma\left(T^{*} ; k\right) \leq \epsilon$ due to the definition of k_{ϵ}, the recursion $\left\{\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right]\right\}$ for all $k>k_{\epsilon}$ becomes

$$
\begin{align*}
\mathbb{E}\left[W^{\prime}\left(k+1, \Theta_{k+1}\right)\right] & \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right) \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right]+c_{4}^{\prime \prime} \epsilon^{2}+c_{5}^{\prime} \sigma\left(T^{*} ; k\right) \epsilon \tag{86}\\
& \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right) \mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right]+\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right) \epsilon^{2} \tag{87}
\end{align*}
$$

Letting $t_{0}=k_{\epsilon}$, and replacing a and b in (79) by constants $\left(1-c_{3}^{\prime} \epsilon / c_{2}^{\prime}\right)$ and $\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right) \epsilon^{2}$ accordingly, we arrive at

$$
\begin{align*}
\mathbb{E}\left[W^{\prime}\left(k, \Theta_{k}\right)\right] & \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k-k_{\epsilon}} \mathbb{E}\left[W^{\prime}\left(k_{\epsilon}, \Theta_{k_{\epsilon}}\right)\right]+\left[1-\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k-k_{\epsilon}}\right] \frac{c_{2}^{\prime}}{c_{3}^{\prime}}\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right) \epsilon \\
& \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k-k_{\epsilon}}\left[\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k_{\epsilon}} \mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right]+\frac{c_{2}^{\prime}}{c_{3}^{\prime}}\left(c_{4}^{\prime \prime} \epsilon+c_{5}^{\prime} \delta\right)\right]+\frac{c_{2}^{\prime}\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right)}{c_{3}^{\prime}} \epsilon \\
& \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k} \mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right]+\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k-k_{\epsilon}} \frac{c_{2}^{\prime}\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right)}{c_{3}^{\prime}} \delta+\frac{c_{2}^{\prime}\left(c_{4}^{\prime \prime}+c_{5}^{\prime}\right)}{c_{3}^{\prime}} \epsilon \tag{88}\\
& \leq c_{2}^{\prime}\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k}\left\|\Theta_{0}\right\|^{2}+c_{2}^{\prime \prime} \epsilon^{2} L^{2}+\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k-k_{\epsilon}} c_{6} \delta+c_{6} \epsilon \tag{89}
\end{align*}
$$

where we have used the following bound at $k=k_{\epsilon}$ from Phase I in (80) along with (83)

$$
\begin{equation*}
\mathbb{E}\left[W^{\prime}\left(k_{\epsilon}, \Theta_{k_{\epsilon}}\right)\right] \leq\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k_{\epsilon}} \mathbb{E}\left[W^{\prime}\left(0, \Theta_{0}\right)\right]+\left[1-\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k_{\epsilon}}\right] \frac{c_{2}^{\prime}}{c_{3}^{\prime}}\left(c_{4}^{\prime \prime} \epsilon+c_{5}^{\prime} \delta\right) \tag{90}
\end{equation*}
$$

Plugging (84) into (89), yields the finite-time error bound for $k \geq k_{\epsilon}$

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Theta_{k}\right\|^{2}\right] \leq \frac{c_{2}^{\prime}}{c_{1}^{\prime}}\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k}\left\|\Theta_{0}\right\|^{2}+\frac{c_{2}^{\prime \prime} L^{2}}{c_{1}^{\prime}} \epsilon^{2}+\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k-k_{\epsilon}} \frac{c_{6}}{c_{1}^{\prime}} \delta+\frac{c_{6}}{c_{1}^{\prime}} \epsilon \tag{91}
\end{equation*}
$$

which converges to a small (size- ϵ) neighborhood of the optimal solution $\Theta^{*}=0$ at a linear rate.
Combining the results in the two phases, we deduce the following error bound that holds at any $k \in \mathbb{N}^{+}$

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Theta_{k}\right\|^{2}\right] \leq \frac{c_{2}^{\prime}}{c_{1}^{\prime}}\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{k}\left\|\Theta_{0}\right\|^{2}+\frac{c_{2}^{\prime \prime} L^{2}}{c_{1}^{\prime}} \epsilon^{2}+\left(1-\frac{c_{3}^{\prime} \epsilon}{c_{2}^{\prime}}\right)^{\max \left\{k-k_{\epsilon}, 0\right\}} \frac{c_{6}}{c_{1}^{\prime}} \delta+\frac{c_{6}}{c_{1}^{\prime}} \epsilon \tag{92}
\end{equation*}
$$

concluding the proof of Theorem 2 .

