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Abstract

We exploit minimally faithful inversion of
graphical model structures to specify sparse
continuous normalizing flows (CNFs) for
amortized inference. We find that the sparsity
of this factorization can be exploited to reduce
the numbers of parameters in the neural net-
work, adaptive integration steps of the flow,
and consequently FLOPs at both training
and inference time without decreasing perfor-
mance in comparison to unconstrained flows.
By expressing the structure inversion as a com-
pilation pass in a probabilistic programming
language, we are able to apply it in a novel
way to models as complex as convolutional
neural networks. Furthermore, we extend the
training objective for CNFs in the context
of inference amortization to the symmetric
Kullback-Leibler divergence, and demonstrate
its theoretical and practical advantages.

1 Introduction

Continuous normalizing flows (CNFs) are a flexible
class of density estimators (Grathwohl et al., 2018)
consisting of learnable ordinary differential equation
systems (Chen et al., 2018). While state-of-the-art
in terms of density estimation, CNFs require more
computation than other density estimators and have
proven hard to scale up to high dimensions, limiting
them to comparatively low dimensional problems. Since
inference amortization(Gershman and Goodman, 2014),
for example in the form of variational auto-encoders
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(Kingma and Welling, 2013), is a necessary ingredient
to scale probabilistic machine learning methods up to
many real-world applications, we focus our work on
this problem domain.

To better integrate CNFs with probabilistic model-
ing, we make use of a programming language design
inspired mindset. We have a particular focus on per-
forming Bayesian inference in probabilistic programs
(van de Meent et al., 2018), i.e. stochastic computer
simulations which are formally interpreted as statistical
models, although our main contributions are applicable
to any statistical process which can be expressed as a
graphical model. By automatically translating between
representations of these inference models, we can use
explicit structural information symmetries in the mod-
els to guide the flow of information during inference.
Our contributions are as follows:

1. We describe a novel class of neural networks that
incorporate structural constraints of statistical
models through the sparsity of their weight ma-
trices. By deriving this structure from a formal
specification of an inverse problem, we train con-
tinuous normalizing flows as amortized inference
artifacts and show that, depending on the model,
they need less than half the number of floating
point operations (FLOPs). This construction per-
forms as well as, or better than, a state-of-the-art
neural network from FFJORD (Grathwohl et al.,
2018). We additionally provide a flexible way to
augment the dimension of the flows, while assign-
ing meaning to each dimension in terms of a directe
mapping to the graphical model.

2. The continuous flows yield probability distribu-
tions which are efficient both to sample from and
to compute densities with respect to. We show
that in the amortized inference setup, the loss can
be extended to a symmetrized Kullback-Leibler
divergence, which improves the training of amorti-



Structured Conditional Continuous Normalizing Flows

zation artifacts significantly.

3. Finally, we formalize our translation process as
a probabilistic programming language compiler
backend and apply it to the inverse problem of
dimension-increasing image deconvolution, by au-
tomatically inverting a standard convolution oper-
ator from the deep learning literature.

2 Background

2.1 Probabilistic Programming

Probabilistic programming allows users to express a
joint density, p(x, z) = p(x|z)p(z), as a generative pro-
cedure denoted in a programming language such as
Python (Bingham et al., 2018) or Clojure (Tolpin et al.,
2016). The code denotes a generative model, which
transforms samples from a prior p(z) into a distribution
over observed data via the likelihood p(x|z). Given
such a generative procedure, we tackle the problem of
inferring the posterior p(z|x). We point the interested
reader to van de Meent et al. (2018) to learn more
about the underlying probabilistic programming lan-
guage1. However, our work does not require a deep un-
derstanding of this background: our improvements can
be understood as automatic translation from structural
knowledge about a generative model into constrains
on the inference procedure. In particular, our pro-
gramming language can be thought of as an expressive
syntax to denote graphical models (Koller and Fried-
man, 2009) over continuous densities. For example, the
left column of Figure 1 displays a probabilistic program,
written in pseudocode, which is compiled (translated)
to the graphical model in the second column.

