
Coping With Simulators That Don’t Always Return

Andrew Warrington Saeid Naderiparizi Frank Wood
University of Oxford

andreww@robots.ox.ac.uk

University of British Columbia
saeidnp@cs.ubc.ca

University of British Columbia
fwood@cs.ubc.ca

Abstract

Deterministic models are approximations of
reality that are easy to interpret and of-
ten easier to build than stochastic alterna-
tives. Unfortunately, as nature is capri-
cious, observational data can never be fully
explained by deterministic models in prac-
tice. Observation and process noise need
to be added to adapt deterministic mod-
els to behave stochastically, such that they
are capable of explaining and extrapolating
from noisy data. We investigate and address
computational inefficiencies that arise from
adding process noise to deterministic simula-
tors that fail to return for certain inputs; a
property we describe as “brittle.” We show
how to train a conditional normalizing flow to
propose perturbations such that the simula-
tor succeeds with high probability, increasing
computational efficiency.

1 Introduction

In order to compensate for epistemic uncertainty due
to modelling approximations and unmodelled aleatoric
uncertainty, deterministic simulators are often “con-
verted” to “stochastic” simulators by perturbing the
state at each time step. In practice this allows the sim-
ulator to explain the variability observed in real data
without requiring excessive observation noise. Such
models are more resilient to misspecification, are ca-
pable of providing uncertainty estimates, and provide
better inferences in general [Møller et al., 2011; Saari-
nen et al., 2008; Lv et al., 2008; Pimblott and LaVerne,
1990; Renard et al., 2013].

Often, state-independent Gaussian noise with heuris-

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

tically tuned variance is used to perturb the state [Ad-
hikari and Agrawal, 2013; Brockwell and Davis, 2016;
Fox, 1997; Reddy and Clinton, 2016; Du and Sam,
2006; Allen, 2017; Mbalawata et al., 2013]. However,
naively adding noise to the state will, in many ap-
plications, render the perturbed input state “invalid,”
where invalid states cause the simulator to raise an
exception and not return a value [Razavi et al., 2019;
Lucas et al., 2013; Sheikholeslami et al., 2019]. We for-
mally define failure by extending the possible output
of the simulator to include ⊥ (read as “bottom”) de-
noting simulator failure. The principal contribution of
this paper is a technique for avoiding invalid states by
choosing perturbations that minimize the failure rate.
The technique we develop results in a reduction in sim-
ulator failures, while maintaining the original model.

Examples of failure modes include ordinary differen-
tial equation (ODE) solvers not converging to the re-
quired tolerance in the allocated time, or, the per-
turbed state entering into an unhandled configura-
tion, such as solid bodies intersecting. Establishing
the state-perturbation pairs that cause failure is non-
trivial. Hence, the simulation artifact can be sensitive
to seemingly inconsequential alterations to the state
– a property we describe as “brittle.” Failures waste
computational resources and reduce the diversity of
simulations for a finite sample budget, for instance,
when used as the proposal in sequential Monte Carlo.
As such, we wish to learn a proposal over perturbations
such that the simulator exits with high probability, but
renders the joint distribution unchanged.

We proceed by framing sampling from brittle simula-
tors as rejection samplers, then seek to eliminate rejec-
tions by estimating the state-dependent density over
perturbations that do not induce failure. We then
demonstrate that using this learned proposal yields
lower variance results when used in posterior infer-
ence with a fixed sample budget, such as pseudo-
marginal evidence estimates produced by sequential
Monte Carlo sweeps. Source code for reproduction
of figures and results in this paper is available at
https://github.com/plai-group/stdr.

andreww@robots.ox.ac.uk
saeidnp@cs.ubc.ca
fwood@cs.ubc.ca
https://github.com/plai-group/stdr

Coping With Simulators That Don't Always Return

2 Background

2.1 Smoothing Deterministic Models

Deterministic simulators are often stochastically per-
turbed to increase the diversity of the achievable sim-
ulations and to �t data more e�ectively. The most
widespread example of this is perturbing linear dy-
namical systems with Gaussian noise at each timestep.
The design of the system is such that the distribu-
tion over state at each point in time is Gaussian dis-
tributed. However, the simplistic dynamics of such a
system may be insu�cient for simulating more com-
plex systems. Examples of such systems are: stochas-
tic models of neural dynamics [Fox, 1997; Coutin et al.,
2018; Goldwyn and Shea-Brown, 2011; Saarinen et al.,
2008], econometrics [Lopes and Tsay, 2011], epidemi-
ology [Allen, 2017] and mobile robotics [Thrun et al.,
2001; Fallon et al., 2012]. In these examples, the sim-
ulator state is perturbed with noise drawn from a dis-
tribution and is iterated using the simulator to create
discrete approximations of the distribution over state
as a function of time.

