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A Proof of Proposition 1

For the constrained convex optimization problem in (6), the corresponding Lagrangian can be formulated as

L(�,�) = �|N�1
t (a)� + (x(a, ct)�Xt(a)�)

| �, (10)

where � 2 Rd is the Lagrangian multiplier vector.

Taking derivative with respect to �, we have

N�1
t (a)� �X|

t (a)� = 0, (11)

i.e.,

� = Nt(a)X
|
t (a)�. (12)

Then, to satisfy the first constraint in (6), we have

x(a, ct) = Xt(a)� = Xt(a)Nt(a)X
|
t (a)�, (13)

which implies that

� = [Xt(a)Nt(a)X
|
t (a)]

�1
x(a, ct) := V�1

t (a)x(a, ct). (14)

Note that the definitions of Xt(a) and Nt(a) ensure that Vt(a) is positive definite and invertible for every t.

Plugging (14) into (12), we have
� = Nt(a)X

|
t (a)V

�1
t (a)x(a, ct),

which is the unique optimal solution to the optimization problem in (6).

B One the Relationship between LinUCB-d and LinUCB

Major difference. One major difference between LinUCB-d and LinUCB (Li et al., 2010) is as follows: Under
LinUCB, at each time t, it will first estimate the true parameter of arm a (i.e., ✓a) by solving a ridge regression
and then use it to derive the UCB for the expected reward. The criterion to select the estimate is to minimize the
penalized mean squared error in fitting the past observations; On the other hand, under LinUCB-d, the learner
will directly estimate the expected reward through a linear combination of the rewards obtained when arm a was
pulled under all contexts. The criterion of selecting the estimate is to minimize the uncertainty (or “variance") of
the estimation. It avoids the intermediate step of trying to estimate ✓a first in LinUCB.

Essential equivalence. Although linUCB-d and linUCB view the problem from different angles, they actually
produce the same estimate on the expected reward and confidence bound at every time t under the same
realizations of context arrivals and rewards, as shown below.

Based on (12), (13) and (14), the estimated mean reward r̂t(a) in Algorithm 1 can be alternatively expressed as

r̂t(a) = s|t (a)X
|
t (a)� = s|t (a)X

|
t (a)V

�1
t (a)x(a, ct) := ✓̂|

t (a)x(a, ct),
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where ✓̂t(a) := V�1
t (a)Xt(a)st(a). We can verify that this is exactly the estimate of ✓(a) obtained by applying

the ridge regression with penalty factor l
2 to the historical data {(x(a⌧ , c⌧ ), y⌧ )}t�1

⌧=1.

Besides, for the �̂t(a) in Algorithm 1, we have

�̂t(a) =
q

�|Xt(a)Nt(a)X
|
t (a)� = kx(a, ct)kV�1

t (a), (15)

where we follow the convention to denote xVx| as kxk2V.

Thus, if we let l = 1, both r̂t(a) and �̂t(a) share the same form as the corresponding quantities in LinUCB. As a
reformulation of LinUCB, LinUCB-d automatically inherits all properties of LinUCB.

Computation and analytical issues. Computationally LinUCB-d is the same as LinUCB if we first compute
the Lagrangian multiplier in (14) through Vt(a), which can be equivalently computed by summing x(a, ct)x|(a, ct)
over the time slots when a is pulled. The advantage of LinUCB-d as an alternative form of LinUCB is on the
analytical side. The prediction uncertainty minimization nature shown in Proposition 1 gives us a unique angle
to elucidate the impact of context diversity on the corresponding learning regret, as elaborated in Lemma 3,
Lemma 4, Lemma 9 and Lemma 10.

C Proof of Theorem 1

In the following, we will derive regret bounds for those error events individually, and then assemble them together
to obtain the regret bound in Theorem 1.

C.1 Bound the Regret over AT

First, based on Hoeffding’s inequality, and the independent and uniform arrival of contexts assumption, we have

P

NFk(c) 

1

2n
· 2k�1

�
 exp

✓
�2k�1

2n2

◆
. (16)

Denote R(AT ) as the regret incurred over AT , and M as the maximum per-step regret. Then,

E[R(AT )]  M

dlog2 TeX

k=2

X

t2Fk

E[1{t 2 AT }]  M

blog2 TcX

k=1

X

t2Fk+1

X

a,c2C̄a

P

NFk(c) 

2k�1

2n

�

 MKd

blog2 TcX

k=1

X

t2Fk+1

exp

✓
�2k�1

2n2

◆
 Mn

1X

t=2

exp

✓
� t

8n2

◆
(17)

 MKd

Z 1

0
exp

✓
� t

8n2

◆
dt = 8MKdn

2
, (18)

where (17) follows from (16).

