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S1 OVER- AND
UNDERCONFIDENCE

The notions over- and underconfidence

o(f) = E [ẑ | ŷ 6= y] u(f) = E [1− ẑ | ŷ = y] ,

as introduced in (2), quantify the amount of informa-
tion contained in the uncertainty estimate of a classifier
f about the true class. Note, that their definitions are
decoupled from the accuracy of f .

S1.1 Definition Subtleties

Differing from the corresponding intuitive notions, a
classifier can simultaneously be over- and underconfi-
dent to varying degree. In particular o(f) > 0 does
not imply u(f) = 0, and neither does the reverse. Con-
sider the following, where the true posterior p(y | x)
assigns 75% confidence to one class and the remain-
ing 25% uniformly across all other classes. Assume
now the classifier assigns 90% confidence to the given
class and 10% uniformly to the remaining classes on
the entire input space. Intuition would dictate this
classifier to not necessarily be underconfident, but by
definition u(f) = 0.1 and o(f) = 0.9. This is because
over- and underconfidence are not a statistical distance
between posterior distributions, but describe the dif-
ference between the classifier’s posterior distribution
and an unobserved deterministic underlying relation-
ship (x, y). Hence, aleatoric and epistemic uncertainty
contained in the data distribution influence the over-
and underconfidence of a classifier. This can be seen
by computing the over- and underconfidence for the
true posterior distribution in the above example giv-
ing u(f) = 0.25 and o(f) = 0.75. Obtaining lower
over- or underconfidence in this case is only possible
by sacrificing one or the other.

S1.2 Proof of Theorem 1

We give a proof for the calibration error bound to
the weighted absolute difference between over- and
underconfidence as stated in Theorem 1 below.

Proof. By linearity of expectation and the law of total
expectation it holds that

E [ẑ] = E [ẑ + E [1ŷ=y | ẑ]− E [1ŷ=y | ẑ]]
= E [ẑ− E [1ŷ=y | ẑ]] + P(ŷ = y).

Conversely, by decomposing the average confidence we
have

E [ẑ] = E [ẑ | ŷ 6= y]P(ŷ 6= y) + E [ẑ | ŷ = y]P(ŷ = y)

= E [ẑ | ŷ 6= y]P(ŷ 6= y)+

(1− E [1− ẑ | ŷ = y])P(ŷ = y)

= o(f)P(ŷ 6= y) + (1− u(f))P(ŷ = y).

Combining the above we obtain

E [ẑ− E [1ŷ=y | ẑ]] = o(f)P(ŷ 6= y)− u(f)P(ŷ = y).

Now, since h(x) = |x|p is convex for 1 ≤ p < ∞, we
have by Jensen’s inequality

|E [ẑ− E [1ŷ=y | ẑ]]|p ≤ E [|ẑ− E [1ŷ=y | ẑ]|p]

and finally by Hölder’s inequality with 1 ≤ p < q ≤ ∞
it follows that

ECEp = E [|ẑ− E [1ŷ=y | ẑ]|p]
1
p

≤ E [|ẑ− E [1ŷ=y | ẑ]|q]
1
q = ECEq,

which concludes the proof.

S2 DETAILED INFERENCE AND
CALIBRATION

We give a more detailed exposition of GP calibration
inference. We begin by describing the derivation of the
bound on the marginal log-likelihood in (6).

S2.1 Bound on the Marginal Log-Likelihood

This subsection follows Hensman et al. (2015) and
is adapted for our specific inverse link function and
likelihood. Consider the following bound, derived by
marginalization and Jensen’s inequality.

ln p(y | u) = lnEp(g|u) [p(y | g)]

≥ Ep(g|u) [ln p(y | g)]
(7)
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We then substitute (7) into the lower bound to the
evidence (ELBO) as follows

ln p(y) = KL [q(u)‖p(u | y)] + ELBO(q(u))

≥ ELBO(q(u))

= Eq(u) [ln p(y,u)]− Eq(u) [ln q(u)]