2.2 Simulator Failure

As simulators become more complex, guaranteeing the
simulator will not fail for perturbed inputs becomes
more di�cult, and individual function evaluations be-
come more expensive. Lucas et al. [2013] and Edwards
et al. [2011] establish the sensitivity of earth science
models to global parameter values by building a dis-
criminative classi�er for parameters that induce fail-
ure. Sheikholeslami et al. [2019] take an alternative
approach instead treating simulator failure as an im-
putation problem, �tting a function regressor to pre-
dict the outcome of the failed experiment given the
neighboring experiments that successfully terminated.
However these methods are limited by the lack of clear
probabilistic interpretation in terms of the originally
speci�ed joint distribution in time series models, their
ability to scale to high dimensions, and their applica-
bility to state-space models.

2.3 State-space Inference and Model
Selection

Probabilistic models are ultimately deployed to make
inferences about the world. Hence the goal is to be
able to recover distributions over unobserved states,
predict future states and learn unknown parameters
of the model from data. Posterior state-space infer-
ence refers to the task of recovering the distribution
pM (x0:T jy1:T), where x0:T are the latent states, y1:T

are the observed data, andM denotes the model if
multiple di�erent models are available. Inference in

Algorithm 1 Sequential Monte Carlo

1: procedure SMC (pM (x0), pM (x t jx t � 1), y1:T ,
pM (y t jx t), N)

2: for n = 1 : N do
3: x (n)

0 � pM (x0) . Initialize from prior.

4: L M 0 . Track log-evidence
5: for t = 1 : T do
6: for n = 1 : N do
7: ~x (n)

t � pM

�
x t jx

(n)
t � 1

�
. Alg 2.

8: w(n)
t pM

�
y t j~x

(n)
t

�
. Score particle.

9: for n = 1 : N do . Normalize weights.
10: W (n)

t w(n)
t =

P N
i =1 w(i)

t

11: for n = 1 : N do . Apply resampling.
12: a(n)

t � Discrete (W t)

13: x (n)
t ~x

�
a(n)

t

�

t

14: L M L M + log
�

1
N

P N
i =1 w(i)

t

�

15: return x (1: N)
0:T ; a(1: N)

1:T ; L M

16: end procedure

Gaussian perturbed linear dynamical systems can be
performed using techniques such as Kalman smooth-
ing [Kalman et al., 1960], however, the restrictions on
such techniques limit their applicability to complex
simulators, and so numerical methods are often used
in practice.

A common method for performing inference in com-
plex, simulation based models is sequential Monte
Carlo (SMC) [Doucet et al., 2001]. The basic algo-
rithm for SMC is shown in Algorithm 1, where pM (x0)
is the prior over initial state, pM (x t jx t � 1) is the dy-
namics model, or simulator, pM (y t jx t) is the likeli-
hood, de�ning the relationship between latent states
and observed data, andN is the number of particles
used. On a high level, SMC produces a discrete ap-
proximation of the target distribution by iterating par-
ticles through the simulator, and then preferentially
continuing those simulations that \explain" the ob-
served data well. While a detailed understanding of
particle �ltering is not required, the core observation
required for this work is that the likelihood of failed
simulations is de�ned as zero:p(y t jx t = ?) := 0, and
hence are rejected with certainty.

Posterior inference pipelines often also provide esti-
mates of the model evidence,pM (y1:T). SMC provides
such an estimate, referred to as a pseudo-marginal ev-
idence, denoted in Algorithm 1 asL M . This pseudo-
marginal evidence is calculated (in log space) as the
sum of the expected value of the unnormalized impor-
tance weights (Algorithm 1, Lines 8 and 14). This
evidence can be combined with the prior probability

Andrew Warrington, Saeid Naderiparizi, Frank Wood

of each model via Bayes rule to estimate the poste-
rior probability of the model (up to a normalizing con-
stant) [MacKay, 2003]. These posteriors can be com-
pared to perform Bayesian model selection, where the
model with the highest posterior is selected and used to
perform inference. This is often referred to as marginal
maximum a posteriori parameter estimation (or model
selection) [Doucet et al., 2002; Kantas et al., 2015]. Re-
cent work investigates model selection using approxi-
mate, likelihood-free inference techniques [Papamakar-
ios et al., 2019; Lueckmann et al., 2019], however, we
do not consider these methods here, instead focusing
on mitigating computational ine�ciencies arising di-
rectly from simulator failure.

