SUPPLEMENTARY MATERIAL OF “CAUSAL INFERENCE
IN DEGENERATE SYSTEMS: AN IMPOSSIBILITY
RESULT”

S.1. Proof of Lemma 1. We first present a proposition based on the weak
union property of probability distributions (Pearl, 1988).

Proposition S1. Any superset of a Markov blanket is still a Markov blanket.

Now consider two Markov boundaries Mj, Ms within {X} U K. Let
./\/ll = {X}UZI, X ¢ MQ, MQ\Ml == ZZ, ]CU{X}\(MlLJMQ) == Zg, where
ZV={Z,...,Z,}, 22 = {Z},...., 2}, 25 = {Z},...,Z]'}. Therefore
K=2z'uz?uzs

Fix z{ € Z! such that f(2}) > 0. Assume that for z; € X, f(z;,28) > 0
is true for ¢ € {1,...,p}. Assume that for 2]2 € 72, f(zé,z]z) > 0 is true for
j€{1,...,q}. Consider any y € Y.

To obtain contradiction, we assume that f(x;,23,2%) > 0 for all i €
{1,...,p}and all j € {1,...,q}.

Since X LY | (2!, 22) (Proposition S1) for all 4,7 € {1,...,p} and all
jed{l,...,q},

[y xi,z}),z]?) = fly ‘ xr,z(l),z]z).
Since Z21LY | (X, ZY) for all r € {1,...,p} and all j,s € {1,...,q},

f(y ’ xﬁz(l)vzz) = f(y ’ 1’7»,2(1),22).
All the conditions have positive probabilities, so the conditional probabilities
are well-defined.
Then we have
f(y | xi,zé,zjz) =f(y| xrﬂztl)ﬂzz)v
for all i,r € {1,...,p} and all j,s € {1,...,q}.
Since this is true for any possible values of X and Z? when Z! = 24, we
know that

Fly @i, 25,2) = f(y | z)-
Therefore, for all 23 € Z! with f(2{) > 0, all y € Y and all i, j,

f(xivzf'ay | Z%) = f(xi,z? | Z%)f(y | Z%)
is valid.

This implies that (X, 22)1Y | Z!, therefore X LY | Z!, mi(Y, Z1) =
MI(Y, (X, Z1)). Since My = {X} U Z!, Mi(Y, (X, Z')) = m1(Y,K). Thus
Mi(Y, Z1) = mi1(Y, { X }UK), implying that 2 is a Markov blanket, which is a
contradiction. So there exists x € X, zé YA z% € 72 such that f(z, zé) >0
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(implies f(z) > 0), f(23,2%) > 0, but f(=, zo,zl) = 0. Choose 23 € Z3 such
that f(zo,z%,zl) > 0, and let k = (2}, 21, 23), then f(z) > 0, f(k) > 0, but
[z, k) =

S.2. Proof of Proposition 2. In this setting, when n is much larger than
fixed m, due to the property of Dirichlet distribution, with probability at
least 1 — §/2, we can modify p to p such that three pre-chosen variables
X,Y, Z are 1ndependent under p, and d(p,p) < €/2. Then construct X,Y, Z:
X,Y,Z equal X,Y,Z if none of X,Y, Zis 1; X,V Zequalllfatleastone
of X,Y,Z is 1. Now either all X,Y,Z equal 1, or none of them equals 1
(they are independent in this case). Substitute X,Y,Z by X,Y, Z to obtain
a new distribution p’. When m is large enough, d(p p) <e / 2. Now under
p’, X and Z contain exactly the same unique information of Y, thus there
exist multiple Markov boundaries. Besides, d(p,p’) < €/2.

S.3. Proof of Lemma 2. In the following we will assume there is only one
pair of (z,l) such that f(x) >0, f(I) >0, f(x,l) = 0. If there are multiple
pairs, we can treat them one by one.

We construct a family of probability distributions p; with mass functions
$1based on p. For (,1) # (1, 1), £1(a'.1) = (1= 07,0, f7,1) =
n >0, fly; | z,1) = o, where o > 0, >.;ai = 1. Then for each i,
os[p/](X — Y) can be deﬁned, and when 7 — 0, f' converges to f. The
total variation distance between f and f; is .