C.2 Bound the Regret over BT

First, we define s̃t(a) and s̄t(a) as follows:

s̃t(a) = [St(a, 1)�Nt(a, 1)r(a, 1), . . . , St(a, nt)�Nt(a, nt)r(a, nt),0d]
| (19)

s̄t(a) = [0nt ,�le|1✓(a), . . . ,�le|d✓(a)]
|
. (20)

Intuitively, s̃t(a) corresponds to the accumulated noise in the observations when arm a is pulled under different
contexts up to time t, and s̄t(a) corresponds to the bias contributed by the feature vectors associated with the
dummy contexts, which were added to ensure the existence of the unique solution in (6) for every t.

Then, the reward estimation error can be expressed as

r̂t(a)� r(a, ct) = s|t (a)N
�1
t (a)�t(a)� ✓|(a)x(a, ct)
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= s|t (a)N
�1
t (a)�t(a)� ✓|(a)Xt(a)�t(a) (21)

= (st(a)�Nt(a)X
|(a)✓(a))| N�1

t (a)�t(a)

:= (s̃t(a) + s̄t(a))
|X|

t (a)�, (22)

where (21) is due to the fact that x(a, ct) = Xt(a)�t(a) according to Proposition 1, and the � in (22) is the
Lagrangian multiplier involved in the proof of Proposition 1 in Appendix A and satisfies (11). In the following,
we will bound the contribution from s̄t(a) and s̃t(a) in the estimation error, respectively.

We note that at any time t, Nt(a, c) = 1 for c = nt + 1, . . . , nt + d. Besides, according to (15) in Appendix B,

�̂t(a) =
q
�|Xt(a)Nt(a)X

|
t (a)� = kN1/2

t (a)X|
t (a)�k2.

Thus,

|s̄|t (a)X
|
t (a)�| = |s̄|t (a)N

1/2
t (a)X|

t (a)�| (23)

 ks̄|t (a)k2 · kN
1/2
t (a)X|

t (a)�k2 (24)
= k✓(a)k2�̂t(a)  ls�̂t(a), (25)

where (24) follows from the Cauchy-Schwarz inequality.

Before we proceed to bound s̃|t (a)X
|
t (a)�, we first introduce the following notations. Recall that Vt(a) :=

Xt(a)Nt(a)X
|
t (a). Let V1/2

t (a) be its square root, i.e., V1/2
t (a)V1/2

t (a) = Vt(a). Let Ṽt(a) :=Pn
c=1 Nt(a, c)x(a, c)x|(a, c), V0 := l

2I. Then, Vt(a) = Ṽt(a) +V0. We have

|s̃|t (a)X
|
t (a)�| = |s̃|t (a)X

|
t (a)V

�1/2
t (a)V1/2

t (a)�|

 ks̃|t (a)X
|
t (a)kV�1

t (a)kV
1/2
t (a)�k2 (26)

= ks̃|t (a)X
|
t (a)kV�1

t (a)�̂t(a). (27)

We then adopt the Laplace method (Lattimore and Szepesvári, 2019) to bound ks̃|t (a)X
|
t (a)kV�1

t (a) as follows.

Lemma 1 Denote Mt(u) := exp
⇣
s̃|t (a)X

|
t (a)u� 1

2u
|Ṽt(a)u

⌘
for any u. Let h(u) be a probability measure over

Rd
. Then, M̄t := Eh[Mt(u)] is a super martingale with M̄0 = 1.