2.2 Faithful Model Inversion

Provided the graphical structure which captures the
independences between latent variables, we apply the
faithful inversion algorithm of Webb et al. (2018). This
returns the structure of an ‘inverted’ stochastic model,
mapping from observations to distributions over the
latent variables. In particular, the greedy inversion
algorithm returns a structure with approximately mini-
mal number of new edges required to faithfully capture
the dependency structure of the inverse model. As an
example, the third column of Figure 1 shows a faithful
inverse of the graphical model in the second column.

1The implementation can be found at
https://github.com/plai-group/daphne

2.3 Amortized Inference

Amortized inference techniques (Gershman and Good-
man, 2014; Ritchie et al., 2016) yield efficient posterior
approximations, q(z|x) ≈ p(z|x), typically by maximiz-
ing a variational evidence lower bound (ELBO or E) on
p(x) (Blei et al., 2017; Kingma and Welling, 2013). This
corresponds to minimizing the reverse Kullback-Leibler
divergence (KL) (Bishop, 2006):

E [p](q;x) = E
z∼ q(·|x)

[ log p(x, z)− log q(z|x) ]

= log p(x)−DKL{q(·|x) || p(·|x)} . (1)

In order to learn proposals that are good for many x, an
expectation of this bound is taken over some distribu-
tion of x. Training neural artifacts, Φ, to parameterize
q(z|x) = qΦ(z|x) trades off upfront computation against
cheap approximation of p(z|x) at inference time.

One particular type of amortization, which has been
coined inference compilation for probabilistic programs
(Le et al., 2017; Paige and Wood, 2016), involves learn-
ing Φ to minimize a variational loss with the following
gradient:

∇ΦL[p](qΦ) = − E
p(x,z)

[∇Φ log qΦ(z | x)] , (2)

where x are the observations, and z the latent variables
that we learn a distribution over. This is the same loss
used in the sleep-phase of the wake-sleep algorithm (Le
et al., 2019). The expectation is over synthetically sam-
pled data generated from the joint distribution p(x, z)
of the program. Minimizing this loss corresponds to
minimizing the forward KL,DKL{p(·|x) || qΦ(·|x)}. The
learned artifact can be used to speed up asymptotically
exact inference in the generative model by using qΦ(z|x)
as a proposal distribution for Sequential Importance
Sampling (Doucet and Johansen, 2009).

2.3.1 Continuous Normalizing Flows

A neural ordinary differential equation (ODE) system
(Chen et al., 2018) can be defined in this setting by a
reference prior q0(z0) and a deterministic flow-defining
neural network fΦ on latent particles z:

d

dt
zt = fΦ(zt, t;x). (3)

Conditioning is achieved by passing x into the network
as an additional constant input. The numerical compu-
tation at inference time constitutes the integration of
independent particle trajectories with dynamics given
by Equation (3), from initial conditions z0 ∼ q0 at
time t = 0 towards the posterior approximation at
t = 1, using a standard ODE solver. In order to obtain
a normalized distribution at the end of the flow, the

https://github.com/plai-group/daphne
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Figure 1: A generative model denoted in (1) is compiled to the graphical model in (2). This is structurally
inverted to yield (3), which is translated into a sparse neural network parametrizing a continuous normalizing
flow (4). This learned flow then provides an approximation of the posterior, p(z|x), of the model in (1). The 4
weight matrices of the neural network architecture are shown as Hinton diagrams (Hinton and Shallice, 1991)
with positive weights as white squares and negative weights as black squares, and size proportional to the
magnitude. Note the sparsity of the weights, due to the sparse structure of the inverse model in (3). For clarity,
the augmenting dimensions, as described in Section 3.1.2 and Figure 2, are not shown.

log-probability of each particle must be integrated as
follows alongside the particle dynamics:

d

dt
ln qΦ(zt, t) = −∇z · fΦ(zt, t;x). (4)

where (∇z · f) denotes the divergence of f or, equiv-
alently, the trace of the Jacobian of f (Chen et al.,
2019).

There are three main algorithmic advantages of this
approach to density estimation: its intrinsic parallelism
between independent particles; the fact that the flow
transformation is invertible at equal cost simply by
executing the integration in the opposite direction; and
freedom in neural architecture choice. The second ad-
vantage makes it possible to cheaply calculate the log
probability, and contrasts with alternative approaches
such as invertible residual networks (Behrmann et al.,
2019) and non-continuous normalizing flow architec-
tures (Rezende and Mohamed, 2015). The third advan-
tage, compared to non-continuous flow architectures,
is that CNFs do not impose any constraints on the
internal structure of the neural network to retain a
computable Jacobian, a freedom we exploit to restrict
the sparsity structure as described in the following
section.

