
SUPPLEMENTARY MATERIAL OF “CAUSAL INFERENCE

IN DEGENERATE SYSTEMS: AN IMPOSSIBILITY

RESULT”

S.1. Proof of Lemma 1. We first present a proposition based on the weak
union property of probability distributions (Pearl, 1988).

Proposition S1. Any superset of a Markov blanket is still a Markov blanket.

Now consider two Markov boundaries M1, M2 within {X} ∪ K. Let
M1 = {X}∪Z1, X /∈M2,M2\M1 = Z2, K∪{X}\(M1∪M2) = Z3, where
Z1 = {Z1, . . . , Zn}, Z2 = {Z ′1, . . . , Z ′m}, Z3 = {Z ′′1 , . . . , Z ′′l }. Therefore
K = Z1 ∪ Z2 ∪ Z3.

Fix z10 ∈ Z1 such that f(z10) > 0. Assume that for xi ∈ X, f(xi, z
1
0) > 0

is true for i ∈ {1, . . . , p}. Assume that for z2j ∈ Z2, f(z10 , z
2
j ) > 0 is true for

j ∈ {1, . . . , q}. Consider any y ∈ Y.
To obtain contradiction, we assume that f(xi, z

1
0 , z

2
j ) > 0 for all i ∈

{1, . . . , p} and all j ∈ {1, . . . , q}.
Since X |= Y | (Z1,Z2) (Proposition S1) for all i, r ∈ {1, . . . , p} and all

j ∈ {1, . . . , q},
f(y | xi, z10 , z2j ) = f(y | xr, z10 , z2j ).

Since Z2 |= Y | (X,Z1) for all r ∈ {1, . . . , p} and all j, s ∈ {1, . . . , q},

f(y | xr, z10 , z2j ) = f(y | xr, z10 , z2s ).

All the conditions have positive probabilities, so the conditional probabilities
are well-defined.

Then we have

f(y | xi, z10 , z2j ) = f(y | xr, z10 , z2s ),

for all i, r ∈ {1, . . . , p} and all j, s ∈ {1, . . . , q}.
Since this is true for any possible values of X and Z2 when Z1 = z10 , we

know that

f(y | xi, z10 , z2j ) = f(y | z10).

Therefore, for all z11 ∈ Z1 with f(z11) > 0, all y ∈ Y and all i, j,

f(xi, z
2
j , y | z11) = f(xi, z

2
j | z11)f(y | z11)

is valid.
This implies that (X,Z2) |= Y | Z1, therefore X |= Y | Z1, mi(Y,Z1) =

mi(Y, (X,Z1)). Since M1 = {X} ∪ Z1, mi(Y, (X,Z1)) = mi(Y,K). Thus
mi(Y,Z1) = mi(Y, {X}∪K), implying that Z1 is a Markov blanket, which is a
contradiction. So there exists x ∈ X, z10 ∈ Z1, z21 ∈ Z2 such that f(x, z10) > 0
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(implies f(x) > 0), f(z10 , z
2
1) > 0, but f(x, z10 , z

2
1) = 0. Choose z31 ∈ Z3 such

that f(z10 , z
2
1 , z

3
1) > 0, and let k = (z10 , z

2
1 , z

3
1), then f(x) > 0, f(k) > 0, but

f(x, k) = 0.

S.2. Proof of Proposition 2. In this setting, when n is much larger than
fixed m, due to the property of Dirichlet distribution, with probability at
least 1 − δ/2, we can modify p to p̄ such that three pre-chosen variables
X,Y, Z are independent under p̄, and d(p, p̄) < ε/2. Then construct X̄, Ȳ , Z̄:
X̄, Ȳ , Z̄ equal X,Y, Z if none of X,Y, Z is 1; X̄, Ȳ , Z̄ equal 1 if at least one
of X,Y, Z is 1. Now either all X̄, Ȳ , Z̄ equal 1, or none of them equals 1
(they are independent in this case). Substitute X,Y, Z by X̄, Ȳ , Z̄ to obtain
a new distribution p′. When m is large enough, d(p′, p̄) < ε/2. Now under
p′, X̄ and Z̄ contain exactly the same unique information of Ȳ , thus there
exist multiple Markov boundaries. Besides, d(p, p′) < ε/2.

