A Proof of Theorem 4.3, lower bound in $\Omega\left(d t_{\text {mix }}\right)$.

Let us recall the construction of Wolfer and Kontorovich (2019). Taking $0<\varepsilon \leq 1 / 8$ and $d=6 k, k \geq 2$ fixed, $0<\eta<1 / 48$ and $\boldsymbol{\tau} \in\{0,1\}^{d / 3}$, we define the block matrix

$$
\boldsymbol{M}_{\eta, \boldsymbol{\tau}}=\left(\begin{array}{ll}
C_{\eta} & R_{\tau} \\
R_{\tau}^{\top} & L_{\tau}
\end{array}\right),
$$

where $C_{\eta} \in \mathbb{R}^{d / 3 \times d / 3}, L_{\boldsymbol{\tau}} \in \mathbb{R}^{2 d / 3 \times 2 d / 3}$, and $R_{\boldsymbol{\tau}} \in \mathbb{R}^{d / 3 \times 2 d / 3}$ are given by

$$
\begin{gathered}
L_{\boldsymbol{\tau}}=\frac{1}{8} \operatorname{diag}\left(7-4 \tau_{1} \varepsilon, 7+4 \tau_{1} \varepsilon, \ldots, 7-4 \tau_{d / 3} \varepsilon, 7+4 \tau_{d / 3} \varepsilon\right), \\
C_{\eta}=\left(\begin{array}{ccccc}
\frac{3}{4}-\eta & \frac{\eta}{d / 3-1} & \cdots & \frac{\eta}{d / 3-1} \\
\frac{\eta}{d / 3-1} & \frac{3}{4}-\eta & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{\eta}{d / 3-1} \\
\frac{\eta}{d / 3-1} & \cdots & \frac{\eta}{d / 3-1} & \frac{3}{4}-\eta
\end{array}\right), \\
R_{\boldsymbol{\tau}}=\frac{1}{8}\left(\begin{array}{ccccccc}
1+4 \tau_{1} \varepsilon & 1-4 \tau_{1} \varepsilon & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & 1+4 \tau_{2} \varepsilon & 1-4 \tau_{2} \varepsilon & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 & 1+4 \tau_{d / 3} \varepsilon & 1-4 \tau_{d / 3} \varepsilon
\end{array}\right) .
\end{gathered}
$$

Holding η fixed, define the collection

$$
\begin{equation*}
\mathcal{H}_{\eta}=\left\{\boldsymbol{M}_{\eta, \boldsymbol{\tau}}: \boldsymbol{\tau} \in\{0,1\}^{d / 3}\right\} \tag{A.1}
\end{equation*}
$$

of ergodic and symmetric stochastic matrices. Suppose that $\boldsymbol{X}=\left(X_{1}, \ldots, X_{m}\right) \sim(\boldsymbol{M}, \boldsymbol{\mu})$, where $\boldsymbol{M} \in \mathcal{H}_{\eta}$, and $\boldsymbol{\mu}$ is the uniform distribution over the inner clique nodes, indexed by $\{1, \ldots d / 3\}$. Define the random variable $T_{\text {CLIQ } / 2}$ to be the first time some half of the states in the inner clique were visited,

$$
\begin{equation*}
T_{\mathrm{CLIQ} / 2}=\inf \left\{t \geq 1:\left|\left\{X_{1}, \ldots, X_{t}\right\} \cap[d / 3]\right|=d / 6\right\} . \tag{A.2}
\end{equation*}
$$

Lemma B. 5 lower bounds the half cover time:

$$
\begin{equation*}
m \leq \frac{d}{120 \eta} \Longrightarrow \mathbf{P}\left(T_{\mathrm{CLIQ} / 2}>m\right) \geq \frac{1}{5} \tag{A.3}
\end{equation*}
$$

while Wolfer and Kontorovich (2019, Lemma 6) establishes the key property that any element M of \mathcal{H}_{η} satisfies

$$
\begin{equation*}
t_{\text {mix }}(\boldsymbol{M})=\tilde{\Theta}(1 / \eta) . \tag{A.4}
\end{equation*}
$$