3 Methodology

We consider deterministic models, expressed as simu-
lators, describing the time-evolution of a statex t 2 X ,
where we denote application of the simulator iterating
the state asx t f (x t � 1). A stochastic, additive per-
turbation to state, denoted zt 2 X , is applied to induce
a distribution over states. The distribution from which
this perturbation is sampled is denotedp(zt jx t � 1), al-
though, in practice, this distribution is often state in-
dependent. The iterated state is then calculated as
x t f (x t � 1 + zt).

However, we consider the case where the simulator
can fail for \invalid" inputs, denoted by a return
value of ? . Hence the complete de�nition of f is
f : X ! fX ; ?g . The region of valid inputs is de-
noted as XA � X , and the region of invalid inputs as
XR � X , such that XA t X R = X , where the bound-
ary between these regions is unknown. Over the whole
support, f de�nes a many-to-one function, asXR maps
to ? . However, the algorithm we derive only requires
that f is one-to-one in the accepted region. This is not
uncommon in real simulators, and is satis�ed by, for
example, ODE models. We de�ne the random variable
A t 2 f 0; 1g to denote whether the state-perturbation
pair does not yield simulator failure and is \accepted."

We de�ne the iteration of perturbed deterministic sim-
ulator as a rejection sampler, with a well-de�ned tar-
get distribution (x3.1). We use this de�nition and
the assumptions on f to show that we can target
the same distribution by learning the state-conditional
density of perturbations, conditioned on acceptance
(x3.2). We train an autoregressive ow to �t this den-
sity (x3.3), and describe how this can be used in in-
ference, highlighting the ease with which it can be in-
serted into a particle �lter (x3.4). We empirically show
that using this learned proposal distribution in place
of the original proposal improves the performance of
particle-based state-space inference methods (x4).

Algorithm 2 Iterate brittle simulator, p(x t jx t � 1).

1: procedure IterateSimulator (f , x t � 1)
2: x t ?
3: while x t == ? do
4: if q� is trained then
5: zt � q� (zt jx t � 1) . Perturb under q� .
6: else
7: zt � p(zt jx t � 1) . Perturb under p.

8: x t f (x t � 1 + zt) . Iterate simulator.

9: return x t

10: end procedure

3.1 Brittle Simulators as Rejection Samplers

The naive approach to sampling from the perturbed
system, shown in Algorithm 2, is to repeatedly sample
from the proposal distribution and evaluate f until the
simulator successfully exits. This procedure de�nes
A t = I [f (x t � 1 + zt) 6= ?] ; zt � p(zt jx t � 1), i.e. suc-
cessfully iterated samples are accepted with certainty.
This incurs signi�cant wasted computation as the sim-
ulator must be called repeatedly, with failed iterations
being discarded. The objective of this work is to derive
a more e�cient sampling mechanism.

We begin by establishing Algorithm 2 as a rejection
sampler, targeting the distribution over successfully it-
erated states. This reasoning is illustrated in Figure 1.
The behavior of f and the distribution p(zt jx t � 1)
implicitly de�ne a distribution over successfully iter-
ated states. We denote this \target" distribution as
p(x t jx t � 1) = p(x t jx t � 1; A t = 1), where the bar indi-
cates that the sample was accepted, and hence places
no probability mass on failures. Note there is no bar on
p(zt jx t � 1), indicating that it is de�ned before the ac-
cept/reject behaviors of f and hence probability mass
may be placed on regions that yield failure. The func-
tional form of p is unavailable, and the density cannot
be evaluated for any input value.

The existence of p(x t jx t � 1) implies the existence of
a second distribution: the distribution over accepted
perturbations, denoted p(zt jx t � 1). Note that this dis-
tribution is also conditioned on acceptance under the
chosen simulator, indicated by the presence of a bar.
We assumef is one-to-one in the accepted region, and
so the change of variables rule can be applied to di-
rectly relate this to p(x t jx t � 1). Under our initial al-
gorithm for sampling from a brittle simulator we can
therefore write the following identity:

p(zt jx t � 1) =

(
1

M p
p(zt jx t � 1); if f (x t � 1 + zt) 6= ?

