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A Additional Experiments

In this section, we present additional experiments on W-GAN architectures in practice.

(a) error vs. ✏ (b) error vs. ✏ (c) error vs.
p
p

Figure 4: Estimation error of W-GAN, when the discriminator is parametrized by a neural network. The
optimization is unstable for the sigmoid network in some cases.

We train three Wasserstein GANs: a one-hidden-layer ReLU network, a two-hidden-layer ReLU network and a
one-hidden-layer sigmoid network. We use gradient penalty to enforce the Lipschitz constraint on the discrimi-
nator. The results are shown in Figure 4.

As mentioned in Section 5, statistical properties of di↵erent subsets of Lipschitz functions may be very di↵erent.
Here, we also observe the di↵erence for networks with di↵erent activation functions. With ReLU activation, the
solution of Wasserstein GAN is very close to sample average, whose error is plotted in Figure 4 for comparison.
The Wasserstein GAN with sigmoid activation is slightly more robust than that with ReLU network. But still,
the estimation error grows as the dimension increases.

B Technical Lemmas

Definition 1. The f -divergence with a restricted function class V is defined as

DV(P||Q) = sup
V 2V

EPg(V (X))�EQf
?(g(V (X))).

Lemma 1 (Minimizer of DV). Assume f is convex and f(1) = 0, f and g satisfy Assumption 2, and the
discriminator class V satisfies Assumption 1. Then, for any distribution P and Q,

DV(P||Q) � 0.

In addition,

DV(P||P) = 0.

Proof. Since f
? is the convex conjugate function of f , we have

f
?(t) + f(x) = xt , t 2 @f(x).

In particular, since f(1) = 0, we have

f
?(t) = t , t 2 @f(1).

According to Assumption 2, g(0) 2 @f(1), thus

f
?(g(0)) = g(0).
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For any P and Q, let the discriminator V (x) be the function x 7! 0 (by setting all weights to zeros), then

EPg(V (X))�EQf
?(g(V (X))) = 0.

Hence, the supremum over V, namely DV , is nonnegative.

To show DV(P||P) = 0, it is su�cient to show that DV(P||P)  0. Notice that for all t, we have

f
?(t) = sup

x
xt� f(x)

� 1 · t� f(1)

= t.

Hence,

DV(P||P) = sup
V 2V

EPg(V (X))�EPf
?(g(V (X)))

 sup
V 2V

EPg(V (X))�EPg(V (X))

= 0,

which finishes the proof.

Lemma 2. For any distribution P1, P2 and P3, we have

|DV((1� ✏)P1 + ✏P2||P3)�DV(P1||P3)|  2✏Lg,

where Lg is the Lipschitz constant of g in [�,].

Proof. First, notice that |V (x)|  kwk1  . Expand DV , we have

|DV((1� ✏)P1 + ✏P2||P3)�DV(P1||P3)| =
���
✓
sup
V 2V

E(1�✏)P1+✏P2
g(V (X))�EP3f

?(g(V (X)))

◆
(23)

�

✓
sup
V 2V

EP1g(V (X))�EP3f
?(g(V (X)))

◆ ��� (24)

 sup
V 2V

��E(1�✏)P1+✏P2
g(V (X))�EP1g(V (X))

�� (25)

=✏ sup
V 2V

|EP2g(V (X))�EP1g(V (X))| (26)

✏ sup
V 2V

|EP2 [g(V (X))� g(0)]�EP1 [g(V (X))� g(0)]| (27)

✏

✓
sup
V 2V

|EP2 [g(V (X))� g(0)]|+ sup
V 2V

|EP1 [g(V (X))� g(0)]|

◆
(28)

✏

✓
sup
V 2V

EP2 |g(V (X))� g(0)|+ sup
V 2V

EP1 |g(V (X))� g(0)|

◆
(29)

✏Lg

✓
sup
V 2V

EP2 |V (X)|+ sup
V 2V

EP1 |V (X)|

◆
(30)

2✏Lg, (31)

where (25) uses the inequality |sup f1 � sup f2|  sup |f1 � f2|; (30) uses Lipschitz continuity of g on [�,]
(recall that g is twice continuously di↵erentiable).