Let us fix some $i_{\star} \in[d]$, choose as reference $\overline{\boldsymbol{M}} \doteq \boldsymbol{M}_{\eta, 0}$ and as an alternative hypothesis $\boldsymbol{M} \doteq \boldsymbol{M}_{\eta, \boldsymbol{\tau}}$, with $\tau_{i}=\mathbf{1}\left\{i=i_{\star}\right\}$. Take both chains to have the uniform distribution $\boldsymbol{\mu}$ over the clique nodes as their initial one. It is easily verified that $\|\mid \bar{M}-M\|=\varepsilon$, so that

$$
\begin{equation*}
\mathcal{R}_{m} \geq \inf _{\mathcal{T}}\left[\mathbf{P}_{0}\left(\mathcal{T}=1 \mid T_{\mathrm{CLIQ} / 2}>m\right) \mathbf{P}_{0}\left(T_{\mathrm{CLIQ} / 2}>m\right)+\mathbf{P}_{1}\left(\mathcal{T}=0 \mid T_{\mathrm{CLIQ} / 2}>m\right) \mathbf{P}_{1}\left(T_{\mathrm{CLIQ} / 2}>m\right)\right] \tag{A.5}
\end{equation*}
$$

Further, for $m<\frac{d}{120 \eta}$, we have

$$
\begin{equation*}
\mathcal{R}_{m} \geq \frac{1}{5} \inf _{\mathcal{T}}\left[\mathbf{P}_{0}\left(\mathcal{T}=1 \mid T_{\mathrm{CLIQ} / 2}>m\right)+\mathbf{P}_{1}\left(\mathcal{T}=0 \mid T_{\mathrm{CLIQ} / 2}>m\right)\right] \tag{A.6}
\end{equation*}
$$

Since $\mathbf{P}(X \mid Y) \geq \mathbf{P}(X \mid Y, Z) \mathbf{P}(Z \mid Y)$, we have

$$
\begin{equation*}
\mathbf{P}_{0}\left(\mathcal{T}=1 \mid T_{\mathrm{CLIQ} / 2}>m\right) \geq \mathbf{P}_{0}\left(\mathcal{T}=1 \mid T_{\mathrm{CLIQ} / 2}>m, N_{i_{\star}}=0\right) \mathbf{P}_{0}\left(N_{i_{\star}}=0 \mid T_{\mathrm{CLIQ} / 2}>m\right) . \tag{A.7}
\end{equation*}
$$

Additionally, the symmetry of our reference chain implies that $\mathbf{P}_{0}\left(N_{i_{\star}}=0 \mid T_{\mathrm{CLIQ} / 2}>m\right) \geq 1 / 2$. It follows, via an analogous argument that $\mathbf{P}_{1}\left(N_{i_{\star}}=0 \mid T_{\mathrm{CLIQ} / 2}>m\right) \geq 1 / 2$, so that

$$
\begin{equation*}
\mathcal{R}_{m} \geq \frac{1}{10} \inf _{\mathcal{T}}\left[\mathbf{P}_{0}\left(\mathcal{T}=1 \mid T_{\mathrm{CLIQ} / 2}>m, N_{i_{\star}}=0\right)+\mathbf{P}_{1}\left(\mathcal{T}=0 \mid T_{\mathrm{CLIQ} / 2}>m, N_{i_{\star}}=0\right)\right] \tag{A.8}
\end{equation*}
$$

By Le Cam's theorem (Le Cam, 2012, Chapter 16, Section 4),

$$
\begin{equation*}
\mathcal{R}_{m} \geq \frac{1}{10}\left[1-\left\|\mathbf{P}_{0}\left(\boldsymbol{X} \mid T_{\mathrm{CLIQ} / 2}>m, N_{i_{\star}}=0\right)-\mathbf{P}_{1}\left(\boldsymbol{X} \mid T_{\mathrm{CLIQ} / 2}>m, N_{i_{\star}}=0\right)\right\|_{\mathrm{TV}}\right] \tag{A.9}
\end{equation*}
$$