Proof. First, we note that Mt(u)�Mt�1(u) equals zero if arm a is not pulled at time t. Then, for any fixed u,
we have

E[Mt(u) | Ft�1]

= E

exp

✓
s̃|t (a)X

|
t (a)u� 1

2
u|Ṽt(a)u

◆����Ft�1

�
(28)

= E

exp

✓�
s̃|t (a)� s̃|t�1(a)

�
X|

t (a)u� 1

2
u|
⇣
Ṽt(a)� Ṽt�1(a)

⌘
u

◆�
Mt�1(u) (29)

Based on the definition of s̃t in (27), s̃|t (a)� s̃|t�1(a) equals ⌘te|c if at = a, ct = c, and zero otherwise; Similarly,
for Ṽt(a)� Ṽt�1(a), it equals x(a, c)x|(a, c) if at = t, ct = c, and zero otherwise. Therefore, if at 6= a,

E

exp

✓�
s̃|t (a)� s̃|t�1(a)

�
X|(a)u� 1

2
u|
⇣
Ṽt(a)� Ṽt�1(a)

⌘
u

◆����at 6= a

�
= 1. (30)

If at = a, ct = c,

E

exp

✓�
s̃|t (a)� s̃|t�1(a)

�
X|(a)u� 1

2
u|
⇣
Ṽt(a)� Ṽt�1(a)

⌘
u

◆����at = a, ct = c

�
(31)

= E

exp

✓
⌘tecX

|(a)u� 1

2
u|x(a, c)x|(a, c)u

◆�
(32)
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= E [exp (⌘tx
|(a, c)u)] · exp

✓
�1

2
u|x(a, c)x|(a, c)u

◆
(33)

 exp

✓
1

2
(x|(a, c)u)2

◆
· exp

✓
�1

2
u|x(a, c)x|(a, c)u

◆
= 1 (34)

where the last inequality follows from Assumption 1.3 that ⌘t is conditionally 1-subgaussian.

Combining (30)(34) with (29), for every fixed u, we have E[Mt(u) | Ft�1]  Mt�1(u). Thus, {Mt(u)}t is a
super-martingale, and

E[Mt(u)]  M0(u)] = 1. (35)

Since this holds for every u, after taking expectation with respect to u, M̄t is a super-martingale as well. Thus,
E[M̄t]  M̄0 = 1.

Lemma 2 Under Algorithm 1,

P

2

4ks̃|t (a)X
|
t (a)kV�1

t (a) �

s

2u+ log
detVt(a)

detV0

3

5  e
�u

.

Proof. Assume h is the probability density function of a Gaussian distribution N (0,V0), i.e.,

h(u) =
1p

(2⇡)d detV0

exp

✓
�1

2
u|V0u

◆
.

Then,

M̄t =

Z

Rd

Mt(u)h(u) du

=
1q

(2⇡)d detV�1
0

Z

Rd

exp

✓
s̃|t (a)X

|(a)u� 1

2
u|Ṽt(a)u� 1

2
u|V0u

◆
du

=
1q

(2⇡)d detV�1
0

Z

Rd

exp

✓
s̃|t (a)X

|(a)u� 1

2
u|Vt(a)u

◆
du

=
1q

(2⇡)d detV�1
0

Z

Rd

exp

✓
s̃|t (a)X

|(a)V�1/2
t (a)V1/2

t (a)u� 1

2
ku|Vt(a)kV�1

t (a)

◆
du

=
1q

(2⇡)d detV�1
0

⇥
Z

Rd

exp

✓
1

2
ks̃|t (a)X|(a)k2

V�1
t (a)

� 1

2
ku|Vt(a)� s̃|t (a)X

|(a)k2
V�1

t (a)

◆
du

=

s
detV�1

t (a)

detV�1
0

exp

✓
1

2
ks̃|t (a)X|(a)k2

V�1
t (a)

◆

= exp

✓
1

2
ks̃|t (a)X|(a)k2

V�1
t (a)

+
1

2
log

detV0

detVt(a)

◆
.

Therefore, according to Lemma 1, we have

P

2

4ks̃|t (a)X
|
t (a)kV�1

t (a) �

s

2u+ log
detVt(a)

detV0

3

5

= P

1

2
ks̃|t (a)X

|
t (a)k2V�1

t (a)
+

1

2
log

detV0

detVt(a)
� u

�
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 e
�uE[M̄t]  e

�u
. (36)

Next, we will provide a bound on detV0
detVt(a)

. The definition of V0 indicates that detV0 = l
2d. For Vt(a), we note

that for any y 2 Rd, we have

y|Vt(a)y =
nX

c=1

Nt(a, c)y
|x(a, c)x|(a, c)y + l

2y|y

 tl
2kyk22 + l

2kyk22 = (t+ 1)l2kyk22, (37)

where the inequality follows from Assumption 1.1.