S.3. Proof of Lemma 2. In the following we will assume there is only one
pair of (x, l) such that f(x) > 0, f(l) > 0, f(x, l) = 0. If there are multiple
pairs, we can treat them one by one.

We construct a family of probability distributions pηi with mass functions
fηi based on p. For (x′, l′) 6= (x, l), fηi (x′, y, l′) = (1−η)f(x′, y, l′). fηi (x, l) =

η > 0, fηi (yj | x, l) = αji , where αji ≥ 0,
∑

j α
j
i = 1. Then for each i,

cs[pηi ](X → Y ) can be defined, and when η → 0, fηi converges to f . The
total variation distance between f and fηi is η.

When η → 0,

cs[pηi ](X → Y ) =
∑
x′∈X

∑
y′∈Y

∑
l′ 6=l

fηi (x′, y′, l′) log
fηi (y′ | x′, l′)∑

x′′∈X f
η
i (y′ | x′′, l′)fηi (x′′)

+
∑
x′∈X

∑
y′∈Y

fηi (x′, y′, l) log
fηi (y′ | x′, l)∑

x′′∈X f
η
i (y′ | x′′, l)fηi (x′′)

→
∑
x′∈X

∑
y′∈Y

∑
l′ 6=l

f(x′, y′, l′) log
f(y′ | x′, l′)∑

x′′∈X f(y′ | x′′, l′)f(x′′)

+
∑
x′ 6=x

∑
y′∈Y

f(x′, y′, l) log f(y′ | x′, l)

−
∑
j

f(yj , l) log{f(x)αji +
∑
x′ 6=x

f(x′)f(yj | x′, l)}.

For different i, when we let η → 0, the only different terms are

−
∑
j

f(yj , l) log{f(x)αji +
∑
x′ 6=x

f(x′)f(yj | x′, l)}.

We will show that the above term is not a constant with {αji}. Therefore we

can find two groups of {αji} for i = 1, 2 such that g1 = limη→0 cs[p
η
1](X →

Y ) < limη→0 cs[p
η
2](X → Y ) = g2.
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If there is only one y1 such that f(y1, l) > 0, then

−
∑
j

f(yj , l) log{f(x)αji +
∑
x′ 6=x

f(x′)f(yj | x′, l)}

= −f(y1, l) log{f(x)α1
i +

∑
x′ 6=x

f(x′)f(y1 | x′, l)}.

It is not a constant when we change α1
i .

If there are at least two values y1, y2 of Y , such that f(y1, l) > 0, f(y2, l) >

0, then we can change α1
i while keeping α1

i + α2
i = d, and leave other αji

fixed.
Set f(y1, l) = a1, f(y2, l) = a2, f(x) = c,

∑
x′ 6=x f(x′)f(y1 | x′, l) =

b1,
∑

x′ 6=x f(x′)f(y2 | x′, l) = b2. All these terms are positive. Then in

−
∑

j f(yj , l) log{f(x)αji +
∑

x′ 6=x f(x′)f(yj | x′, l)}, terms containing α1
i and

α2
i are

−a1 log(cα1
i + b1)− a2 log{c(d− α1

i ) + b2}.
Its derivative with respect to α1

i is

− a1c

cα1
i + b1

+
a2c

c(d− α1
i ) + b2

.

If the derivative always equal 0 in an interval, then we should have

a1
a2
≡ cα1

i + b1
c(d− α1

i ) + b2
,

which is incorrect.
Now we have two groups of {αji} for i = 1, 2 such that

g1 = lim
η→0

cs[pη1](X → Y ) < lim
η→0

cs[pη2](X → Y ) = g2.

Then for any g ∈ (g1, g2), any δ > 0, we can find η < δ small enough

such that cs[pη1](X → Y ) < g, cs[pη2](X → Y ) > g. Then we change {αj1}
continuously to {αj2}. During this process cs is always defined, and there
exists {α3} such that cs[pη3](X → Y ) = g.

This shows that cs(X → Y ) is essentially ill-defined.
Since cs(X → Y ) and pmi(X,Y | L) have the same non-zero terms

containing f(· | x, l), the same argument shows that pmi(X,Y | L) is not
well-defined.