Other than state i_{\star} and its connected outer nodes, the reference chain $\boldsymbol{M}_{\eta, \mathbf{0}}$ and the alternative chain $\boldsymbol{M}_{\eta, \boldsymbol{\tau}}$ are identical. Conditional on $N_{i_{\star}}=0$, the outer states connected to i_{\star} were never visited, since these are only connected to the rest of the chain via i_{\star} and our choice of the initial distribution $\boldsymbol{\mu}$ constrains the initial state to the inner clique. Thus, the two distributions over sequences conditioned on $N_{i_{\star}}=0$ are identical, causing the term $\left\|\mathbf{P}_{0}(\cdot)-\mathbf{P}_{1}(\cdot)\right\|_{\mathrm{TV}}$ in (A.9) to vanish:

$$
\begin{equation*}
\mathcal{R}_{m} \geq \frac{1}{10} \tag{A.10}
\end{equation*}
$$

which proves a sample complexity lower bound of $\tilde{\Omega}\left(d t_{\text {mix }}\right)$. Since our family of Markov chains has uniform stationary distribution $\left(\pi_{\star}=1 / d\right)$, this further proves that the dependence on π_{\star} in our bound is in general not improvable.

B Auxiliary lemmas

The following standard combinatorial fact will be useful.
Lemma B. 1 Let $(m, n) \in \mathbb{N}^{2}$ such that $m+1 \geq 2 n$. Then there are $\binom{m-n+1}{n}$ ways of selecting n non-consecutive integers from $[m]$.

Lemma B. 2 For any $\boldsymbol{M} \in \mathcal{G}_{p_{\star}}$ defined in (6.3), started with initial distribution \boldsymbol{p} defined in (6.5),

$$
P\left(m, n, p_{\star}\right) \doteq \mathbf{P}_{M, \boldsymbol{p}}\left(N_{d+1}=n\right)=\left\{\begin{array}{ll}
\left(1-p_{\star}\right)^{n} & \text { if } n=0 \\
p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n}\left[\binom{m-n+1}{n}-\binom{m-n}{n-1} p_{\star}\right]
\end{array} \begin{array}{l}
\text { if } 1 \leq n \leq \frac{m+1}{2} \\
0
\end{array}\right.
$$

Proof: For any $\boldsymbol{M} \in \mathcal{G}_{p_{\star}}$, we construct the following associated two-state Markov chain, with initial distribution $\left(1-\boldsymbol{p}_{\star}, \boldsymbol{p}_{\star}\right)$, where all states $i \in[d]$ are merged into a single state, which we call $\overline{d+1}$, while state $d+1$ is kept distinct. Observe that this two-state Markov chain is the same for all $\boldsymbol{M} \in \mathcal{G}_{p_{\star}}$, regardless of $\boldsymbol{\eta}$, and that the probability distribution of the number of visits to state $d+1$, when sampling from \boldsymbol{M}, is the same as when sampling from this newly constructed chain.

Let $m \geq 1$. The case where $n=0$ is trivial as it corresponds to n failures to reach the state $d+1$, and there is only one such path. When $n>\frac{m+1}{2}$, there is no path of length m that contains n visits to state $d+1$, as any visit to this state almost surely cannot be directly followed by another visit to this same state. It remains to analyze the final case where $1 \leq n \leq \frac{m+1}{2}$. Take $\left(x_{1}, \ldots, x_{m}\right)$ to be a sample path in which the state $d+1$ was visited n times. We consider two sub-cases.

The last state in the sample path is $d+1$: In the case where $x_{m}=d+1$, note that also necessarily $x_{m-1}=\overline{d+1}$. The $n-1$ previous visits to state $d+1$ were followed by a probability 1 transition to state $\overline{d+1}$, and the remaining transitions have value $1-p_{\star}$, so that $\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})=p_{\star}^{n-1} 1^{n-1}\left(1-p_{\star}\right)^{m-(n-1)-(n-1)-1} p_{\star}=$
$p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n+1}$. Since the last two states in the sequence are fixed and known, $x_{m}=d+1, x_{m-1}=\overline{d+1}$, counting the number of such paths amounts to counting the number of subsets of $m-2$ of size $n-1$ such that no two elements are consecutive, i.e. $\binom{(m-2)-(n-1)+1}{n-1}=\binom{m-n}{n-1}$ (Lemma B.1).