0; otherwise
(1)

where the normalizing constant M p is the acceptance

Coping With Simulators That Don't Always Return

Figure 1: Graphical representation of how a brittle de-
terministic simulator acts as a rejection sampler, tar-
geting p(zt jx t � 1). We set x t = 0 for clarity. The sim-
ulator, f (zt), returns ? for unknown input regions,
shown in green. The proposal overzt is shown in blue.
The target distribution, p(zt), shown in orange, is im-
plicitly de�ned as p(zt) = 1

M p
p(zt)I [f (zt) 6= ?], where

M p is the normalizing constant from p, equal to the ac-
ceptance rate. Accordingly, the proposal distribution,
scaled byM p, is exactly equal to p(zt) in the accepted
region. Algorithm 2 therefore implicitly constructs a
rejection sampler, where the acceptance criterion re-
duces toI [f (zt) 6= ?], without needing to specify any
additional scaling constants.

rate under p. (1) indicates accepting with certainty
perturbations that exit successfully can be seen as pro-
portionally shifting mass from regions of p where the
simulator fails to regions where it does not. We exploit
this de�nition to learn an e�cient proposal.

3.2 Change of Variable in Brittle Simulator

We now derive how we can learn the proposal distribu-
tion, denoted q� and parameterized by� , to replacep,
such that the acceptance rate underq� (denoted M q�)
tends towards unity, minimizing wasted computation.
We denoteq� as the proposal we train, which, coupled
with the simulator, implicitly de�nes a proposal over
accepted samples, denotedq� .

Expressing this mathematically, we wish to minimize
the distance between joint distribution implicitly spec-
i�ed over accepted iterated states using the a priori
speci�ed proposal distribution, p, and q� :

� � = arg min
�

Ep(x t � 1)
�
DKL

�
p(x t jx t � 1)jjq� (x t jx t � 1)

��
;

(2)
where we select the Kullback-Leibler (KL) divergence
as the metric of distance between distributions. The
outer expectation de�nes this objective as amortized
across state space, where we can generate the samples
by directly sampling trajectories from the model [Le
et al., 2016; Gershman and Goodman, 2014]. We
use the forward KL as opposed to the reverse KL,
DKL

�
q� (x t jx t � 1)jjp(x t jx t � 1)

�
, as high-variance RE-

INFORCE estimators must be used to obtain the the

di�erential with respect to � of the reverse KL.

Expanding the KL term yields:

� � = arg min
�

Ep(x t � 1) Ep(x t j x t � 1) [log (w)] ; (3)

w =
p(x t jx t � 1)
q� (x t jx t � 1)

: (4)

Noting that q� and p are de�ned only on accepted
samples, wheref is one-to-one, we can apply a change
of variables de�ned for q� as:

q� (x t jx t � 1) = q� (f � 1(x t)jx t � 1)

�
�
�
�
df � 1(x t)

dx t

�
�
�
� ; (5)

and likewise for p. This transforms the distribution
over x t into a distribution over zt and a Jacobian term:

w =
p(f � 1(x t)jx t � 1)

�
�
� df � 1 (x t)

dx t

�
�
�

q� (f � 1(x t)jx t � 1)
�
�
� df � 1 (x t)

dx t

�
�
�
: (6)

taking care to also apply the change of variables in the
distribution we are sampling from in (3). Noting that
the same Jacobian terms appear in the numerator and
denominator we are able to cancel these:

w =
p(f � 1(x t)jx t � 1)
q� (f � 1(x t)jx t � 1)

: (7)

We can now discard thep term as it is independent of
� . Noting f � 1(x t) = x t � 1 + zt we can write (2) as:

� � = argmax
�

Ep(x t � 1) Ep(z t j x t � 1)
�
logq� (zt jx t � 1)

�
: (8)

However, this distribution is de�ned after rejection
sampling, and can only be de�ned as in (1):

q� (zt jx t � 1) = q� (zt jx t � 1; A t = 1) (9)

=

(
1

M q�
q� (zt jx t � 1) if f (x t � 1 + zt) 6= ? ;

0 otherwise;

denoting M q� as the acceptance rate underq� .