When n — 0,
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For different i, when we let 7 — 0, the only different terms are

—ny], Yog{f(z)ad + > fa)f(y; | 2/, 1)}.
/;éQT

We will show that the above term is not a constant with {az }. Therefore we
can find two groups of {a]} for i = 1,2 such that g; = lim,_,o cs[p}|(X —
Y) < limy0 CS[pa](X — Y) = go.



If there is only one y; such that f(yi,l) > 0, then

—ny], log{f(z)o + > f(a)f(y; | 2,1}
/;é:E

—f(ys, Dlog{ f(x)a} + > fa) (| 2, 1)}
/#x
It is not a constant when we change o).
If there are at least two values yy,y2 of Y, such that f(y1,1) > 0, f(y2,1) >
0, then we can change a} while keeping ail + oziz = d, and leave other o

fixed.

Set f(ylal) = ar, f(yQJ) = az, f(x) = G Zx’yﬁxf(x,)f(yl ’ x,’l) =
bi, Dz f(@)f(y2 | @,1) = ba. All these terms are positive. Then in
=22 fy; 1) log{f@)a?—kzx/#x f(@)f(y; | 2',1)}, terms containing a; and
o? are

—ay log(ca} +by) — aglog{c(d — a}) + b}

Its derivative with respect to o is

ajc asc
_ca%+b1 cld—al)+ by

If the derivative always equal 0 in an interval, then we should have

ar cal + b

az  c(d—al)+by’
which is incorrect. ,
Now we have two groups of {a?} for i = 1,2 such that

g1 = lim cs[p!|(X = Y) < lim cs[pd](X = Y) = go.
n—0 n—0

Then for any g € (g1,92), any 6 > 0, we can find n < ¢ small enough
such that cs[pf](X — Y) < g, cs[pd](X — Y) > g. Then we change {a]}
continuously to {a3}. During this process Cs is always defined, and there
exists {as} such that cs[pl](X = Y) =g.

This shows that ¢s(X — Y) is essentially ill-defined.

Since ¢s(X — Y) and pMI(X,Y | £) have the same non-zero terms

containing f(- | z,1), the same argument shows that PMI(X,Y | £) is not
well-defined.

S.4. Proof of Lemma 3 when X is discrete. The proofs for discrete and
continuous X are different, therefore we state them separately. Whether Y
is discrete or continuous does not matter, therefore we assume Y is dis-
crete/continuous when X is discrete/continuous. We impose some restric-
tions to simplify the proofs. If X is discrete, then Ux is an arbitrary discrete
random variable which takes all the values of X with positive probabilities.
If X is continuous, then Uy is continuous, and its density function is always
positive.



oMI(X,Y [ &) = >, pr(S1 = s1)eMI(X,Y | §; = s1). For a fixed s1,
assume X takes values 1,...,7’, Ux takes values 1,...,7’,...,r, and Y takes
values 1, ..., ¢ with positive probabilities. Denote pr(X =, Y =j | S1 = s1)
by pij. Define p_; = > . pij, pi- = Ej pij-  With e-noise, p2,; = p_j,
p; = (L —€)pij +eqip—j, pi_ = (1 —€)pi— +eq;. Here g; is the density of Ux.
Then we have

cMI(X,Y | S =s1) Z Zp” log

7j=11=1

t T
(1 — e)pij + €qip—;
cMI( XY | S) =51) = 1—€)p;i+eqip—;} log J S
( ‘ ) ;;{( ) ] 2 J} {(1 —6)]%— +EQi}p—j
cMI(X,Y | §1 = s1) — CMI(Xg,Y | S1=51)=
t T

Z [ 1 — €+ q;€ pz] log + Z qi€Pkj log 7}

j=11i=1 Pi=P—j k#i Pk—P—j
U,)w+mmj}
—]{<1 - e)pl— + 6%}
If p,_ =0, namely &k =7/ +1,...,r, then we stipulate pk;_]_ =1.

For fixed 7,7 and k = 1,...,r set
E _ Pkj

Y prep—j’

k €4iPk— .
bi; = A= op e for k #1,
pi = L= et aop
(1 —e)pi- +eq’
cij = p—i{(1 — €)pi- + €qi}-
Here we know that p_; > 0, (1 — €)p;— +€g; > 0.
Then we have

cMI(X,Y | S1 =s1) —oMI(X Y | S1 = s1)

,
= ZZCU{Z szaw log aw (Z aij ) log Zaw )} > 0.
k=1

Jj=11i=1

{(1 - f)pz] + €qip— ]} log

The last step is Jensen s inequality, since afj > 0, bfj >0, > bfj =
1, ¢ij > 0, f(xz) = zlogx is strictly convex down when z > 0 (stipulate
0log0 = 0).