The last state in the sample path is $\overline{d+1}$: By reasoning similar to above, such paths have probability $p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n}$. To count such paths, consider all possible subsets of m of size n such that no two elements are consecutive, and subtract the count of paths in the other case where the last state was $d+1$. There are then $\binom{m-n+1}{n}-\binom{m-n}{n-1}=\binom{m-n}{n}$ such paths.

It follows that

$$
\begin{align*}
P\left(m, n, p_{\star}\right) & =\binom{m-n}{n-1} p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n+1}+\binom{m-n}{n} p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n} \\
& =p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n}\left[\binom{m-n+1}{n}-\binom{m-n}{n-1} p_{\star}\right] \tag{B.1}
\end{align*}
$$

Lemma B. 3 Let $\boldsymbol{M}_{1}, \boldsymbol{M}_{2} \in \mathcal{G}_{p_{\star}}$, defined in (6.3), and start both chains with initial distribution \boldsymbol{p} defined in (6.5). For arbitrary $(m, n) \in \mathbb{N}^{2}$ such that $m+1 \geq 2 n$, let $N_{d+1}=\sum_{t=1}^{m} \mathbf{1}\left\{X_{t}=d+1\right\}$ be the number of visits to state $(d+1)$. Then, for trajectories $\boldsymbol{X}=\left(X_{1}, \ldots, X_{m}\right)$ sampled from either chain, we have

$$
\begin{align*}
& \left\|\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1} \leq n\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1} \leq n\right)\right\|_{\mathrm{TV}} \\
& \leq\left\|\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} . \tag{B.2}
\end{align*}
$$

Proof: Partitioning over all possible number of visits to $d+1$ for \boldsymbol{M}_{1},

$$
\begin{align*}
& \mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1} \leq n\right)=\sum_{k=0}^{\infty} \mathbf{P}_{M_{1}}\left(\boldsymbol{X} \mid N_{d+1} \leq n, N_{d+1}=k\right) \mathbf{P}_{\boldsymbol{M}_{1}}\left(N_{d+1}=k \mid N_{d+1} \leq n\right) \\
&=\sum_{k=0}^{n} \mathbf{P}_{M_{1}}\left(\boldsymbol{X} \mid N_{d+1}=k\right) \mathbf{P}_{M_{1}}\left(N_{d+1}=k \mid N_{d+1} \leq n\right) \tag{B.3}\\
&=\sum_{k=0}^{n} \mathbf{P}_{M_{1}}\left(\boldsymbol{X} \mid N_{d+1}=k\right) \frac{\overbrace{\mathbf{P}_{M_{1}}\left(N_{d+1} \leq n \mid N_{d+1}=k\right)}}{=1} \mathbf{P}_{M_{1}}\left(N_{d+1}=k\right) \\
& \mathbf{P}_{M_{1}}\left(N_{d+1} \leq n\right)
\end{align*}
$$

From Lemma B.2, we have

$$
\begin{array}{r}
\mathbf{P}_{M_{1}}\left(N_{d+1}=k\right)=\mathbf{P}_{M_{2}}\left(N_{d+1}=k\right)=P\left(m, k, p_{\star}\right) \\
\mathbf{P}_{M_{1}}\left(N_{d+1} \leq n\right)=\mathbf{P}_{M_{2}}\left(N_{d+1} \leq n\right)=\sum_{s=0}^{n} P\left(m, s, p_{\star}\right), \tag{B.4}
\end{array}
$$

and subsequently,

$$
\begin{align*}
& \left\|\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1} \leq n\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1} \leq n\right)\right\|_{\mathrm{TV}} \\
& =\left\|\sum_{k=0}^{n}\left(\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1}=k\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1}=k\right)\right) \frac{P\left(m, k, p_{\star}\right)}{\sum_{s=0}^{n} P\left(m, s, p_{\star}\right)}\right\|_{\mathrm{TV}} \\
& \leq \sum_{k=0}^{n}\left\|\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1}=k\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1}=k\right)\right\|_{\mathrm{TV}} \frac{P\left(m, k, p_{\star}\right)}{\sum_{s=0}^{n} P\left(m, s, p_{\star}\right)} \tag{B.5}\\
& \leq \max _{k \in\{0, \ldots, n\}}\left\|\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1}=k\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1}=k\right)\right\|_{\mathrm{TV}} \\
& \leq\left\|\mathbf{P}_{\boldsymbol{M}_{1}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{\boldsymbol{M}_{2}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} .
\end{align*}
$$