However, there is an in�nite family of q� proposals
that yield p = q� , each a maximizer of (8) but with
di�erent rejection rates. Noting however that there is
only a single q� that has a rejection rate of zeroand
rendersq� = p, and that this distribution also renders
q� = q� , we can instead optimizeq� (zt jx t � 1):

� � = argmax
�

Ep(x t � 1) Ep(z t j x t � 1) [logq� (zt jx t � 1)] ;

(10)
with no consideration of rejection behavior underq� .

One might alternatively try to achieve low rejection
rates by adding a regularization term to (8) penal-
izing high M q� . However, di�erentiation of M q� is

Andrew Warrington, Saeid Naderiparizi, Frank Wood

Algorithm 3 Training q�

1: procedure TrainQ (p(x), p(zt jx t � 1), K , N , q,
� 0, �)

2: for k = 0 : K � 1 do
3: for n = 1 : N do
4: x (n)

t � 1 � p(x) . Sample from prior.

5: z(n)
t � p(z(n)

t jx (n)
t � 1) . Sample noise.

6: Ek
Q N

n =1 q� k

�
z(n)

t jx (n)
t � 1

�

7: G k r � k Ek . Do backprop.
8: � k+1 � k + � (G k) . Apply update.

9: return � K . Return learned parameters.
10: end procedure

intractable, meaning direct optimization of (8) is in-
tractable.

The objective stated in (10) implicitly rewards q� dis-
tributions that place minimal mass on rejections by
placing as much mass on accepted samples as possi-
ble. This expressionn is di�erentiable with respect to �
and so we can maximize this quantity through gradient
ascent with minibatches drawn from p(x t � 1). This ex-
pression shows that we can learn the distribution over
acceptedx t values by learning the distribution over the
acceptedzt , without needing to calculate the Jacobian
or inverse of f . Doing so minimizes wasted computa-
tion, targets the same overall joint distribution, and
retains interpretability by utilizing the simulator.

3.3 Training q�

To train q� (zt jx t � 1) we �rst de�ne a method for sam-
pling state-perturbation pairs. We initialize the simu-
lator to a state sampled from a distribution over initial
value, and then iterate the perturbed simulator for-
ward for some �nite period. All state-perturbation
pairs sampled during the trajectory are treated as
a training example, and, in total, represent a dis-
crete approximation to the prior over state for all
time, and accepted state-conditional perturbation, i.e.
x t � 1 � p(x) and zt � p(zt jx t � 1).

We train the conditional density estimator q� (zt jx t � 1)
using these samples by maximizing the conditional
density of the sampled perturbation under the true
distribution, as in (10), as this minimizes the desired
KL divergence originally stated in (2). Our condi-
tional density estimator is fully di�erentiable and can
be trained through stochastic gradient ascent as shown
in Algorithm 3. The details of the chosen architecture
is explained in x3.5. The result of this procedure is
an artifact that approximates the density over valid
perturbations conditioned on state, p(zt jx t � 1).

Figure 2: Diagram visualizing howq� is structured and
used. The previous state is input to the hypernetwork,
a series ofL single layer neural networks, denotedhl .
Each network outputs parameters, denoted� l , for each
of the L layers in the ow conditioned on the state.
The ow samples a perturbation as zt � q� (zt jx t � 1),
with the internal states of the ow denoted by � l . This
perturbation is summed with the previous state and
passed through the simulator, f , outputting the iter-
ated state, x t .

3.4 Using q�

Once q� has been trained, it can be deployed to en-
hance posterior inference, by replacing samples from
p(zt jx t � 1) with q� (zt jx t � 1). We highlight here the
ease with which it can be introduced into an SMC
sweep. The state is iterated by sampling from
p(x t jx t � 1) on Line 7 of Algorithm 1, where this sam-
pling procedure is de�ned in Algorithm 2. Instead of
sampling from p(zt jx t � 1) in Algorithm 2, the sample
is drawn from q� (zt jx t � 1), and as such the sample is
more likely to be accepted. This modi�cation requires
only changing a single function call made inside the
implementation of Algorithm 2.

3.5 Implementation

We parameterize the densityq� using an autoregres-
sive ow (AF) [Larochelle and Murray, 2011]. Flows
de�ne a parameterized density estimator that can be
trained using stochastic gradient descent, and vari-
ants have been used in image generation [Kingma
and Dhariwal, 2018], as priors for variational autoen-
coders [Kingma et al., 2016], and in likelihood-free in-
ference [Papamakarios et al., 2019; Lueckmann et al.,
2019].