= Eq(u) [ln p(y | u)]−KL [q(u)‖p(u)]

≥ Eq(u)

[
Ep(g|u) [ln p(y | g)]

]
−KL [q(u)‖p(u)]

= Eq(g) [ln p(y | g)]−KL [q(u)‖p(u)]

=

N∑
n=1

Eq(gn) [ln p(yn | gn)]

−KL [q(u)‖p(u)] ,

(8)

where q(g) :=
∫
p(g | u)q(u) du and the last equality

holds by independence of the calibration data. By (5)
and the properties of Gaussians we obtain

p(g | u) = N (g | µg|u,Σg|u)

such that

µg|u = µg + Σg,uΣ−1u (u− µu)

Σg|u = Σg −Σg,uΣ−1u Σ>g,u.

Let q(u) = N (u |m,S) and A := Σg,uΣ−1u , then

q(g) :=

∫
p(g | u)q(u)︸ ︷︷ ︸

q(g,u)

du

= N (g | µg +A(m− µu), Σg +A(S −Σu)A>).

as q(g,u) is normally distributed. To compute the
expectations in (8) we only need to consider the K-
dimensional marginals

q(gn) =

∫
p(gn | u)q(u) du = N (gn | ϕn,Cn).

S2.2 Approximation of the Expectation
Terms

In order to obtain the variational objective (8) we need
to compute the expected value terms for our intractable
likelihood (4). To do so, we use a second order Taylor
approximation of

h(gn) := ln p(yn | gn) = ln
exp
(
gnyn

)
∑K

k=1 exp(gnk)

at gn = ϕn. The Hessian of the log-softargmax is given
by

D2
gn
h(gn) = D2

gn
lnσ(gn)yn

= σ(gn)σ(gn)> − diag(σ(gn)).

Note this expression does not depend on yn. We obtain
by using x>Mx = tr

(
x>Mx

)
, the linearity of the

trace and its invariance under cyclic permutations, that

Eq(gn) [ln p(yn | gn)] = Eq(gn) [h(gn)]

≈ Eq(gn)

[
h(ϕn) +Dgn

h(ϕn)>(gn −ϕn)

+
1

2
(gn −ϕn)>D2

gn
h(ϕn)(gn −ϕn)

]
= h(ϕn) +

1

2
Eq(gn)

[
(gn −ϕn)>

(
σ(ϕn)σ(ϕn)>

− diag(σ(ϕn))
)
(gn −ϕn)

]
= h(ϕn) +

1

2
tr
[
Eq(gn)

[
(gn −ϕn)(gn −ϕn)>

]
(
σ(ϕn)σ(ϕn)> − diag(σ(ϕn))

)
]

= h(ϕn) +
1

2
tr
[
Cn

(
σ(ϕn)σ(ϕn)> − diag(σ(ϕn))

)]
= h(ϕn) +

1

2

(
tr
[
σ(ϕn)>Cnσ(ϕn)

]
− tr[Cndiag(σ(ϕn))]

)
= h(ϕn) +

1

2

(
σ(ϕn)>Cnσ(ϕn)− diag(Cn)>σ(ϕn)

)
,

which can be computed in O(K2). This is apparent
when expressing the term inside the parentheses as a
double sum over K terms.

S3 EXPERIMENT DETAILS

In this section, we elaborate on the experiments in
Section 4. We discuss the approximation to the ex-
pected calibration error, hyperparameter choices and
give runtime measurements and classification accuracy
of the performed calibration experiments. Finally, we
show some additional visualizations of latent functions
and reliability diagrams.