S.4. Proof of Lemma 3 when X is discrete. The proofs for discrete and
continuous X are different, therefore we state them separately. Whether Y
is discrete or continuous does not matter, therefore we assume Y is dis-
crete/continuous when X is discrete/continuous. We impose some restric-
tions to simplify the proofs. If X is discrete, then UX is an arbitrary discrete
random variable which takes all the values of X with positive probabilities.
If X is continuous, then UX is continuous, and its density function is always
positive.
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cmi(X,Y | S1) =
∑

s1
pr(S1 = s1)cmi(X,Y | S1 = s1). For a fixed s1,

assume X takes values 1, . . . , r′, UX takes values 1, . . . , r′, . . . , r, and Y takes
values 1, . . . , t with positive probabilities. Denote pr(X = i, Y = j | S1 = s1)
by pij . Define p−j =

∑
i pij , pi− =

∑
j pij . With ε-noise, pε−j = p−j ,

pεij = (1− ε)pij + εqip−j , p
ε
i− = (1− ε)pi−+ εqi. Here qi is the density of UX .

Then we have

cmi(X,Y | S1 = s1) =

t∑
j=1

r′∑
i=1

pij log
pij

pi−p−j
,

cmi(Xε, Y | S1 = s1) =

t∑
j=1

r∑
i=1

{(1−ε)pij+εqip−j} log
(1− ε)pij + εqip−j
{(1− ε)pi− + εqi}p−j

.

cmi(X,Y | S1 = s1)− cmi(Xε, Y | S1 = s1) =
t∑

j=1

r∑
i=1

[
(1− ε+ qiε)pij log

pij
pi−p−j

+
∑
k 6=i

qiεpkj log
pkj

pk−p−j

−{(1− ε)pij + εqip−j} log
(1− ε)pij + εqip−j
p−j{(1− ε)pi− + εqi}

]
.

If pk− = 0, namely k = r′ + 1, . . . , r, then we stipulate
pkj

pk−p−j
= 1.

For fixed i, j and k = 1, . . . , r, set

akij =
pkj

pk−p−j
,

bkij =
εqipk−

(1− ε)pi− + εqi
for k 6= i,

biij =
(1− ε+ qiε)pi−
(1− ε)pi− + εqi

,

cij = p−j{(1− ε)pi− + εqi}.
Here we know that p−j > 0, (1− ε)pi− + εqi > 0.

Then we have

cmi(X,Y | S1 = s1)− cmi(Xε, Y | S1 = s1)

=

t∑
j=1

r∑
i=1

cij{
r∑

k=1

bkija
k
ij log akij − (

r∑
k=1

akijb
k
ij) log(

r∑
k=1

akijb
k
ij)} ≥ 0.

The last step is Jensen’s inequality, since akij ≥ 0, bkij ≥ 0,
∑r

k=1 b
k
ij =

1, cij > 0, f(x) = x log x is strictly convex down when x ≥ 0 (stipulate
0 log 0 = 0).

The equality holds if and only if for each i, j, a1ij = a2ij = · · · = ar
′
ij ,

which means pij/pi− are equal for all i ≤ r′. Since
∑r′

i=1 pi−(pij/pi−) = p−j ,∑r′

i=1 pi− = 1, we have pij/pi− = p−j for each i, j such that pi− > 0 and
p−j > 0. This is equivalent with that X and Y are independent conditioned
on S1 = s1.
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cmi(X,Y | S1) = 0 if and only if X and Y are independent conditioned
on any possible value of S1. Therefore, cmi(Xε, Y | S1) ≤ cmi(X,Y | S1),
and the equality holds if and only if cmi(X,Y | S1) = 0.