Eqn. (37) indicates that the maximum eigenvalue of Vt(a) is upper bound by (t + 1)l2. Therefore, we have
detVt(a)  (l2 + tl

2)d, which implies that

log
detVt(a)

detV0
 d log(1 + t). (38)

Combining (38) with (22)(25)(27) and Lemma 2, we have

P
h
|r̂t(a)� r(a, ct)| �

⇣
ls+

p
2u+ d log(1 + t)

⌘
�̂t(a)

i

 P
h
ks̃|t (a)X|(a)kV�1

t (a)�̂t(a) �
p
2u+ d log(1 + t)�̂t(a)

i

 P

2

4ks̃|t (a)X|(a)kV�1
t (a) �

s

2u+ log
detVt(a)

detV0

3

5  e
�u

. (39)

Set u = log f(t) and ↵t = ls+
p
(2 + d) log f(t). When t > 2, f(t) > 1 + t, therefore, (39) implies that

P [|r̂t(a)� r(a, ct)| � ↵t�̂t(a)] 
1

f(t)
. (40)

Thus,

E[|BT |]  2 +K

1X

t=3

1

f(t)
 2 + 2.5K, E[R(BT )]  ME[|BT |]  M(2 + 2.5K). (41)

C.3 Bound the Regret over CT

Recall Bk := |BT \ Fk|, i.e., the number of bad estimates in frame k. Then, according to Markov’s inequality, we
have

P

Bk � 2k�1

4n

�
 E[Bk]4n

2k�1
. (42)

The definitions of Bk and BT also imply that
Pdlog2 Te

k=1 E[Bk] = E[BT ]. Therefore,

E[R(CT )]  ME[|CT |] = M

blog2 TcX

k=1

|Fk+1| · P

Bk � 2k�1

4n

�
(43)

 M

blog2 TcX

k=1

2k
E[Bk]4n

2k�1
 8nME[|BT |]  8nM(2 + 2.5K), (44)

where (43) follows from the definition of CT , and (44) is due to (42) and (41).
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C.4 Bound the Regret over DT

Let N̄t(a, c) be the total number of time slots before t when arm a is pulled under context c, and all estimates
are good, i.e., N̄t(a, c) = |{⌧ | a⌧ = a, c⌧ = c, ⌧ /2 Bt, 1  ⌧ < t}|. We have the following observations.

Lemma 3 For any a, c /2 Ca, N̄t(a, c)  4↵2
t

�2 for all t.

Proof. We first consider a time slot t /2 BT at which a sub-optimal action at is taken under ct. Then, according
to the LinUCB-d Algorithm, we must have

r̂t(at) + ↵t�̂t(at) � r̂t(a
⇤
t ) + ↵t�̂t(a

⇤
t ). (45)

Besides, t /2 BT implies that

|r̂t(at)� r(at, ct)|  ↵t�̂t(at), |r̂t(a⇤t )� r(a⇤t , ct)|  ↵t�̂t(a
⇤
t ). (46)

Putting (45)(46) together, we have

r(at, ct) + 2↵t�̂t(at) � r̂t(at) + ↵t�̂t(at) � r̂t(a
⇤
t ) + ↵t�̂t(a

⇤
t ) � r(a⇤t , ct). (47)

Therefore,

�  r(a⇤t , ct)� r(at, ct)  2↵t�̂t(at) = 2↵t

q
�|
t (at)N

�1
t (at)�t(at). (48)

Denote �̃ 2 Rnt+d as a unit vector whose ct-th entry takes value 1. Then, when Nt(at, ct) 6= 0, �̃ satisfies the
constraints in (6). According to Proposition 1, we must have

�|
t (at)N

�1
t (at)�t(at)  �̃|(at)N�1

t (at)�̃(at) =
1

Nt(at, ct)
 1

N̄t(at, ct)
. (49)

Combining (48) and (49), we have

N̄t(at, ct) 
1

�|
t (at)N

�1
t (at)�t(at)

 4↵2
t

�2
. (50)

When Nt(at, ct) = 0, we must have N̄t(at, ct) = 0, thus (50) is satisfied as well.

Hence, Lemma 3 holds for all time slots t /2 BT . Since N̄t(a, c) is a step function for any fixed (a, c) pair and ↵t

monotonically increases in t, Lemma 3 hold for all t as well.

Lemma 3 indicates that the total number of times that a is pulled as a sub-optimal arm up to t is bounded by
O(log f(t)). Based on this result, we will then show that the total number of times that a is pulled as an optimal
arm grows linearly in t, as described in Lemma 4. Next, we utilize Lemma 4 to show the diminishing estimation
uncertainty in Lemma 6, which eventually leads to the finite regret bound over DT in Theorem 4.