3 Methods

In this section we describe our adapted amortization
methods for continuous normalizing flows. First we will
explain how the flow can be structured and adapted to
be more efficient in Section 3.1, and then we describe
how we train the network to minimize a symmetrized

Kullback-Leibler (KL) divergence in Section 3.2.

3.1 Structured Flows

3.1.1 Sparse Neural ODE

Layers of the neural network of (Grathwohl et al., 2018)
take the form of

h(ẑ, t) = σ
{

(Wẑ � η1(t)
}

+ b� η2(t) . (5)

σ is the activation function tanh, W are the weights,
b is a bias, and η1,2 are time dependent linear gating
functions. In order to constrain the connectivity of
each layer of our neural network

fΦ(z, t;x) = (hΦL
(·, t) ◦ · · · ◦ hΦ1

(·, t)) (z ⊕ x)

to respect the necessary statistical independence struc-
ture, our contribution is to mask its weight matrix
with the adjacency H of the minimally faithful in-
verted graphical model, i.e., the output of each layer l
reads

hΦl
(ẑ, t) = σ

{
(Wl �H)ẑ � ηl,1(t)

}
+ bl � ηl,2(t). (6)

A simplified version of this architecture is shown in
Panel (4) of Figure 1. Here ẑ0 = z ⊕ x is a concate-
nation before the first layer, and ẑl = hl−1(ẑl−1, t) in
subsequent layers, such that each column ẑi0, . . . , ẑ

i
L of

neurons across layers corresponds to a node i in the
graphical model.

3.1.2 Augmented Normalizing Flows

Recently, it has been demonstrated that adding auxil-
iary dimensions to the state space of flows can ease the
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learning task (Dupont et al., 2019) by reducing the topo-
logical constraints on the dynamics. This is comparable
to the fact that feature spaces of higher dimensions
are more likely to render a dataset linearly separable
(Bishop, 2006). In our framework, the augmentation
needs to additionally respect the probabilistic nature
of the dynamics, including the effect on Equation (4).
To do so, we add to each node in the graphical model
a flexible number of nuisance variables, maintaining
the same form for the reference distribution as q0. At
training time, these dimensions are constrained to have
the same posterior as the prior, while at inference time,
they are marginalized out, i.e., simply ignored. By
choosing the prior and posterior of augmenting dimen-
sions to be identical in distribution, nuisance variables
are encouraged to provide a purely internal communica-
tion channel to aid in the inference of latent variables.
Figure 2 illustrates a possible augmentation for the
subgraph {x1, z4, z5} of panel 3 in Figure 1, such that
z4 is augmented by y1

4 , while z5 is augmented by y1,2
5 .

Figure 2

Note that by building cliques
at the fine level among each la-
tent variable and its associated
nuisance variables, the original
directed faithful inverse struc-
ture is preserved at the coarse
level, while obtaining maximal
connectivity in the network and
still relating each neuron to a
unique node in the graphical
model. All fine-level nodes in a
clique point to all subnodes of
any adjacent clique.

3.2 Symmetrized
KL Divergence

As noted in Section 2.3, the objective in variational
inference is usually the evidence lower bound corre-
sponding only to the reverse Kullback-Leibler (KL) di-
vergence, whereas inference compilation uses the expec-
tation of the forward KL under the marginal data distri-
bution of the generative model, pX(x) =

∫
Z
p(z, x) dz.

In our setting, we can make use of the generative
model p, as well as the learned flow qΦ in both di-
rections. We therefore combine the two approaches
and propose the use of the expected symmetrized KL
divergence, Dsym {p, q} = 1

2 (DKL {p, q}+DKL {q, p}),
as an objective for inference amortization on continu-
ous normalizing flows. Dsym, also called the Jeffrey’s
divergence (Nielsen, 2010), is theoretically appealing
because we can approximate its expectation, while both
the forward and the reverse KL divergence can only
be evaluated up to a constant shift by the evidence.
We can therefore meaningfully compare convergence
on different models.