The following lemma shows that for the family $\mathcal{G}_{p_{\star}}$ of chains constructed in (6.3), conditioned on the number of visits to state $d+1$, it is possible to control the total variation between two trajectories drawn from two chains of the class in terms of the total variation between product distributions.

Lemma B. 4 Let $\boldsymbol{M}_{\boldsymbol{\eta}_{1}}, \boldsymbol{M}_{\boldsymbol{\eta}_{2}} \in \mathcal{G}_{p_{\star}}$ defined in (6.3), both started with initial distribution \boldsymbol{p} defined in (6.5). Then, for $1 \leq n \leq \frac{m+1}{2}$,

$$
\begin{equation*}
\left\|\mathbf{P}_{M_{\eta_{1}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{M_{\eta_{2}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} \leq\left\|\boldsymbol{\eta}_{1}^{\otimes n}-\boldsymbol{\eta}_{2}^{\otimes n}\right\|_{\mathrm{TV}} . \tag{B.6}
\end{equation*}
$$

Proof: Total variation and ℓ_{1} norm are equal up to a conventional factor of 2 ,

$$
\begin{align*}
& 2\left\|\mathbf{P}_{M_{\eta_{1}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{\boldsymbol{M}_{\eta_{2}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} \\
& =\sum_{\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \in[d+1]^{m}}\left|\mathbf{P}_{M_{\eta_{1}}}\left(\boldsymbol{X}=\boldsymbol{x} \mid N_{d+1}=n\right)-\mathbf{P}_{M_{\eta_{2}}}\left(\boldsymbol{X}=\boldsymbol{x} \mid N_{d+1}=n\right)\right| \cdot \tag{B.7}
\end{align*}
$$

Notice now that

$$
\begin{align*}
\mathbf{P}_{M_{\eta_{1}}}\left(\boldsymbol{X}=\boldsymbol{x} \mid N_{d+1}=n\right) & =\frac{\mathbf{P}_{M_{\eta_{1}}}\left(N_{d+1}=n \mid \boldsymbol{X}=\boldsymbol{x}\right) \mathbf{P}_{M_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})}{\mathbf{P}_{M_{\eta_{1}}}\left(N_{d+1}=n\right)} \\
& =\frac{\mathbf{1}\left\{n_{d+1}=n\right\} \mathbf{P}_{M_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})}{\mathbf{P}_{M_{\eta_{1}}}\left(N_{d+1}=n\right)}, \tag{B.8}
\end{align*}
$$

and similarly for $\boldsymbol{M}_{\boldsymbol{\eta}_{2}}$, so that

$$
\begin{align*}
& 2\left\|\mathbf{P}_{M_{\eta_{1}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{M_{\eta_{2}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} \\
& =\sum_{\boldsymbol{x} \in[d+1]^{m}}\left|\frac{\mathbf{1}\left\{n_{d+1}=n\right\} \mathbf{P}_{M_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})}{\mathbf{P}_{\boldsymbol{M}_{\eta_{1}}}\left(N_{d+1}=n\right)}-\frac{\mathbf{1}\left\{n_{d+1}=n\right\} \mathbf{P}_{M_{\eta_{2}}}(\boldsymbol{X}=\boldsymbol{x})}{\mathbf{P}_{\boldsymbol{M}_{\eta_{2}}}\left(N_{d+1}=n\right)}\right| . \tag{B.9}
\end{align*}
$$

Invoking Lemma B.2, write

$$
P\left(m, n, p_{\star}\right)=\mathbf{P}_{M_{\eta_{1}}}\left(N_{d+1}=n\right)=\mathbf{P}_{M_{\eta_{2}}}\left(N_{d+1}=n\right)
$$