Lemma 4 For any a, c 2 Ca and any time slot t 2 DT , we must have Nt(a, c) � t
16n � 8K↵2

t
�2 .

Proof. Assume t lies in the (k + 1)th time frame. Then, based on the definition of Nt(a, c), we must have

Nt(a, c) � NFk(a, c) = NFk(c)�
X

b:b 6=a

NFk(b, c) �
2k�1

2n
�
h
Bk +

X

b:b 6=a

N̄2k(b, c)
i

(51)

� 2k�1

2n
� 2k�1

4n
�K

4↵2
t

�2
� t

16n
� 4K↵

2
t

�2
, (52)

where (51) follows from the assumption that t /2 AT , and (52) follows from the assumption that t /2 CT and
Lemma 3.

Before we proceed, we introduce the following lemma.
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Lemma 5 Let {�1,�2, . . . ,�d} be a basis for Rd
, and � := [�1,�2, . . . ,�d]. Then, for any x 2 Rd

, kxk2  l, we

can express it as x = ��, where � 2 Rd
, k�k1  l

p
dp

�min(�|�)
.

Proof. Since

l
2 � kxk22 = �|�|�� � �min(�

|�)�|� � �min(�|�)k�k21
d

, (53)

we have k�k1  l
p
dp

�min(�|�)
.

Lemma 6 For any arm a 2 [K], any time slot t 2 DT , we must have �|
t (a)N

�1
t (a)�t(a)  �2

t
16n� 4K↵2

t
�2

, where

� := l
p
d/�0.

Proof. For any a 2 [K], c 2 C, let �̄(a, c) be the solution to the following equation

x(a, c) = Xt(a)�̄, �̄[c] = 0, for c /2 C̄a. (54)

Note that we use �̄[c] to denote the entry associated with context c in �̄.

Consider a time slot t 2 DT . Based on the definitions of the error events in Section 4, we note that all contexts in
C̄a must have appeared before time slot t. Thus, Xt(a) contains all columns in �̄a. Therefore, �̄(a, c) is simply
the coefficient vector if we express x(a, c) as a linear combination of the feature vectors in �̄a. The diversity
assumption in Assumption 1.5 guarantees that there exists a unique solution �̄(a, c) for each (a, c) pair. Besides,
Lemma 5 implies that k�̄(a, c)k1  l

p
dp

�min(�̄
|
a�̄a)

.

Then, according to Proposition 1, Lemma 4 and Lemma 5, we must have

�|
t (a)N

�1
t (a)�t(a)  �̄|(a, ct)N�1

t (a)�̄(a, ct) 
k�̄(a, ct)k21
t

16n � 4K↵2
t

�2

 �
2

t
16n � 4K↵2

t
�2

, (55)

where the first inequality in (55) follows from Proposition 1, the second inequality follows from Lemma 4, and the
last inequality follows from Lemma 5.

We then have the following bound on E[R(DT )].

Theorem 3 Let

t1 = max

⇢
384(2 + d)n(�2 +K)

�2
, 10

�
, t2 = max

⇢
t1 log t1, exp

✓
12l2s2

2 + d

◆�
.

Then, under Algorithm 1,

E[R(DT )]  t2M = O

✓
dn(�2 +K)

�2
log

dn(�2 +K)

�2

◆
.

Proof. For any t � t2, we have

t � exp

✓
12l2s2

2 + d

◆
� exp

 
(
p
2 +

p
3)2l2s2

2 + d

!
,

which implies that

ls 
p
2 + d(

p
3�

p
2)
p
log t. (56)

Meanwhile, since log f(t)  2 log t, combining with (56), we have

↵t := ls+
p
(2 + d) log f(t) 

p
3(2 + d) log t. (57)
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Since t2
log t2

� t1 log t1
log(t1 log t1)

� t1
2 , for any t � t2, we have

t

log t
� t1

2
=

192(2 + d)n(�2 +K)

�2
, (58)

i.e.,

t >
192(2 + d)n(�2 +K)

�2
log t � 64n(�2 +K)

�2
↵
2
t ,

where the last inequality is due to (57).

Thus,

t

16n
� 4↵2

t �
2

�2
+

4K↵
2
t

�2
. (59)

Rearranging the terms, we have

�2
>

4↵2
t �

2

t
16n � 4K↵2

t
�2

� (2↵t�̂t(a))
2
, 8a 2 [K], (60)

where the last inequality follows from Lemma 6.