S3.1 Choice of Number of Bins

In practice, we estimate the calibration error as sug-
gested by Naeini et al. (2015) by introducing a fixed
uniform binning 0 = ϑ0 < ϑ1 < · · · < ϑB = 1 such
that

ECEp ≈
1

B

(
B∑

b=1

∣∣¯̂zb − accb
∣∣p) 1

p

, (9)

where
¯̂zb =

1

Nb

∑
ϑb−1<ẑ≤ϑb

ẑ

is the mean confidence in bin b,

accb =
1

Nb

∑
ϑb−1<ẑ≤ϑb

1ŷ=y
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the accuracy in bin b and Nb the number of samples
in bin b, such that N =

∑B
b=1Nb. In previous work

introducing the calibration error (Naeini et al., 2015)
and in (Guo et al., 2017) the discretization of the
expected calibration error ECE1 uses 15 equally spaced
bins.

As described in the supplementary material in (Guo
et al., 2017), the empirical estimate is a good approx-
imation to the expected calibration error for N and
B sufficiently large. However, in the infinite sample
case the larger the bin size B the tighter the empirical
estimate lower bounds the ECE1 (Kumar et al., 2019).
This is due to the fact that over- and underestima-
tion of uncertainty within one bin cancel each other
out. Hence, using too few bins can underestimate the
expected calibration error. Kumar et al. (2019) also
observe this in practice. This phenomenon is particu-
larly prevalent for CNNs as most of their confidence
predictions fall into one or two bins for B = 15. This
is also the case in our experiments and can be seen in
the histograms in Figures S3 to S5. We observed the
aforementioned underestimation of calibration error
with 15 bins for some data set and model combinations
in our experiments. To mitigate this problem we de-
liberately chose B = 100 in this work. The number
of bins is limited by the number of test samples we
have available, as within-bin-variance increases with
the number of bins. Further work needs to be done to
determine the properties of the estimator to ECEp and
the ideal discretization for a given number of samples.

S3.2 Implementation and Hyperparameters

All experiments were performed using the pycalib
package available at

https://github.com/JonathanWenger/pycalib.

When calibrating models returning logits, we used a
sum kernel for the one-dimensional latent Gaussian
process given by

k(x, x′) = kRBF(x, x′) + knoise(x, x
′)

= σ2 exp

(
−‖x− x

′‖2
2l2

)
+ σ2

noiseδx,x′

where kRBF is an exponentiated quadratic and knoise
a white noise kernel. The kernel parameters were ini-
tialised as σ = 1, l = 10 and σnoise = 0.01. For GP
inference we usedM = 10 inducing points. The gpflow
package with the scipy implementation of the L-BFGS
optimizer was used to find inducing points and kernel
hyperparameters in the variational inference procedure.
For calibration we used Q = 100 Monte-Carlo samples
to compute the posterior distribution.

S3.3 Binary Experiments

For the binary calibration experiments we used the
following data sets with indicated train, calibration
and test splits:

• KITTI (Geiger et al., 2012, Narr et al., 2016):
Stream-based urban traffic scenes with features
(Himmelsbach et al., 2009) from segmented 3D
point clouds. 8 or 2 classes, train: 16000, calibra-
tion: 1000, test: 8000.

• PCam (Veeling et al., 2018): Histopathologic scans
of (metastatic) tissue from lymph node sections
converted to grayscale. 2 classes, train: 22768,
calibration: 1000, test: 9000.

The resulting average calibration error across random
samples of calibration data sets is shown in Table S3.
Isotonic regression performed the best in terms of cali-
bration on KITTI. However most methods performed
well and often within one standard deviation of each
other for both binary data sets. Hence, for binary prob-
lems a simple binary calibration method may suffice.

S3.4 Multi-class Experiments

We provide more detailed calibration results of our
multi-class experiment explained in Section 4.1 in Ta-
ble S5. We show the average calibration error (ECE1),
including standard deviation, of the presented calibra-
tion methods and the GPcalib mean approximation on
all data set and model combinations.

S3.5 Accuracy

The accuracy from the binary and multi-class experi-
ments described in Section 4 is given in Table S2 and
Table S4, respectively. For the binary experiments ac-
curacy is mostly unaffected across classifiers and even
improves in some instances. Only Bayesian binning
into quantiles suffers from a noticable drop in accuracy
for random forests. Somewhat surprisingly, for the sim-
ple neural network all binary methods actually improve
upon accuracy.