S.5. Proof of Lemma 3 when X is continuous.

cmi(X,Y | S1) =

∫ ∞
−∞

cmi(X,Y | S1 = s1)h(s1)ds1,

where h(s1) is the probability density function of S1. For a fixed s1, denote
the joint probability density function of X,Y conditioned on S1 = s1 by
p(x, y). Define p1(x) =

∫∞
−∞ p(x, y)dy, p2(y) =

∫∞
−∞ p(x, y)dx. With ε-noise,

the joint probability density function of X,Y conditioned on S1 = s1 is
(1− ε)p(x, y) + εq(x)p2(y), where q(x) is the density function of UX . Notice
that

∫∞
−∞ q(x)dx = 1,

∫∞
−∞[(1− ε)p(x, y) + εq(x)p2(y)]dx = p2(y). Then we

have

cmi(X,Y | S1 = s1)− cmi(Xε, Y | S1 = s1)

=

∫ ∞
−∞

∫ ∞
−∞

p(x, y) log
p(x, y)

p1(x)p2(y)
dxdy

−
∫ ∞
−∞

∫ ∞
−∞
{(1−ε)p(x, y)+εq(x)p2(y)} log

(1− ε)p(x, y) + εq(x)p2(y)

{(1− ε)p1(x) + εq(x)}p2(y)
dxdy

=

∫ ∞
−∞

∫ ∞
−∞

[
(1− ε)p(x, y) log

p(x, y)

p1(x)p2(y)

+q(x)ε
{∫ ∞
−∞

p(x0, y) log
p(x0, y)

p1(x0)p2(y)
dx0

}
−{(1− ε)p(x, y) + εq(x)p2(y)} log

(1− ε)p(x, y) + εq(x)p2(y)

{(1− ε)p1(x) + εq(x)}p2(y)

]
dxdy.

For fixed x, y, we can define a probability measure µx,y(x0) on R, which
is a mixture of discrete and continuous type measures. For the discrete
component, it has probability (1 − ε)p1(x)/{(1 − ε)p1(x) + εq(x)} to take
x. For the continuous component, the probability density function at x0 is
q(x)εp1(x0)/{(1−ε)p1(x)+εq(x)}. Define Fx,y(x0) = p(x0, y)/{p1(x0)p2(y)}.
If p1(x0) = 0 or p2(y) = 0, stipulate Fx,y(x0) = 1.

Now we have

cmi(X,Y | S1 = s1)− cmi(Xε, Y | S1 = s1)

=

∫ ∞
−∞

∫ ∞
−∞
{(1− ε)p1(x) + εq(x)}p2(y)

[ ∫ ∞
−∞

Fx,y(x0) logFx,y(x0)dµx,y(x0)

−
{∫ ∞
−∞

Fx,y(x0)dµx,y(x0)
}

log
{∫ ∞
−∞

Fx,y(x0)dµx,y(x0)
}]

dxdy ≥ 0.

The last step is the probabilistic form of Jensen’s inequality, since Fx,y(x0)
is non-negative and integrable with probability measure µx,y(x0), {(1 −
ε)p1(x) + εq(x)}p2(y) > 0 if p2(y) > 0, and f(x) = x log x is strictly convex
down when x ≥ 0 (stipulate 0 log 0 = 0).
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The equality holds if and only if for p1(x0) > 0 and p2(y) > 0, Fx,y(x0)
is a constant with x0, which means p(x0, y)/p1(x0) is a constant almost
surely. Since

∫∞
−∞ p1(x0)p(x0, y)/p1(x0)dx0 = p2(y),

∫∞
−∞ p1(x0) = 1, we

have p(x0, y)/p1(x0) = p2(y) for almost surely each x0, y such that p1(x0) >
0 and p2(y) > 0. This is equivalent with that X and Y are independent
conditioned on S1 = s1.

cmi(X,Y | S1) = 0 if and only if X and Y are independent conditioned on
any possible value of S1, except a zero-measure set. Therefore, cmi(Xε, Y |
S1) ≤ cmi(X,Y | S1), and the equality holds if and only if cmi(X,Y | S1) =
0.

S.6. Proof of Lemma 4. Set S = {X,Z1, . . . , Zk}. Remember that a
Markov boundary M is a minimal subset of S such that mi(M, Y ) =
mi(S, Y ). Denote S with ε-noise on Zi /∈ M0 by Sε. Since mi(M0, Y ) =
mi(S, Y ), mi(M0, Y ) ≤ mi(Sε, Y ), mi(Sε, Y ) ≤ mi(S, Y ), we have mi(Sε, Y ) =
mi(S, Y ). Therefore, M0 is still a Markov boundary after adding ε-noise.
Assume in the new distribution, there is another Markov boundary, then
it contains a variable with ε-noise: Zεi . Denote this Markov boundary by
{Zεi } ∪ S1. Therefore, cmi(Zεi , Y | S1) > 0. However, from Lemma 3,
this implies cmi(Zεi , Y | S1) < cmi(Zi, Y | S1), namely mi({Zεi } ∪ S1, Y ) <
mi({Zi}∪S1, Y ). But mi({Zεi }∪S1, Y ) = mi(Sε, Y ) = mi(S, Y ) ≥ mi({Zi}∪
S1, Y ), which is a contradiction.