Since � � 2↵t�̂t(a) for any t � t2, arm a will not be pulled as a suboptimal arm at any time t /2 BT , according
to Eqn. (48). Therefore, DT can only include time indices before t2. The expected regret over DT can thus be
bounded by Mt2.

C.5 Put Everything Together

After obtaining bounds on the expected regret over AT , BT , CT and DT , we are ready to prove our main result in
Theorem 1. We have

E[RT ]  E[R(AT )] + E[R(BT )] + E[R(CT )] + E[R(DT )]

 8MKdn
2 + (8n+ 1)M(2 + 2.5K) + t2M (61)

= O

✓
Kdn

2 +
dn(K + �

2)

�2
log

dn(K + �
2)

�2

◆
. (62)

We point out that the O

⇣
exp

⇣
12l2s2

2+d

⌘⌘
term from t2 is dropped in (62), since it mainly depends on the bounds

on k✓(a)k2 and kx(a, c)k2, and does not scale with the system dimensions d or K.

D Proof of Theorem 2

Before we proceed, we will first introduce the following lemma, which will play a critical role in the analysis
afterwards.

Lemma 7 Let {�1,�2, . . . ,�d} be a basis for Rd
, and � := [�1,�2, . . . ,�d]. Let B(�i, r) be an `2 ball centered

at �i with radius r <
p
�min(�|�)/d, i.e., B(�i, r) := {x 2 Rd | kx � �ik2  r}. Let �̂i be any vector lying in

B(�i, r) and �̂ := [�̂1, �̂2, . . . , �̂d]. Then, �min(�̂|�̂) � (
p
�min(�|�)�

p
dr)2.

Proof. Denote �i := �̂i � �i. Then, based on the definition of �̂i, we have k�ik2  r. Let � = [�1, �2, . . . , �d],
and �(j) be its jth row. Then, for any � 2 Rd,

k�̂�k2 = k�� + ��k2 � k��k2 � k��k2 �
p
�min(�|�)k�k2 �

sX

j

|�(j)�|2 (63)
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�
p
�min(�|�)k�k2 �

sX

j

k�(j)k22k�k
2
2 (64)

=
p
�min(�|�)k�k2 � k�k2

vuut
dX

i=1

�
|
i �i (65)

�
⇣p

�min(�|�)�
p
dr

⌘
k�k2, (66)

where (63) follows from (53), and (64) follows from the Cauchy-Schwartz inequality; Rearranging the terms
involved in the summation, we obtain (65), which can be further bounded by (66) due to the definition of B(�i, r).

Thus, the eigenvalues of �̂|�̂ are lower bounded by (
p
�min(�|�)�

p
dr)2 > 0.

Remark: Lemma 7 implies that {�̂i} are linearly independent, thus forming a valid basis for Rd.

D.1 Bound the Regret over AT

First, based on Hoeffding’s inequality, we have

P
h
NFk(C̄(i)

a )  p

2
· 2k�1

i
 exp

�
�p

22k�2
�
. (67)

Recall that M is the maximum per-step regret. Thus, by extending the proof in Appendix C.1, we have

E[R(AT )]  M(Kd)
1X

t=2

exp

✓
�p

2

8
t

◆
 8MKd

p2
. (68)

D.2 Bound the Regret over CT

According to Markov’s inequality, we have

P

Bk � p · 2k�1

4

�
 E[Bk] · 4

p · 2k�1
. (69)

Therefore, by following similar steps in Appendix C.3, we have

E[R(CT )] 
8M

p
E[BT ] 

8M(2 + 2.5K)

p
. (70)

D.3 Bound the Regret over DT

Before we proceed, we first state an adapted version of the celebrated elliptical potential lemma below, which will
play a key role to analysis afterwards.

Lemma 8 (Elliptical Potential (Lattimore and Szepesvári, 2019)) Let V0 be positive definite and Vt =
Vt�1 + xtx

|
t , where x1, . . . ,xn 2 Rd

is a sequence of vectors with kxtk2  l < 1 for all t. Then,

nX

t=1

⇣
1 ^ kxtk2V�1

t�1

⌘
 2 log

✓
detVn

detV0

◆
 2d log

✓
traceV0 + nl

2

d det1/d V0

◆
,

where x ^ y = min{x, y}.