In the multi-class case we see that accuracy is severely
affected for binary methods extended in a one-vs-all
fashion for the ImageNet data set, disqualifying them
from use. Both temperature scaling and GP calibration
preserve accuracy across models and data sets.

S3.6 Wall-Clock Runtime

We provide wall-clock runtime for each data set consid-
ered in our experiments from Section 4. As the runtime

https://github.com/JonathanWenger/pycalib
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was very similar across classifiers we show average run-
time per data set across models in Table S1. Note that
wall-clock runtime is highly dependent on the specific
machine used for computation. In our case we used a
12-core desktop computer with a GeForce RTX 2080
Ti graphics card for all experiments in this work. Time
for inference and calibration scales close to linear with
the number of classes for almost all calibration meth-
ods. There seems to be some unavoidable overhead for
calibration irrespective of classes as can be seen when
looking at binary problems. GPcalib takes more time
for parameter inference than other methods. This is
due to the fact that we need to perform approximate
inference and since GPcalib is the only method tak-
ing calibration uncertainty into account. Potentially
speed-up via the use of GPUs for accelerated matrix
computations for our gpflow-based implementation of
GPcalib is possible. However, in practice the times
taken for inference and calibration are significantly less
than those for training and prediction of the underlying
classifier. Hence, a classifier can be calibrated with little
added time cost.

S3.7 Additional Latent Function Plots

Further examples of latent calibration maps from GP-
calib and temperature scaling are given in this section.
Figure S1 shows latent functions from a single CV
run of the MNIST experiments in Section 4.1.When
applying GPcalib to classifiers outputting probability
scores, the ln prior corresponds to the assumption of
the underlying model being calibrated. Note, that
temperature scaling was not designed to be used on
probability scores, but on logits, this causes its latent
function to have very small slope. Both in the case of
probability scores and logits, by definition of GPcalib
and temperature scaling any constant shift of the la-
tent function results in the same uncertainty estimates.
The shown plots should be interpreted with this in
mind. For models which are very miscalibrated, the
latent function of GPcalib demonstrates a high degree
of non-linearity and deviation from the ln prior, e.g. in
the case of AdaBoost. When the underlying model is
already close to being calibrated as in the case of the
1-layer neural network, the resulting latent GP does
not deviate very much from the prior mean.

In the multi-class calibration experiment on ImageNet,
we observed better calibration of GPcalib for higher ac-
curacy CNNs. In Figure S2, we show additional latent
functions obtained from the experiment. For VGG19
and DenseNet-201, the underlying network had compa-
rably low calibration error to begin with. Both temper-
ature scaling and GPcalib did not improve calibration
significantly. This is reflected in latent space, where
they do not deviate much from the identity map. How-

ever, in the case of SE-ResNeXt-50, SE-ResNeXt-101,
SENet-154 and NASNet-A-Large GPcalib improved
calibration noticably over the baseline and tempera-
ture scaling. Again, this improvement corresponds
to a large change from the identity map in its latent
function.

S3.8 Reliability Diagrams

Reliability diagrams (DeGroot and Fienberg, 1983,
Niculescu-Mizil and Caruana, 2005a) visualize the de-
gree of calibration of a model. They consist of a plot
comparing confidence estimates with accuracy for a
given binning of [0, 1] and a histogram of confidence
estimates. They relate to the ECE1 in the following
way. The gray deviation from the diagonal in Fig-
ures S3 to S5 weighted by the histogram below equals
the estimate of the ECE1 for a given binning. Here, for
visualization purposes we chose 15 bins instead of 100
as in our experiments. For such a binning, most confi-
dence estimates fall into one or two bins, leading to the
estimation problem described in Section S3.1. When
interpreting reliability diagrams keep in mind that bins
with a low number of samples have high variance in
their per-bin-accuracy. We show some reliability dia-
grams for CNNs on ImageNet from our experiments
in Section 4.1. As is the case for most high-accuracy
CNNs, Resnet-152 and PolyNet shown in Figures S3
and S4 mostly predict with very high confidence. Fur-
ther, they generally predict higher confidence than ac-
curacy, which is reflected in their high overconfidence.
This observation is consistent with previous work on
overconfidence of neural networks (Lakshminarayanan
et al., 2017, Guo et al., 2017, Hein et al., 2019). Inter-
estingly, PNASNet-5-Large (see Figure S5) is actually
underconfident. This also holds true for SENet-154
and NASNet-A-Large, which demonstrated the highest
accuracy on ImageNet in our experiments.
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Table S1: Average wall-clock runtime of experiments. We show average time in seconds of inference on the
calibration sets and calibration on the test sets. Times are averaged for each data set across classifiers and 10
Monte-Carlo cross validation folds, since variance between classifiers on the same data set was small.