E Proof of Lemma 2

When $T=1$ and for any $\Theta_{k} \in \mathbb{R}^{d}$, one can easily check that

$$
g\left(k, 1, \Theta_{k}\right)=\Theta_{k+1}-\Theta_{k}-\epsilon f\left(\Theta_{k}, X_{k}\right)=0
$$

implying $G_{1}:=\left\|g\left(k, 1, \Theta_{k}\right)\right\|=0$. To proceed, let us start by introducing the function

$$
h\left(k, T, \Theta_{k}\right):=\sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)
$$

which can be bounded as follows

$$
\begin{align*}
\left\|h\left(k, T, \Theta_{k}\right)\right\|=\left\|\sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)\right\| & \leq \sum_{j=k}^{k+T-1}\left\|f\left(\Theta_{k}, X_{j}\right)\right\| \\
& \leq L \sum_{j=k}^{k+T-1}\left(\left\|\Theta_{k}\right\|+1\right) \\
& =T L\left(\left\|\Theta_{k}\right\|+1\right) \tag{93}
\end{align*}
$$

where the second inequality follows from (5) in Assumption 1.
It is evident that

$$
\begin{align*}
g\left(k, T+1, \Theta_{k}\right) & =\Theta_{k+T+1}-\Theta_{k}-\epsilon \sum_{j=k}^{k+T} f\left(\Theta_{k}, X_{j}\right) \\
& =\Theta_{k+T}+\epsilon f\left(\Theta_{k+T}, X_{k+T}\right)-\Theta_{k}-\epsilon\left[f\left(\Theta_{k}, X_{k+T_{0}}\right)+\sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)\right] \\
& =g\left(k, T, \Theta_{k}\right)+\epsilon\left[f\left(\Theta_{k+T}, X_{k+T}\right)-f\left(\Theta_{k}, X_{k+T}\right)\right] \tag{94}
\end{align*}
$$

By means of triangle inequality, it follows that

$$
\begin{align*}
G_{T+1}=\left\|g\left(k, T+1, \Theta_{k}\right)\right\| & \leq\left\|g\left(k, T, \Theta_{k}\right)\right\|+\epsilon\left\|f\left(\Theta_{k+T}, X_{k+T}\right)-f\left(\Theta_{k}, X_{k+T}\right)\right\| \\
& \leq G_{T}+\epsilon L\left\|\Theta_{k+T}-\Theta_{k}\right\| \tag{95}\\
& \leq G_{T}+\epsilon L\left[\epsilon\left\|h\left(k, T, \Theta_{k}\right)\right\|+\left\|g\left(k, T, \Theta_{k}\right)\right\|\right] \tag{96}\\
& \leq(1+\epsilon L) G_{T}+\epsilon^{2} L^{2} T\left(\left\|\Theta_{k}\right\|+1\right) \tag{97}\\
& \leq \epsilon^{2} L^{2}\left(\left\|\Theta_{k}\right\|+1\right) \sum_{k=0}^{T}(1+\epsilon L)^{T-k} k \tag{98}
\end{align*}
$$

where the inequality (95) follows from the Lipschitz continuity of $f(\theta, x)$ in θ, (96) from the fact that $\Theta_{k+T}=$ $\Theta_{k}+\epsilon h\left(k, T, \Theta_{k}\right)+g\left(k, T, \Theta_{k}\right),(97)$ from (93) as well as the definition $G_{T}:=\left\|g\left(k, T, \Theta_{k}\right)\right\|$, and the last inequality is obtained by telescoping series and uses $G_{1}=0$.