For $1 \leq n \leq \frac{m+1}{2}$,

$$
\begin{align*}
& 2\left\|\mathbf{P}_{M_{\eta_{1}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{M_{\eta_{2}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} \\
& =\frac{1}{P\left(m, n, p_{\star}\right)} \sum_{\boldsymbol{x} \in[d+1]^{m}} \mathbf{1}\left\{n_{d+1}=n\right\}\left|\mathbf{P}_{\boldsymbol{M}_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})-\mathbf{P}_{\boldsymbol{M}_{\eta_{2}}}(\boldsymbol{X}=\boldsymbol{x})\right| \\
& =\frac{1}{P\left(m, n, p_{\star}\right)}\left(\sum_{\substack{\boldsymbol{x} \in[d+1]^{m} \\
n_{d+1}=n \\
x_{m}=d+1}}\left|\mathbf{P}_{M_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})-\mathbf{P}_{M_{\eta_{2}}}(\boldsymbol{X}=\boldsymbol{x})\right|\right. \tag{B.10}\\
& \left.+\sum_{\substack{\boldsymbol{x} \in[d+1]^{m} \\
n_{d+1}=n \\
x_{m} \neq d+1}}\left|\mathbf{P}_{\boldsymbol{M}_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})-\mathbf{P}_{\boldsymbol{M}_{\eta_{2}}}(\boldsymbol{X}=\boldsymbol{x})\right|\right) .
\end{align*}
$$

Recall that it is impossible to visit state $d+1$ twice in a row. Computing the first sum,

$$
\begin{align*}
& \sum_{\substack{\boldsymbol{x} \in[d+1]^{m} \\
n_{d+1}=n \\
x_{m}=d+1}}\left|\mathbf{P}_{\boldsymbol{M}_{\boldsymbol{\eta}_{1}}}(\boldsymbol{X}=\boldsymbol{x})-\mathbf{P}_{\boldsymbol{M}_{\boldsymbol{\eta}_{2}}}(\boldsymbol{X}=\boldsymbol{x})\right| \\
& =\sum_{\substack{S=\left(s_{1}, \ldots, s_{n}\right) \\
S \subset[m] \\
s_{n}=m \\
i \neq j}} \sum_{\substack{ \\
\Longrightarrow \rightarrow s_{i}-s_{j} \mid>1}} d^{m-2 n+1} p_{\star}^{n}\left(\frac{1-p_{\star}}{d}\right)^{m-2 n+1}\left|\prod_{k=1}^{n-1} \boldsymbol{\eta}_{1}\left(x_{s_{k}}\right)-\prod_{k=1}^{n-1} \boldsymbol{\eta}_{2}\left(x_{s_{k}}\right)\right| \tag{B.11}\\
& =\binom{(m-2)-(n-1)+1}{n-1} p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n+1} \sum_{\left(x_{s_{1}}, \ldots, x_{s_{n-1}}\right) \in[d]^{n-1}}\left|\prod_{k=1}^{n-1} \boldsymbol{\eta}_{1}\left(x_{s_{k}}\right)-\prod_{k=1}^{n-1} \boldsymbol{\eta}_{2}\left(x_{s_{k}}\right)\right| \\
& =\binom{m-n}{n-1} p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n+1} 2\left\|\boldsymbol{\eta}_{1}^{\otimes n-1}-\boldsymbol{\eta}_{2}^{\otimes n-1}\right\|_{\mathrm{TV}},
\end{align*}
$$