Let Tt(a, C(i)
b ) be the time slots before t when arm a is pulled under a context lying in C(i)

b , and at the same time,
all estimates are good, i.e.,

Tt(a, C(i)
b ) := {⌧ | a⌧ = a, c⌧ 2 C(i)

b , ⌧ /2 Bt, 1  ⌧ < t}, (71)

and denote N̄t(a, C(i)
b ) := |T (a, C(i)

b )|.

We have the following lemma analogue to Lemma 3.
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Lemma 9 For any a, b 6= a, N̄t(a, C(i)
b )  8↵2

t
�2 d log

�
d+t
d

�
for all t.

Proof. First, following steps similar to the proof of Lemma 3, for any ⌧ 2 Tt(a, C(i)
b ), we have

�  r(a⇤⌧ , c⌧ )� r(a, c⌧ )  2↵⌧ �̂⌧ (a). (72)

Next, we consider the solution to the following optimization problem, denoted as �̃t(a):

min
�2Rnt+d

�|N�1
t (a)�, s.t. x(a, ct) = Xt(a)�, �[c] = 0 if c /2 C(i)

b [ C0. (73)

Compared with the optimization problem in (6), we have one additional constraint, i.e., we only restrict to the
contexts in C(i)

b and C0. The inclusion of the dummy contexts C0 ensures the existence of at least one feasible
solution to (73). Due to the additional constraint, the corresponding minimum value of the objective function
must increase, i.e.,

�̃t(a) :=
q
�̃|
t (a)N

�1
t (a)�̃t(a) � �̂t(a), 8t. (74)

Note that

r(a⇤⌧ , c⌧ )� r(a, c⌧ )  2ls  2↵⌧ , (75)

where the first inequality in (75) follows from Assumption 1.1 and the second inequality follows from the definition
of ↵t.

Combining (74)(75) with (72), we have

�  2↵⌧ (1 ^ �̃⌧ (a)) , ⌧ 2 Tt(a, Cb,i). (76)

Summing over all ⌧ 2 Tt(a, C(i)
b ), we have

N̄t(a, C(i)
b )� 

X

⌧2Tt(a,C(i)
b )

2↵⌧ (1 ^ �̃⌧ (a))

 2↵t

vuuutN̄t(a, C(i)
b )

 
X

⌧2Tt(a,C(i)
b )

(1 ^ �̃⌧ (a))
2

!
, (77)

where (77) follows from the monotonicity of ↵t and the Cauchy-Schewartz inequality.

Consider the sequence of feature vectors {x(a, c⌧ )}⌧2Tt(a,C(i)
b )

. Label the times indices in Tt(a, C(i)
b ) as ⌧1, ⌧2,

. . .. Let Ṽ0 = l
2I, Ṽ⌧i = Ṽ⌧i�1 + x(a, c⌧i)x(a, c⌧i)

|. Then, similar to (15), we have �̃⌧i(a) = kx(a, c⌧i)kṼ�1
⌧i�1

.
Following Lemma 8, we have

X

⌧2Tt(a,C(i)
b )

⇣
1 ^ (�̃⌧ (a))

2
⌘
 2d log

 
dl

2 + N̄t(a, C(i)
b )l2

dl2

!
 2d log

✓
d+ t

d

◆
. (78)

Plugging (78) into (77) and rearranging the terms, we have N̄t(a, C(i)
b )  8↵2

t
�2 d log

�
d+t
d

�
for all t.

Lemma 10 For any a 2 [K], any time slot t 2 DT , Nt(a, C̄(i)
a ) � tp

16 � 8K↵2
t

�2 d log
�
d+t
d

�
.

Proof. Assume t lies in the (k + 1)th time frame. Then, based on the definition of Nt(a, C̄(i)
a ), we have

Nt(a, C̄(i)
a ) � NFk(a, C̄(i)

a ) � NFk(C̄(i)
a )�

X

b:a 6=b

NFk(b, C̄(i)
a ) (79)
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� 2k�1

2
p�

2

4Bk +
X

b:a 6=b

N̄2k(b, C(i)
a )

3

5 (80)

� 2k�1

2
p� 2k�1

4
p�K

8↵2
t

�2
d log

✓
d+ t

d

◆
(81)

=
tp

16
� 8K↵

2
t

�2
d log

✓
d+ t

d

◆
, (82)

where (79) follows from the assumption that t /2 AT , (80) follows from the fact that C̄(i)
a ✓ C(i)

a thus NFk(b, C̄
(i)
a ) 

NFk(b, C
(i)
a ), and (81) follows from Lemma 9.