Lemma 5. Given any positive constant $d \neq 1$, the following holds for all $T \geq 1$

$$
\begin{equation*}
S_{T+1}=\sum_{k=0}^{T} k d^{k}=\frac{d\left(1-d^{T}\right)}{(1-d)^{2}}-\frac{T d^{T+1}}{1-d} . \tag{99}
\end{equation*}
$$

Taking $d=(1+\epsilon L)^{-1}$ in (99), then (98) can be simplified as follows

$$
\begin{align*}
G_{T} & \leq \epsilon^{2} L^{2}(1+\epsilon L)^{T-1}\left(\left\|\Theta_{k}\right\|+1\right) \sum_{k=0}^{T-1}(1+\epsilon L)^{-k} k \\
& =\left[(1+\epsilon L)^{T}-\epsilon L T-1\right]\left(\left\|\Theta_{k}\right\|+1\right) . \tag{100}
\end{align*}
$$

To further simplify this bound, the Taylor expansion along with the mean-value theorem confirms that the following holds for some $\epsilon^{\prime} \in(0,1)$

$$
\begin{equation*}
(1+\epsilon L)^{T}=1+\epsilon L T+\frac{1}{2} T(T-1)\left(1+\epsilon^{\prime} L\right)^{T-2}(\epsilon L)^{2}, \quad \forall T \geq 1 \tag{101}
\end{equation*}
$$

or equivalently,

$$
\begin{align*}
(1+\epsilon L)^{T}-1-\epsilon L T & =\frac{1}{2} T(T-1)\left(1+\epsilon^{\prime} L\right)^{T-2}(\epsilon L)^{2} \tag{102}\\
& \leq \epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{T-2} . \tag{103}
\end{align*}
$$

F Proof of Lemma 3

Recalling that $g^{\prime}\left(k, T, \Theta_{k}\right)=g\left(k, T, \Theta_{k}\right)+\epsilon \sum_{j=k}^{k+T-1}\left[f\left(\Theta_{k}, X_{j}\right)-\bar{f}\left(\Theta_{k}\right)\right]$, we have

$$
\begin{align*}
\left\|g^{\prime}\left(k, T, \Theta_{k}\right)\right\|^{2}= & \left\|g\left(k, T, \Theta_{k}\right)+\epsilon \sum_{j=k}^{k+T-1}\left(f\left(\Theta_{k}, X_{j}\right)-\bar{f}\left(\Theta_{k}\right)\right)\right\|^{2} \\
\leq & 2\left\|g\left(k, T, \Theta_{k}\right)\right\|^{2}+2 \epsilon^{2} T^{2}\left\|\frac{1}{T} \sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)-\bar{f}\left(\Theta_{k}\right)\right\|^{2} \tag{104}\\
\leq & 4\left[(1+\epsilon L)^{T}-\epsilon L T-1\right]^{2}\left(\left\|\Theta_{k}\right\|^{2}+1\right) \\
& +4 \epsilon^{2} T^{2}\left\|\frac{1}{T} \sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)\right\|^{2}+4 \epsilon^{2} T^{2}\left\|\bar{f}\left(\Theta_{k}\right)\right\|^{2} \tag{105}
\end{align*}
$$

where we have used the property $\|a+b\|^{2} \leq 2\left(\|a\|^{2}+\|b\|^{2}\right)$ for any real-valued vectors a, b in deriving (104) and (105), as well as Proposition 1.

Squaring both sides of (102) yields

$$
\begin{equation*}
\left[(1+\epsilon L)^{T}-1-\epsilon T L\right]^{2}=\frac{1}{4} T^{2}(T-1)^{2}(\epsilon L)^{4}\left(1+\epsilon^{\prime} L\right)^{2 T-4} \leq \frac{1}{4} \epsilon^{4} L^{4} T^{4}(1+\epsilon L)^{2 T-4} . \tag{106}
\end{equation*}
$$

Thus, the first term of (105) can be upper bounded by

$$
\begin{equation*}
4\left[(1+\epsilon L)^{T}-\epsilon L T-1\right]^{2}\left(\left\|\Theta_{k}\right\|^{2}+1\right) \leq \epsilon^{4} L^{4} T^{4}(1+\epsilon L)^{2 T-4}\left(\left\|\Theta_{k}\right\|^{2}+1\right) \tag{107}
\end{equation*}
$$