In particular, using the symmetrized KL divergence ,
our objective for a variational posterior qΦ is

L [p] (qΦ) = E
x∼ pX

{
Dsym{p(· | x) || qΦ(· | x)}

}
=

1

2
E

x∼ pX

{
E

z∼ p(·|x)

(
ln

p(z, x)

qΦ(z | x)

)
+

E
z∼ qΦ(·|x)

(
ln
qΦ(z | x)

p(z, x)

)}
. (7)

Equation (7) uses the fact that the evidence pX is a
constant w.r.t. z, cancelling out among the two terms
and rendering the full objective tractable. Further-
more, if p or q have little mass in some region of the
probability space, the respective KL divergence will be
weakly affected by the other distribution, leading to a
weak learning signal from this region (Bishop, 2006).
While each KL vanishes only when p and q match per-
fectly, Section 4.1 demonstrates a significant benefit
from combining both terms in Dsym as complementary
learning signals. We hence arrive at the loss gradient

∇Φ L [p] (qΦ)

=
1

2

{
E

(z,x)∼ p
(−∇Φ ln qΦ(z | x)) +

E
x∼ pX

(
∇Φ E

ẑ∼ qΦ(·|x)

[
ln
qΦ(ẑ | x)

p(ẑ, x)

])}
. (8)

A Monte Carlo approximation of the first term of Equa-
tion (8) can be obtained by taking samples z, x from
the joint model p and propagating z along the flow,
conditioned on x, towards the reference distribution
q0 (deconditioning flow) – thus we can maximize the
log-probability of q for these samples. Additionally,
by initializing particles at the reference distribution q0

(conditioning flow) and making use of the fact that the
dynamics defined by the same observations x can be
reused in the opposite direction of the ODE system,
variational posterior samples ẑ in the second term of
Equation (8) can be generated. Since the inner expec-
tation of ẑ is reparametrized by q0 in form of standard
normal distributions we can differentiate through both
directions of the flow in one step. To summarize, em-
bracing a differentiable composition of functions with
the flow integrator provides a flexible, well-defined op-
timization setup as described in Algorithm 1 that is an
extension of the algorithm in Grathwohl et al. (2018).

3.3 Joint Space Normalization

Before training, we apply a change of variables on
p(x, z) to normalize the moments of its marginals to
be the same as those of q0, i.e. zero mean and unit
variance. These moments are estimated by a sample of
10, 000 draws from the joint distribution. This trans-
formation avoids the flow facing inputs that could be
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Algorithm 1 Training a structured conditional flow for inference amortization

1: Input: joint model p, reference distribution q0, normalizing transform S on latents z.
2: Output: conditional flow fΦ.

3: while not converged(Φ) do
4: (z, x) ∼ p . sample from joint distribution
5: 〈z̄0,∆ln qΦ(S(z)|x)〉 ← odeint0

1[fΦ(·;x)]
(
〈S(z), 0〉

)
. deconditioning : jointly integrate eq. 〈(3), (4)〉

6: ln qΦ(z | x)← ln q0(z̄0)−∆ln qΦ(S(z)|x) − ln
∣∣dS

dz (z)
∣∣ . change of variables: CNF−1 ◦ S

7:

8: z0 ∼ q0 . sample from reference distribution
9: 〈z̆,∆ln qΦ(z̆|x)〉 ← odeint1

0[fΦ(·;x)]
(
〈z0, 0〉

)
. conditioning : jointly integrate eq. 〈(3), (4)〉

10: ẑ ← S−1(z̆)

11: ln qΦ(ẑ | x)← ln q0(z0) + ∆ln qΦ(z̆|x) + ln
∣∣∣dS−1

dz̆ (z̆)
∣∣∣ . change of variables: S−1 ◦ CNF

12:

13: Φ← update
(
Φ,∇ΦL[p](qΦ)

)
. MC estimate of (8) using loss terms from lines 6,11

14: end while

scaled arbitrarily and could render its training unstable,
and is denoted with S in Algorithm 1.