one-vs-all

Mode Data Set Platt Isotonic Beta BBQ Temp. GPcalib GPcalib
mean appr.

Inference KITTI 0.0017 0.0004 0.0032 0.0994 0.0053 1.0517 1.0441
PCam 0.0020 0.0007 0.0026 0.0923 0.0063 1.0653 1.0492
MNIST 0.0245 0.0055 0.0478 0.8589 0.0129 2.2112 2.1596
CIFAR-100 0.3181 0.0602 0.2052 9.0458 0.0277 20.6564 20.4714
ImageNet 3.0911 0.9436 2.2291 61.3060 0.3395 259.7305 258.0205

Calibration KITTI 0.0002 0.0003 0.0022 0.1334 0.0006 0.1625 0.1227
PCam 0.0003 0.0004 0.0021 0.1502 0.0008 0.1610 0.1171
MNIST 0.0043 0.0046 0.1126 1.5180 0.0026 0.2610 0.1483
CIFAR-100 0.1276 0.1269 0.3202 14.8716 0.0210 2.4482 0.3367
ImageNet 8.3651 8.3005 12.7822 113.6108 0.2369 51.3806 3.1317
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Figure S1: Illustration of latent functions on probability scores. Latent functions of GPcalib and temperature
scaling for probability scores from classifiers on MNIST. GPcalib uses the ln prior corresponding to the prior
assumption of the classifier being calibrated. For AdaBoost we can see in Table 1, that remedying the large
calibration error is only handled well by GPcalib. This corresponds to a large deviation from the prior in latent
space.
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Figure S2: Illustration of non-linear latent functions in logit-space. Additional latent maps of temperature scaling
and GPcalib from our experiments on ImageNet in Section 4.1 are shown. A higher degree of non-linearity and
deviation from the identity map corresponds to a larger decrease in calibration error. Larger uncertainty of the
latent Gaussian process corresponds to less samples in the calibration data set with logits in that range.
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0.0

0.5

1.0

sa
m

pl
e

fra
c.

0.25 0.50 0.75 1.00

confidence ẑ
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Figure S3: Reliability diagrams of ResNet-152. ResNet-152 is overconfident for most of its output and thus
miscalibrated. Note, that the large deviation for the left-most bin is an artifact of the low number of samples in
that bin and thus not representative of the true accuracy for low confidence predictions. Both temperature scaling
and GPcalib improve the classifier’s calibration by shifting its confidence estimates closer to the actual accuracy.
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Figure S4: Reliability diagrams of PolyNet. PolyNet shows a similar reliability curve as Resnet-152 in Figure S3.
It also displays less accuracy per bin for the given confidence in its prediction. The shown calibration methods
remedy this by reducing the confidence in some of its most certain estimates.
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Figure S5: Reliability diagrams of PNASNet-5-Large. Contrary to most other CNNs, PNASNet-5-Large is actually
less confident than accurate for much of its confidence histogram. We observed a similar phenomenon for other
high accuracy CNNs on ImageNet in our experiments. Both calibration methods shift the histogram to more
confident estimates, but GPcalib does not overcompensate for less confident predictions in contrast to temperature
scaling.
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