2 /

The equality holds if and only if for each i, j, ailj = a; = - = ag,

WhilCh means p;;/p;— are equal for all ¢ < r’. Since Z:lzl pi—(pij/pi—) = p—j,
>oi_i1pi— = 1, we have p;;/p,— = p—; for each i,j such that p;— > 0 and
p—; > 0. This is equivalent with that X and Y are independent conditioned
on Sl = 51.
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cMI(X,Y | S§1) = 0 if and only if X and Y are independent conditioned
on any possible value of §;. Therefore, cMI(X, Y | §;) < eMi(X,Y | &),
and the equality holds if and only if cMI(X,Y | S1) = 0.

S.5. Proof of Lemma 3 when X is continuous.

CMI(X,YSl):/ OMI(X, Y | Si = s1)h(s1)ds1,

where h(s1) is the probability density function of S;. For a fixed s;, denote
the joint probability density function of X,Y conditioned on & = s; by
p(z,y). Define p1(z) = [ p(z,y)dy, p2(y) = [~ p(x,y)dz. With e-noise,
the joint probablhty den81ty function of X,Y conditioned on &1 = 1 is
(I1—e)p (:Jc y) + eq(x)pa(y), where ¢(z) is the density function of Ux. Notice
that [ g¢(z)dz =1, [T [(1 — €)p(z,y) + eq(x)p2(y)]dz = p2(y). Then we
have

CMI(X,Y | 1 =s1) —oMI(X Y | S1 = s1)

/ / (z,y)log p1(< zy) dxdy

—Op(z,y) e og L= OP(,y) +ea(@)p2(y)
-]ttt )}lg« i) + eala)paly)

)
[ oo

P
ra@e{ [ plan)tog s PEDdzy)

(
—{(1 = pla.y) + eqla op L= OP(@:y) + €a(@)pa(y)
{1 = e)p(z,y) + eal@)pay)}log 73— 5 oo oy

For fixed z,y, we can define a probability measure ji, ,(z9) on R, which
is a mixture of discrete and continuous type measures. For the discrete
component, it has probability (1 — €)pi(x)/{(1 — €)p1(x) + eq(x)} to take
x. For the continuous component, the probability density function at zg is
a(2)ep1 (20)/{(1—)p1 () +eq(2)}. Define Fr (w0) = p(ao, v)/{p1(0)pa(y) }.
If p1(xo) = 0 or pa(y) = 0, stipulate Fy ,(x¢) = 1.

Now we have

}dmdy

cMI(X,Y | S§1 =s1) —oMI(X Y | S1 = s1)

_ /_oo /_OO {(1 B E)pl(:ﬁ) i €q<$)}p2(y) [/_oo F%y(x(]) log Fw,y(va)de,y(l’O)

{7 Pt o [

Fx,y(xo)du%y(xo)” dzdy > 0.
—0o0

The last step is the probabilistic form of Jensen’s inequality, since F; (o)
is non-negative and integrable with probability measure p,,(x0), {(1 —
e)p1(x) + eq(x) }pa(y) > 0 if pa(y) > 0, and f(z) = xzlogx is strictly convex

down when x > 0 (stipulate 0log0 = 0).



The equality holds if and only if for pi(zg) > 0 and pa(y) > 0, Fy (o)
is a constant with xy, which means p(zo,y)/p1(zo) is a constant almost
surely. Since [*_pi(zo)p(zo, y)/p1(z0)dzo = pa(y), [ pi(e0) = 1, we
have p(xo,y)/pi(xo) = p2(y) for almost surely each g, y such that pi(zg) >
0 and p2(y) > 0. This is equivalent with that X and Y are independent
conditioned on 81 = s7.

cMI(X,Y | §1) = 0if and only if X and Y are independent conditioned on
any possible value of S;, except a zero-measure set. Therefore, cm1(X€,Y |
S1) < oMmI(X,Y | 81), and the equality holds if and only if cMI(X,Y | 1) =
0.