4 Experiments

In this section we show an ablation study on the arith-
metic circuit model in Figure 1 . First we describe the
setup and show that the resulting flow matches the
marginals of the joint distribution in Section 4.1. We
then demonstrate that the faithful inversion structure
makes training and runtime faster and more efficient
in Section 4.2. We evaluate our loss functional in Sec-
tion 4.3. Finally, we demonstrate that our setup allows
us to invert the convolution operation as it is used in
convolutional neural networks. We describe the struc-
ture of the inverse and perform a qualitative study that
in Section 4.4.

4.1 Synthetic Model: Arithmetic Circuit

The arithmetic circuit we use is defined in the first
column of Figure 1. The link functions contain combi-
nations of multiplication, addition and tanh operators,
similar to primitives used in deterministic neural net-
works. The priors on z0 and z1 are heavy-tailed, making
them much more challenging to invert than a Gaussian
distribution would be. The standard deviations around
the tanh expressions are 0.1, demanding a high degree
of precision in the stochastic, non-linear inversion. We
first test on this model, because it contains operations
which could serve as the building blocks for large-scale
models, and because it has a non-trivial dependency
structure and is challenging enough for the forward
KL objective of FFJORD (Grathwohl et al., 2018) to
perform badly.

We compare the marginals of the faithfully inverted
sparse flow for q(z|x)p(x) with p(x, z) in Figure 3, pro-
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Figure 3: Histogram comparison between samples
from the joint and the learned conditioning flow, for
the arithmetic circuit from section 4.1 with 10,000
samples. The marginals are listed in rows from z0 in
the top left to z5 in the bottom right. The Kolmogorov-
Smirnov test statistic is printed in the bottom left of
each histogram. We can see that the inference network
has problems matching the heavy tails of z0. All other
latents are matched almost perfectly.

viding a loss-independent consistency check. Each node
in the graphical model has been augmented by 10 di-
mensions, as described in Section 3.1.2, and we have
optimized for 10, 000 iterations with a batch size of
100 samples. The marginal distributions match well,
corresponding to a final expected symmetric KL loss
of about 0.1 nats.

4.2 Sparsity Pattern

Next, we are interested in how our sparsity structure
(Section 3.1) affects the learned flow. In Figure 4 we
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Figure 4: Effect of architectural choices on the ex-
pected symmetrized KL training loss for the experi-
ment in Section 4.1. We plot the median (smoothed in
time) and a confidence band between the 16th and 84th
percentiles for 10 runs. The learning rate is reduced
from 10−2 to 10−3 at iteration 2500 and to 5 ∗ 10−4 at
iteration 4000. Our method learns faster in the begin-
ning, but converges to similar results as fully connected
models in the end. The random sparse baseline quickly
saturates and experiences high variance.

compare our faithful inverse structured flow to three
baselines: our setup with a fully connected flow; ran-
dom sparse structure with the same edge density; and
the architecture used in FFJORD (Grathwohl et al.,
2018). FFJORD projects the low dimensional flow onto
fully connected hidden layers of size 64 internally. All
other hyperparameters are the same. The sparse and
faithfully inverted networks both have 10 dimensions
as augmentation, yielding a flow of 66 dimensions. The
flow with full connectivity of 18679 weight parameters
is contrasted with minimally faithfully inverted sparse
connectivity, counting only 7725 parameters, whereas
the FFJORD neural network baseline has 17801 pa-
rameters.

The network with faithfully inverted structure, despite
having less than half the number of parameters, learns
faster, while the fully connected network only catches
up at the end. The FFJORD baseline, with a structure
similar to the fully connected network, behaves slightly
worse. The flow with a random sparse connectivity has
significantly worse performance, due to the lack of a
structure reflecting the statistical dependencies. We
conclude that the faithfully inverted structure is a strict
improvement both in terms of training convergence and,
using a sparse matrix implementation, the number of
floating point operations at runtime.

4.2.1 Stability and Tolerance of the Adaptive
Integrator

We have also analyzed the behavior of the Runge-Kutta
integrator used in CNFs during training in Figure 5.
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(a) Conditioning

Figure 5: Effect of sparsity patterns on the numerical
stability and computation time during training, more
iterations being worse. We again plot the median and a
confidence band between the 16th and 84th percentiles
over 10 runs. The faithfully inverted neural net leads
to a numerically better conditioned flow than both the
fully connected variant and the FFJORD baseline in
all three cases.

