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Companion Matrices for Differential
Equations

We briefly describe companion matrices for turning n-
order linear SDEs into first-order by representing the
system as a linear operator on an augmented state
variable.

Consider the 2-order system

d d?
apx(t) + a1 &:c(t) + agﬁx(t) = w(t)
Define a new variable, z = dz/d¢, and substitute into
the above equation:

apz(t) +arz(t) + aQ%z(t) = w(t)

This is now the 1-order system:

£z(t) = —apx(t) — a12(t) + ay 'w(t),

where ao and a; are ap/ae and aq/as respectively.

We can write this using a joint state, x(t)
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The companion matrix for linear n-order systems
scales in a similar manner, with the final matrix con-
sisting of a final row of scalars and off-diagonal band
with value 1. The extension to non-linear systems is
a straightforward extension here, simply replacing the
matrix with a vector-valued function.

Unscented Transform

The unscented transform is a means for propagating a
random variable, x through a non-linear functional, f,
by optimally sampling about the mean and propagat-
ing each sample through f and combining the results
as a weighted sum (Julier and Uhlmann, 1997). These
so-called sigma points are defined as:

E[z] i=0
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Note that [-]; indicates the i*" column of a matrix.
n describes the dimension of the random variable x

i=1,...,n
i=n+1,...,2n

Xi =

and 7 is a scaling parameter, defined such that n =
@2 (n+ ky) = n.

The unscented transform consists of transforming each
sigma point, v; = f(x;) and constructing a weighted
sum. The approximation of y = f(x) is given by y ~
N (11, Y), where
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The weights are defined by

wi" =nn+n)~!
wi? = nn+n+1 -0+ )"
w™ = wl = (2n+ 2m)7,

where «, 3, and x are hyperparameters controlling the
spread of sigma points. There are a number of repor-
ted settings for values of these hyperparameters, one
such is o, = 1, B, = 0, and Ky = n (Julier and Uhl-
mann, 1997). These are the values used in this paper.

Implementation

The implementation was written in TensorFlow, using
TensorFlow probability. All experiments were optim-
ised using Adam with a learning rate of 5e-3. For
additional numerical stability, gradient clipping was
performed based on the global norm.

The unscented filtering updates were implemented us-
ing the sigma-point dynamics as described in Sarkka

(2007).

The number of flows for each experiment was set to
2d, where d is the latent state dimension.