where the second inequality is from Lemma B.1. Similarly for the second sum,

$$
\begin{align*}
& \sum_{\substack{\boldsymbol{x} \in[d+1]^{m} \\
n_{d+1}=n \\
x_{m} \neq d+1}}\left|\mathbf{P}_{\boldsymbol{M}_{\eta_{1}}}(\boldsymbol{X}=\boldsymbol{x})-\mathbf{P}_{\boldsymbol{M}_{\eta_{2}}}(\boldsymbol{X}=\boldsymbol{x})\right| \\
= & \sum_{\substack { S=\left(s_{1}, \ldots, s_{n}\right) \\
S \subset[m] \tag{B.12}\\
s_{n} \neq m \\
\begin{subarray}{c}{ \\
\hline \neq j{ S = (s _ { 1 } , \ldots , s _ { n }) \\
S \subset [m] \\
s _ { n } \neq m \\
\begin{subarray} { c } { \\
\hline \neq j } }\end{subarray}} \sum_{\left(x_{s_{1}}, \ldots, x_{s_{n}}\right) \in[d+1]^{n}} d^{m-2 n} p_{\star}^{n}\left(\frac{1-p_{\star} \mid>1}{d}\right)^{m-2 n}\left|\prod_{k=1}^{n} \boldsymbol{\eta}_{1}\left(x_{s_{k}}\right)-\prod_{k=1}^{n} \boldsymbol{\eta}_{2}\left(x_{s_{k}}\right)\right| \\
= & \left(\binom{m-n+1}{n}-\binom{m-n}{n-1}\right) p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n} \sum_{\left(x_{s_{1}}, \ldots, x_{s_{n}}\right) \in[d]^{n}}\left|\prod_{k=1}^{n} \boldsymbol{\eta}_{1}\left(x_{s_{k}}\right)-\prod_{k=1}^{n} \boldsymbol{\eta}_{2}\left(x_{s_{k}}\right)\right| \\
= & \binom{m-n}{n} p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n} 2\left\|\boldsymbol{\eta}_{1}^{\otimes n}-\boldsymbol{\eta}_{2}^{\otimes n}\right\|_{\mathrm{TV}} .
\end{align*}
$$

Hence,

$$
\begin{align*}
& 2\left\|\mathbf{P}_{\boldsymbol{M}_{\boldsymbol{\eta}_{1}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)-\mathbf{P}_{M_{\boldsymbol{\eta}_{2}}}\left(\boldsymbol{X} \mid N_{d+1}=n\right)\right\|_{\mathrm{TV}} P\left(m, n, p_{\star}\right) \\
& =2 p_{\star}^{n}\left(1-p_{\star}\right)^{m-2 n}\left[\binom{m-n}{n-1}\left(1-p_{\star}\right)\left\|\boldsymbol{\eta}_{1}^{\otimes n-1}-\boldsymbol{\eta}_{2}^{\otimes n-1}\right\|_{\mathrm{TV}}+\binom{m-n}{n}\left\|\boldsymbol{\eta}_{1}^{\otimes n}-\boldsymbol{\eta}_{2}^{\otimes n}\right\|_{\mathrm{TV}}\right] \tag{B.13}\\
& \leq 2 p_{\star}^{n}\left\|\boldsymbol{\eta}_{1}^{\otimes n}-\boldsymbol{\eta}_{2}^{\otimes n}\right\|_{\mathrm{TV}}\left(1-p_{\star}\right)^{m-2 n}\left[\binom{m-n}{n-1}\left(1-p_{\star}\right)+\binom{m-n}{n}\right] \\
& =2\left\|\boldsymbol{\eta}_{1}^{\otimes n}-\boldsymbol{\eta}_{2}^{\otimes n}\right\|_{\mathrm{TV}} P\left(m, n, p_{\star}\right)(\text { Lemma B.1 }) .
\end{align*}
$$

Lemma B. 5 (Cover time) For $\boldsymbol{M} \in \mathcal{H}_{\eta}$ [defined in (A.1)], the "half cover time" random variable $T_{\mathrm{CLIQ} / 2}$ [defined in (A.2)] satisfies

$$
\begin{equation*}
m \leq \frac{d}{120 \eta} \Longrightarrow \mathbf{P}\left(T_{\mathrm{CLIQ} / 2}>m\right) \geq \frac{1}{5} \tag{B.14}
\end{equation*}
$$