The measurements of conditioning taken across train-
ing are equivalent to the cost at inference time. Our
sparsely structured flow requires the fewest iterations.
The number of FLOPS at runtime is the product of the
number of steps taken by the solver and the FLOPS of
each forward pass in the neural network. Each weight
in the network is multiplied once with each input di-
mension in a forward pass. Ignoring the small number
of bias parameters, we conclude that we need less than
half as many FLOPs as the fully connected or FFJORD
variants. Additional plots involving the deconditioning
pass can be found in Appendix A.

4.3 Objective Function

Figure 6 shows a comparison of the different losses
described in Section 3.2. The reverse KL-based loss,
corresponding to the second term in Equation (8), was
found to be capable of training simpler models, such
as small Gaussian state space models. However, it had
consistently higher variance than the forward KL and
was not at all sufficient for training on the arithmetic
circuit we consider, as Figure 6 shows. The forward KL,
the standard loss introduced with CNFs(Grathwohl
et al., 2018), provides a learning signal on the task, but
saturates quickly with a symmetric KL of about 100
nats. The symmetrized KL, on the other hand, learns
faster from the start and keeps improving to below 10
nats. This is a crucial improvement, since the forward
KL only optimizes q to be a density estimator for p(z|x),
while the reverse KL optimizes the sampling behavior
of q as well. Our experiment shows that such a CNF
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Figure 6: Effect of optimizing different terms of the
objective function for the experiment in Section 4.1.
Optimizing the reverse KL term alone does not provide
a sufficient learning signal while the forward KL term
does provide a good training signal. By combining
both update directions in one step, we improve our
symmetric KL objective on the arithmetic circuit by
more than an order of magnitude. We again plot the
median and a confidence band between the 16th and
84th percentiles over 10 runs. See also Appendix B.

can only be trained with the symmetric KL. For this
run, we have used an augmentation of 5 dimensions
for each latent variable, while the other parameters
were the same as in the previous result. The benefits
of the symmetric KL loss were consistent over all of
our experiments, and can also be seen on the Gaussian
State Space model in Appendix D.

4.4 Deconvolution

Convolutional neural network architectures are suc-
cessfully applied in a wide range of applications and
have revolutionized the field of computer vision (Le-
Cun et al., 2015). Their deterministic mapping from
images to low-dimensional outputs is a well defined
operation, but the inverse is not uniquely defined, i.e.
one label can map to many images. Nonetheless, it
is common to apply deterministic (de)convolution to
design generative architectures for images (Donahue
et al., 2016), but it is generally understood that there
are problems like checkerboard artifacts (Odena et al.,
2016). Deterministic upsampling is alternatively used
to increase dimensionality (Karras et al., 2019) while
circumventing checkerboard effects, but suffers from
the same underdetermination.

We explore a more principled approach to deconvolu-
tion, taking the convolutional operator of convolutional
neural network classifiers (Dumoulin and Visin, 2016)
and using our faithful inversion to derive a stochastic
inverse, which is a natural computational interpretation

inputs=sample MNIST 8x8 patch()

for i in range(3):

for j in range(3):

sample(Normal(0, 1), obs=filter[i, j])

def conv2d(inputs, filters, stride):

return [[dot(x[sy, sx], filters) + bias

for sx in slices x(inputs, stride)]

for sy in slices y(inputs, stride)]

output = conv2d(inputs, filters, 0, 2)

for i in range(4):

for j in range(4):

sample(Normal(0, 1), obs=output[i, j])

Figure 7: Pseudocode for the convolutional operator we
invert. We implement all tensor operations, including
dot, slices x and slices y in our language to make them
transparent to our inversion algorithm.

of the non-deterministic inverse. Describing the convo-
lutional tensor operator in a probabilistic programming
language we can generate the inverse structure automat-
ically as shown in Figure 8. This would be extremely
tedious to do manually, and therefore has not been
studied previously.

In Figure 9 we explore the amortized inversion of con-
volutional filters and generate samples zin ∈ R9×9 of
randomly cropped patches from the MNIST dataset
(LeCun et al., 1998), filters xfilter ∈ R3×3 and con-
volved output xout ∈ R4×4 as computed by the pro-
gram in Figure 7. We sample each of the filter pixels
xfilter ∼ N (0; 1). Filters of this size are commonly used
in convolutional architectures like LeNet (LeCun et al.,
1998).