Regarding the second term of (105), we have that

$$
\begin{equation*}
\left\|\frac{1}{T} \sum_{j=k}^{k+T-1} f\left(\Theta_{k}, X_{j}\right)\right\|^{2} \leq \frac{1}{T} \sum_{j=k}^{k+T-1}\left\|f\left(\Theta_{k}, X_{j}\right)\right\|^{2} \tag{108}
\end{equation*}
$$

$$
\begin{align*}
& \leq \frac{1}{T} \sum_{j=k}^{k+T-1} L^{2}\left(\left\|\Theta_{k}\right\|+1\right)^{2} \tag{109}\\
& \leq 2 L^{2}\left\|\Theta_{k}\right\|^{2}+2 L^{2} \tag{110}
\end{align*}
$$

where (108) and (110) follow from the inequality $\left\|\sum_{i=1}^{n} z_{i}\right\|^{2} \leq n \sum_{i=1}^{n}\left\|z_{i}\right\|^{2}$ for all real-valued vectors $\left\{z_{i}\right\}_{i=1}^{n}$, and (109) from our working assumption on function $f(\theta, x)$.

Withe regards to the last term of (105), it follows directly from the Lipschitz property of the average operator $\bar{f}(\theta)$ that

$$
\begin{equation*}
\left\|\bar{f}\left(\Theta_{k}\right)\right\|^{2} \leq L^{2}\left\|\Theta_{k}\right\|^{2} \tag{111}
\end{equation*}
$$

Substituting the bounds in (107), (110), and (111) into (105), we arrive at

$$
\begin{equation*}
\left\|g^{\prime}\left(k, T, \Theta_{k}\right)\right\|^{2} \leq \epsilon^{2} L^{2} T^{2}\left[\epsilon^{2} L^{2} T^{2}(1+\epsilon L)^{2 T-4}+12\right]\left\|\Theta_{k}\right\|^{2}+8 \epsilon^{2} L^{2} T^{2} \tag{112}
\end{equation*}
$$

concluding the proof.

G Proof of Proposition 2

We prove this claim by construction. By definition, it follows that for all $k \in \mathbb{N}^{+}$

$$
\begin{equation*}
\rho_{k}(T, \epsilon) \leq \rho_{0}(T, \epsilon)=2 \epsilon L T\left[(1+\epsilon L)^{T-2}+13\right]+2(\epsilon L T)^{3}(1+\epsilon L)^{2 T-4}+2 \sigma(T ; 0) \tag{113}
\end{equation*}
$$

Under the assumption that $\lim _{T \rightarrow+\infty} \sigma(T ; 0)=0$, the function value $\sigma(T ; 0) \geq 0$ can be made arbitrarily small by taking a sufficiently large integer $T \in \mathbb{N}^{+}$in constructing the function $W^{\prime}\left(k, \Theta_{k}\right)$. Without loss of generality, let us work with T such that

$$
\begin{equation*}
T_{\delta}:=\min \left\{T \in \mathbb{N}^{+} \left\lvert\, \sigma(T ; 0) \leq \frac{\delta}{4}\right.\right\} \tag{114}
\end{equation*}
$$

It is clear that $T_{\delta} \geq 1$. Define function

$$
\begin{equation*}
\nu(\epsilon):=\epsilon L T_{\delta}\left[(1+\epsilon L)^{T_{\delta}-2}+13\right]+\left(\epsilon L T_{\delta}\right)^{3}(1+\epsilon L)^{2 T_{\delta}-4} \tag{115}
\end{equation*}
$$

which can be easily shown to be a monotonically decreasing function of $\epsilon>0$, and which attains its minimum $\nu=0$ at $\epsilon=0$. Let ϵ_{δ} be the unique solution to the equation

$$
\begin{equation*}
\nu(\epsilon)=\frac{\delta}{4}, \quad \epsilon>0 \tag{116}
\end{equation*}
$$

As a result, for all $\epsilon \in\left(0, \epsilon_{\delta}\right]$, it holds that

$$
\begin{equation*}
\nu(\epsilon) \leq \frac{\delta}{4} \tag{117}
\end{equation*}
$$

Combining (114) and (117) concludes the proof of Proposition 2.