Proof: The proof pursues a strategy similar to Wolfer and Kontorovich (2019), which is adapted to "half" rather than "full" coverings. Let $\boldsymbol{M} \in \mathcal{H}_{\eta}$ and $\boldsymbol{M}_{I} \in \mathcal{M}_{d / 3}$ be such that \boldsymbol{M}_{I} consists only in the inner clique of \boldsymbol{M}, and each outer rim state got absorbed into its unique inner clique neighbor:

$$
\boldsymbol{M}_{I}=\left(\begin{array}{cccc}
1-\eta & \frac{\eta}{d / 3-1} & \cdots & \frac{\eta}{d / 3-1} \\
\frac{\eta}{d / 3-1} & 1-\eta & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{\eta}{d / 3-1} \\
\frac{\eta}{d / 3-1} & \cdots & \frac{\eta}{d / 3-1} & 1-\eta
\end{array}\right)
$$

By construction, it is clear that $T_{\mathrm{CLIQ} / 2}$ is almost surely greater than the half cover time of \boldsymbol{M}_{I}. The latter corresponds to a generalized coupon half collection time $U_{\mathrm{COVER} / 2}=1+\sum_{i=1}^{d / 6-1} U_{i}$ where U_{i} is the time increment between the i th and the $(i+1)$ th unique visited state. Formally, if \boldsymbol{X} is a random walk according to \boldsymbol{M}_{I} (started from any state), then $U_{1}=\min \left\{t>1: X_{t} \neq X_{1}\right\}$ and for $i>1$,

$$
\begin{equation*}
U_{i}=\min \left\{t>1: X_{t} \notin\left\{X_{1}, \ldots, X_{U_{i-1}}\right\}\right\}-U_{i-1} \tag{B.15}
\end{equation*}
$$

The random variables $U_{1}, U_{2}, \ldots, U_{d / 6-1}$ are independent and $U_{i} \sim \operatorname{Geometric}\left(\eta-\frac{(i-1) \eta}{d / 3}\right)$, whence

$$
\begin{equation*}
\mathbf{E}\left[U_{i}\right]=\frac{d / 3}{\eta(d / 3-i+1)}, \quad \operatorname{Var}\left[U_{i}\right]=\frac{1-\left(\eta-\frac{(i-1) \eta}{d / 3}\right)}{\left(\eta-\frac{(i-1) \eta}{d / 3}\right)^{2}} \tag{B.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}\left[U_{\mathrm{COVER} / 2}\right] \geq 1+\frac{d / 3}{\eta}\left(\sigma_{d / 3}-\sigma_{d / 6}\right), \quad \operatorname{Var}\left[U_{\mathrm{COVER} / 2}\right] \leq \frac{(d / 3)^{2}}{\eta^{2}} \frac{\pi^{2}}{6} \tag{B.17}
\end{equation*}
$$

where $\sigma_{d}=\sum_{i=1}^{d} \frac{1}{i}$, and $\pi=3.1416 \ldots$ Since $\ln (d+1) \leq \sigma_{d} \leq 1+\ln d$, and for $d=6 k, k \geq 2$, we have $\sigma_{d}-\sigma_{d / 2} \geq \ln 2$ it follows that

$$
\begin{equation*}
\mathbf{E}\left[U_{\mathrm{COVER} / 2}\right] \geq \frac{d \ln 2}{\eta} \frac{\operatorname{lar}\left[U_{\mathrm{COVER} / 2}\right]}{3}, \quad \frac{d^{2} \pi^{2}}{\eta^{2}} \frac{54}{54} \tag{B.18}
\end{equation*}
$$

Invoking the Paley-Zygmund inequality with $\theta=1-\frac{\sqrt{15}}{6 \ln 2}$, yields

$$
\begin{equation*}
\mathbf{P}\left(U_{\mathrm{COVER} / 2}>\theta \mathbf{E}\left[U_{\mathrm{COVER} / 2}\right]\right) \geq\left(1+\frac{\operatorname{Var}\left[U_{\mathrm{COVER} / 2}\right]}{(1-\theta)^{2}\left(\mathbf{E}\left[U_{\mathrm{COVER} / 2}\right]\right)^{2}}\right)^{-1} \geq \frac{1}{5} \tag{B.19}
\end{equation*}
$$

so that for $m \leq \frac{d}{120 \eta}$ we have $\mathbf{P}\left(T_{\mathrm{CLIQ} / 2}>m\right) \geq \frac{1}{5}$.