S.7. Proof of Lemma 5. Assume there exists a Markov boundaryM such
that W ∈ E , W /∈M. Then S \{W} ⊃ M is a Markov blanket (Proposition
S1), and cmi(Y,S | S \ {W}) = 0, which contradicts to W ∈ E .

If W /∈ E , then cmi(Y,S | S \{W}) = 0, and S\{W} is a Markov blanket.
This Markov blanket contains a Markov boundary, which does not contain
W .

S.8. Proof of Theorem 2. If Markov boundary is unique, then E is just
the Markov boundary, therefore cmi(Y,S | E) = 0.

If cmi(Y,S | E) = 0, then E is a Markov blanket, which means it should
contain a Markov boundary. But E should be contained in every Markov
boundary, therefore E itself is a Markov boundary. E as a Markov bound-
ary cannot be a proper subset of another Markov boundary, thus the only
Markov boundary is E .

S.9. Proof of Proposition 5. Proof that Algorithm 1 is sound and com-
plete. There exists at least one Markov boundary. The algorithm can al-
ways terminate in finite steps and produce an output. It is easy to see that
the output M0 is a Markov blanket. In the last step of Algorithm 1, we
have checked that X0 6⊥⊥ Y | M0 \ {X0}. For Xi ∈ M0, since ∆(Xi, Y |
M0 \ {Xi}) ≥ ∆(X0, Y | M0 \ {X0}), we also have Xi 6⊥⊥ Y | M0 \ {Xi}.
Therefore the output of Algorithm 1 is a Markov boundary.

Proof that Algorithm 2 is sound and complete. The algorithm can always
terminate in finite steps and produce an output. Markov boundary M0 is



7

not the unique Markov boundary if and only if there exists variable Xi ∈M0

which is not essential, namely

mi(Y,S \ {Xi}) = mi(Y,S).

Moreover, since mi(Y,S \ {Xi}) = mi(Y,Mi) and mi(Y,M0) = mi(Y,S), we
have

mi(Y,Mi) = mi(Y,M0),

or equivalently,
cmi(Y,M0 | Mi) = 0.

S.10. Algorithms references in Remarks 5 and 6. We now describe
Algorithms S1 and S2 that were used in the simulation studies.

Algorithm S1 is obtained by replacing step (3) in Algorithm 2 with a
direct test of whether Xi is an essential variable.

Algorithm S1: A variant of Algorithm 2 for testing the uniqueness of
Markov boundary

(1) Input
Joint distribution of S = {X1, . . . , Xk} and Y

(2) SetM0 = {X1, . . . , Xm} to be the result of Algorithm 1 on S
(3) For i = 1, . . . ,m,

If Xi |= Y | S \ {Xi}
Output Y has multiple Markov boundaries
Terminate

(4) Output Y has a unique Markov boundary

Proof of correctness of Algorithm S1. For a Markov boundary M0, it is
the unique Markov boundary if and only if it coincides with E . Therefore,
we only need to check whether there exists a variable Xi ∈M0 which is not
essential, namely Xi |= Y | S \ {Xi}.

Algorithm S2 is constructed based on Theorem 2 directly.
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Algorithm S2: A benchmark algorithm for testing the uniqueness of
Markov boundary based on Theorem 2

(1) Input
Joint distribution of S = {X1, . . . , Xk} and Y

(2) Set Ê = ∅
(3) For i = 1, . . . , k,

If Xi 6⊥⊥ Y | S \ {Xi}
Ê = Ê ∪ {Xi}

(4) If Y |= S | Ê
Output: Y has a unique Markov boundary

Else
Output: Y has multiple Markov boundaries