Lemma 11 For any arm a 2 [K], and any time slot t 2 DT , we have �̂t(a)2  4�2

tp
16�

8K↵2
t

�2 d log( d+t
d )

, where

� = l
p
d/�0({�a}).

Proof. Let

�̂
(i)
t (a) :=

P
⌧2Tt(a,C̄(i)

a )
x(a, c⌧ )

Nt(a, C̄(i)
a )

(83)

be the empirical average of the feature vectors over the time slots before t when arm a is pulled under a context
in C̄(i)

a . Since B(�(i)
a , r) is convex, �̂(i)

t (a) 2 B(�(i)
a , r). Thus, according to Lemma 7, {�̂(i)

t (a)}i form a valid basis
for Xa. Let �̂t(a) be the matrix whose columns are �̂

(i)
t (a). Then, we can always obtain a vector �̄, such that

x(a, ct) = �̂t(a)�̄. Besides,

k�̄k1  l
p
dp

�0({�a})�
p
dr

= 2�. (84)

Expanding �̂
(i)
t (a), we have

x(a, ct) =
dX

i=1

P
⌧2Tt(a,C̄(i)

a )
x(a, c⌧ )

Nt(a, C̄(i)
a )

�̄[i], (85)

i.e., x(a, ct) can be expressed as a linear combination of the feature vectors {x(a, c⌧ )} for ⌧ 2 [iTt(a, C̄(i)
a ), where

the corresponding coefficients are �̄[i]/Nt(a, C̄(i)
a ).

Thus, according to Proposition 1, we have

�̂t(a)
2 

dX

i=1

�̄[i]2

N(a, C̄(i)
a )


Pd

i=1 �̄[i]
2

tp
16 � 8K↵2

t
�2 d log

�
d+t
d

�  k�̄k21
tp
16 � 8K↵2

t
�2 d log

�
d+t
d

� (86)

 4�2

tp
16 � 8K↵2

t
�2 d log

�
d+t
d

� , (87)

where (86) follows from Lemma 10, and (87) follows from (84).

Theorem 4 Let

t3 = max

⇢
1728(2 + d)(�2 + 2Kd)

�2p
, 10

�
, t4 = max

⇢
t3 log

2
t3, exp

✓
12l2s2

2 + d

◆�
.

Then, under Algorithm 1,

E[R(DT )]  t4M = O

✓
d(�2 + 2Kd)

�2p
log2

✓
d(�2 + 2Kd)

�2p

◆◆
.
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Proof. First, we note that

t4

(log t4)2
� t3 log

2
t3

(log t3 + 2 log log t3)2
>

t3 log
2
t3

9 log2 t3
=

t3

9
. (88)

Thus, for any t � t4, we have

t

(log t)2
� t3

9
=

192(2 + d)(�2 + 2Kd)

�2p
, (89)

which is equivalent to

t � 192(2 + d)(�2 + 2Kd)

�2p
log2 t. (90)

According to (57), 3(2 + d) log t � ↵
2
t for t > t4. Thus, (90) can be further bounded as

t � 64↵2
t

�2p
(�2 + 2Kd) log t (91)

� 64↵2
t

�2p

✓
�
2 + 2Kd log

d+ t

d

◆
, (92)

where the last inequality follows from the fact that when d > 1, log t � log d+t
d . Rearranging the terms, we have

�2
>

4↵2
t �

2

tp
16 � 8K↵2

t
�2 d log

�
d+t
d

� � 4↵2
t �̂t(a)

2
, 8a 2 [K], (93)

where the last inequality follows from Lemma 11.

Thus, DT can only include time slots t < t4. The bound on E[R(DT )] then follows.

D.4 Put Everything Together

After obtaining bounds on the expected regret over AT , BT , CT and DT , we are ready to obtain the result in
Theorem 2. We have

E[RT ]  E[R(AT )] + E[R(BT )] + E[R(CT )] + E[R(DT )]

 8MKd

p2
+
�8
p
+ 1
�
M(2 + 2.5K) + t4M (94)

= O

✓
Kd

p2
+

d(2�2 +Kd)

�2p
log2

✓
d(2�2 +Kd)

�2p

◆◆
. (95)