S.6. Proof of Lemma 4. Set S = {X,Z,...,Z;}. Remember that a
Markov boundary M is a minimal subset of S such that MI(M,Y) =
MI(S,Y). Denote S with e-noise on Z; ¢ My by S¢. Since MI(Mp,Y) =
MI(S,Y), MI(Mp,Y) < MI(S4,Y), MI(S,Y) < MI(S,Y), we have MI(S,Y) =
MI(S,Y). Therefore, My is still a Markov boundary after adding e-noise.
Assume in the new distribution, there is another Markov boundary, then
it contains a variable with e-noise: Z;. Denote this Markov boundary by
{Zf} U S1. Therefore, cM1(Zf,Y | S1) > 0. However, from Lemma 3,
this implies cMI(Zf,Y | §1) < eMI(Z;,Y | 1), namely MI({Zf} U S1,Y) <
MI({Z;}US1,Y). But Mi({Zf}US1,Y) = MI(S,Y) = Mm1(S,Y) > M1({Z;} U
S1,Y), which is a contradiction.

S.7. Proof of Lemma 5. Assume there exists a Markov boundary M such
that W e &, W ¢ M. Then S\ {W} D M is a Markov blanket (Proposition
S1), and cM1(Y, S | S\ {W}) = 0, which contradicts to W € &.

W ¢ &, then cMI(Y,S | S\{W}) =0, and S\ {W} is a Markov blanket.
This Markov blanket contains a Markov boundary, which does not contain
wW.

S.8. Proof of Theorem 2. If Markov boundary is unique, then &£ is just
the Markov boundary, therefore cM1(Y, S | £) = 0.

If om1(Y,S | £) = 0, then £ is a Markov blanket, which means it should
contain a Markov boundary. But £ should be contained in every Markov
boundary, therefore £ itself is a Markov boundary. &£ as a Markov bound-
ary cannot be a proper subset of another Markov boundary, thus the only
Markov boundary is £.

S.9. Proof of Proposition 5. Proof that Algorithm 1 is sound and com-
plete. There exists at least one Markov boundary. The algorithm can al-
ways terminate in finite steps and produce an output. It is easy to see that
the output My is a Markov blanket. In the last step of Algorithm 1, we
have checked that Xo L Y | Mo \ {Xo}. For X; € My, since A(X;,Y |
Mo\ {Xi}) > A(Xo,Y | Mo\ {Xo}), we also have X; L Y | Mo\ {X;}.
Therefore the output of Algorithm 1 is a Markov boundary.

Proof that Algorithm 2 is sound and complete. The algorithm can always
terminate in finite steps and produce an output. Markov boundary My is
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not the unique Markov boundary if and only if there exists variable X; € My
which is not essential, namely

MI(Y, S\ {X;}) = M1(Y,S).
Moreover, since MI(Y, S\ {X;}) = MI(Y, M;) and M1(Y, M) = MI(Y, S), we
have
MI(Y, M;) = MI(Y, M),
or equivalently,

eMi(Y, Mg | M;) = 0.

S.10. Algorithms references in Remarks 5 and 6. We now describe
Algorithms S1 and S2 that were used in the simulation studies.

Algorithm S1 is obtained by replacing step (3) in Algorithm 2 with a
direct test of whether X; is an essential variable.

Algorithm S1: A variant of Algorithm 2 for testing the uniqueness of
Markov boundary

(1) Input
Joint distribution of S = {X;,..., X} and Y
(2) Set My ={X1,..., X} to be the result of Algorithm 1 on &
(3) Fori=1,...,m,
If X, 1LY |S\{X;}
Output Y has multiple Markov boundaries
Terminate
(4) Output Y has a unique Markov boundary

Proof of correctness of Algorithm S1. For a Markov boundary My, it is
the unique Markov boundary if and only if it coincides with £. Therefore,
we only need to check whether there exists a variable X; € M which is not
essential, namely X; 1Y | S\ {X;}.

Algorithm S2 is constructed based on Theorem 2 directly.
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Algorithm S2: A benchmark algorithm for testing the uniqueness of
Markov boundary based on Theorem 2

(1) Input

Joint distribution of S = {X3,..., X} and Y
(2) Set £ =0
(3) Fori=1,...,k,

It X, LY |S\{X;}

E=EU{X;}
4) IfY US| E
Output: Y has a unique Markov boundary
Else

Output: Y has multiple Markov boundaries