Since we do not have access to prior over patches, and
do not want to learn another density estimator for the
prior at a similar complexity as estimating our posterior,
we only use the forward KL (eq. (2)). The resulting
artifact amortizes over all possible filters, and hence
only needs to be trained once to invert convolutions
of this form. The reconstructed outputs in Figure 9
match the output we have conditioned on closely in all
cases.

5 Related Work

5.1 Flows

Recently, a unified perspective on the powerful class of
residual networks (ResNets) (He et al., 2016) in deep
learning and ODEs has been established (Ruthotto
and Haber, 2019; Ciccone et al., 2018). In Chen et al.
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Figure 8: The faithful inverse structure for a 2D con-
volution. Black denotes the parts that are zeroed out
in the adjacency matrix of pixels, white the connected
parts. All input pixels x depend on all filter pixels, but
only on the outputs that they are influencing. Pixels
in the middle of the image depend on all output pix-
els. The faithful inversion algorithm also automatically
infers dependencies between pixels.

(2019) the dynamics of the probability density q(·, t)
are connected to the continuity equation and their work
provides a continuous normalizing flow for particle filter
methods. There are also new approaches to approxi-
mate stochastic differential equations (SDEs) (Hegde
et al., 2019).

Conditional Normalizing Flows Alternative ap-
proaches to conditioning using the mechanism of an
embedding VAE have been explored in (Grathwohl
et al., 2018). In (Trippe and Turner, 2018) the param-
eters of the neural network itself are conditioned on
the observation. The approach of conditioning CNFs
in this way could also be translated back to invert-
ible residual networks (Behrmann et al., 2019), but
inversion in this setting is more expensive and a sym-
metrized KL would not work without fixpoint searches.
Inverse autoregressive flows (Kingma et al., 2016) are
another popular way of conditioning normalizing flows,
but autoregressive models have the drawback of requir-
ing a sequential roll-out over each dimension of the
latent space.

5.2 Graph Networks

The application of deep learning to graphical modeling
is a well-established field (Bronstein et al., 2017; Wu
et al., 2019). Our work can be understood as graph nor-
malizing networks (Liu et al., 2019) that implement a
neural network based message passing algorithm along
an underlying graph structure. This approach has re-
cently been extended to continuous normalizing flows

zin xfilter xout ẑin ∼ qΦ(· | xfilter, xout)
Ex̂out∼p(·|ẑin,xfilter) [x̂out]

Figure 9: Visualization of our stochastic deconvolution.
We take patches of MNIST images (left column), and
sample filters from the prior (second column). Convo-
lution of each image patch and filter pair, along with
the addition of Gaussian noise, produces the outputs
in the third column. The remaining columns show 5
samples from q, conditioned on each filter and output
(odd rows; compare with zin), and reconstructions of
the output given these (even rows; compare with xout).

(Deng et al., 2019), including inference in probabilistic
graphical models. We build on the same intuition and
continuously propagate information from neighboring
nodes, but also project the graphical model structure
onto the neural network and apply it to an extended
amortized inference setting.

6 Conclusion

In this paper we demonstrated that by systematic inte-
gration of structural knowledge, we can improve amor-
tized inference for complex continuous graphical models
denoted as probabilistic programs. In particular, we
have structured the neural networks used in continuous
normalizing flows in a way that increases efficiency
and makes it possible to adaptively augment the flow
with auxiliary dimensions. Additionally, we have ex-
tended the optimization loss used to train continuous
normalizing flows and shown that it significantly im-
proves training. We think that integration of discrete
variables and model learning are interesting future ex-
tensions of our work. Our approach can be generalized
to integrate more knowledge about optimization of dy-
namical systems, information geometry and domain
specific languages that express more prior knowledge
about problem structure. In particular, we plan to use
information theoretic measures during training to im-
plement an online adaptive scheme to augment the flow
with new dimensions. This could simplify the expensive
and challenging process of neural architecture search
(Elsken et al., 2019) while scaling up our networks.
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