Speci�cally, we structure q� using a masked autore-
gressive ow [Papamakarios et al., 2017], with 5
single-layer MADE blocks [Germain et al., 2015], and
batch normalization at the input to each intermediate
MADE block. The dimensionality of the ow is the
number of states perturbed in the original model. We
implement conditioning through the use of a hypernet-
work [Ha et al., 2016], which outputs the parameters of

Coping With Simulators That Don't Always Return

the ow layers given x t � 1 as input, as shown in Figure
2. The hypernetworks are single-layer neural networks
de�ned per ow layer. Together, the ow and hyper-
network de�ne q� (zt jx t � 1), and can be jointly trained
using stochastic gradient descent. The networks are
implemented in PyTorch [Paszke et al., 2017] and are
optimized using ADAM [Kingma and Ba, 2014].

4 Experiments

4.1 Toy Problem { Annulus

We �rst demonstrate our approach on a toy problem.
The true generative model of the observed data is a
constant speed circular orbit around the origin in the
x-y plane, such that x t = f x t ; yt ; _x t ; _yt g 2 R4. To
analyze this data we use a misspeci�ed model that
only simulates linear forward motion. To overcome
the model mismatch and �t the observed data, we add
Gaussian noise to position and velocity. We impose a
failure constraint limiting the change in the distance
of the point from the origin to a �xed threshold. This
condition mirrors our observation that states in brittle
simulators have large allowable perturbations in par-
ticular directions, but very narrow permissible pertur-
bations in other directions. The true radius is un-
known and so we must amortize over possible radii.

The results of this experiment are shown in Figure 3.
The interior of the black dashed lines in Figure 3a in-
dicates the permissible _x- _y perturbation, for the given
position and zero velocity, where we have centered each
distribution on the current position for ease of visual
inspection. Red contours indicate the original density
p(zt jx t � 1), and blue contours indicate the learned den-
sity q� (zt jx t � 1). The fraction of the probability mass
outside the black dashed region is the expected rejec-
tion rate. Figure 3b shows the rejection rate drops
from approximately 75% under the original model to
approximately 4% using a trained q� .

We then use the learnedq� as the perturbation pro-
posal in an SMC sweep, where we condition on noisy
observations of the x-y coordinates. As we focus on
the sample e�ciency of the sweep, we �x the number
of calls to the simulator in Algorithm 2 to a single
call, instead of proposing and rejecting until accep-
tance. Failed particles are then not resampled (with
certainty) during the resampling. This means that
each iteration of the SMC makes a �xed number of
calls to the simulator, and hence we can compare algo-
rithms under a �xed sample budget. Figure 3c shows
that we recover lower variance evidence approxima-
tions for a �xed sample budget by using q� instead
of p. A paired t-test evaluating the di�erence in vari-
ance returns a p-value of less than 0:0001, indicating a

(a)

(b) (c)

Figure 3: Results for the annulus problem introduced
in Section 4.1, where the acceptable region of perturba-
tions is inside the black dashed band. 3a shows in blue
the learned state-dependent proposal distribution over
velocity (for a state at rest) is the well-approximating
the original proposal (shown in red) inside the accept-
able region, with minimal mall in the invalid region,
all but eliminating rejection as shown in 3b. 3c shows
the reduction in the variance of the evidence by using
q� . We compute the variance using 100 independent
SMC sweeps, each using 100 particles, and compare
across 100 datasets.

strong statistical di�erence between the performance
under p and q� , con�rming that using q� increases the
�delity of inference for a �xed sample budget.

4.2 Bouncing Balls

Our second example uses a simulator of balls bouncing
elastically, as shown in Figure 4a. We model the posi-
tion and velocity of each ball, such that the dimension-
ality of the state vector, x t , is four times the number
of balls. We add a small amount of Gaussian noise
at each iteration to the position and velocity of each
ball. This perturbation induces the possibility that
two balls overlap, or, a ball intersects with the wall,

	Introduction
	Background
	Smoothing Deterministic Models
	Simulator Failure
	State-space Inference and Model Selection

	Methodology
	Brittle Simulators as Rejection Samplers
	Change of Variable in Brittle Simulator
	Training q
	Using q
	Implementation

	Experiments
	Toy Problem – Annulus
	Bouncing Balls
	MuJoCo
	Neuroscience Simulator

	Conclusion
	Acknowledgements