Lemma 3. Consider the discriminator function class in Assumption 1. For any distribution P, the i.i.d. samples
X1, X2, · · ·Xn ⇠ P satisfy

sup
V 2V

�����
1

n

nX

i=1

g(V (Xi))�EPg(V (Xi))

�����  C

 
2Lg

r
p

n
+ 2Lg

r
log 1/�

n

!
,

with probability at least 1� � for some constant C, where Lg is the Lipschitz constant of g in [�,].
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Proof. One can first verify the function class g � V satisfies the condition of bounded di↵erence inequality, since

|g(x)� g(y)|  |g()� g(�)|  2Lg,

where we use the assumption on g that it is increasing and Lipschitz (since g has continuous second order
derivative). The rest of the proof aims for proving the Rademacher complexity of g � V is bounded by Lg

p p
n .

Since g is a Lipschitz function on [�,], by contraction lemma,

R(g(V))  LgR(V).

In addition, we have

R(V) = E⇠ sup
V 2V

�����
1

n

nX

i=1

⇠iV (Xi)

�����

= E⇠ sup
wj ,ui,bi

������
1

n

nX

i=1

⇠i

X

j�1

wj�(u
>

j Xi + bj)

������

= E⇠ sup
wj ,uj ,bj

������
1

n

X

j�1

wj

nX

i=1

⇠i�(u
>

j Xi + bj)

������

= E⇠ sup
u,b

�����
1

n

nX

i=1

⇠i�(u
>
Xi + b)

�����

. 

r
p

n
,

where ⇠i are independent Rademacher random variables. We use Cauchy inequality in the second last step and
the last inequality is because the Rademacher complexity of

�
�(u>

x+ b) : u 2 Rp
, b 2 R

 
is O(

p p
n ) (Gao et al.,

2019a).

Lemma 4. Suppose F = {f 2 H : kfkH  1} is the unit ball in the RKHS induced by a kernel k(·, ·) satisfying
supx k(x, x)  1 ( e.g. a Gaussian kernel). For any distribution P, the i.i.d. samples X1, X2, · · ·Xn ⇠ P satisfy

sup
f2F

�����
1

n

nX

i=1

f(Xi)�EPf(X)

����� 
2
p
n
+ 2

r
log 2/�

2n

with probability at least 1� �.

Proof. It is well known that the Rademacher complexity of F is upper bounded by 1
p
n
. By standard concentration

inequality we can obtain the above result.

Lemma 5. Consider the function class V defined in (20). For any distribution P, the i.i.d. samples
X1, X2, · · ·Xn ⇠ P satisfy

sup
V 2V

�����
1

n

nX

i=1

g(V (Xi))�EPg(V (x))

�����  CLg

 r
s log ep

s

n
+

r
log 1/�

n

!

with probability at least 1� �, where C is an absolute constant.

Proof. The proof follows the similar steps of Lemma 3, except that in the last step we have a better bound on
the function class F =

�
�(u>

x+ b) : u 2 Rp
, kuk0  2s, b 2 R

 
.

We decompose F = F1[F2[ · · ·[F( p
2s)

, where each Fj denotes a subset of F with distinct sparsity pattern. It is

not hard to see that each Fj has Rademacher complexity
q

2s
n . Thus for each fixed Fj , we can use Rademacher
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complexity to prove

sup
f2Fj

�����
1

n

nX

i=1

f(Xi)�EPf(X)

�����  C

0

@
r

s

n
+

s
log

� p
2s

�
/�

n

1

A

holds with probability at least 1� �/
� p
2s

�
. Using union bound over all Fj , with probability at least 1� �, we have

sup
f2F

�����
1

n

nX

i=1

f(Xi)�EPf(X)

�����  C

0

@
r

s

n
+

s
log

� p
2s

�
/�

n

1

A

 C

0

@
r

s

n
+

s
log

� ep
s

�2s
/�

n

1

A

 C

 r
s

n
+

r
2s log ep

s + log 1/�

n

!

 C
0

 r
2s log ep

s

n
+

r
log 1/�

n

!
,

which finishes the proof.

Lemma 6. Let � be the CDF of the standard Gaussian distribution. For any ⌘ 2 R, there uniquely exists a ⌧ ,
such that

�(⌧ � ⌘) = (1� ✏)�(⌧).

Moreover, (⌧(⌘)� ⌘)
⇣
⌘ � ��1

⇣
1

2(1�✏)

⌘⌘
> 0.

Proof. On the one hand,

lim
t!+1

�(t� ⌘)

�(t)
=

1

1� ✏
> 1.

On the other hand,

lim
t!�1

�(t� ⌘)

�(t)
= lim

t!�1

�(t� ⌘)

�(t)
= lim

t!�1

exp

✓
1

2
⌘(2t� ⌘)

◆
= 0.

Since both �(t � ⌘) and �(t) are continuous, ⌧ exists. Denote t0 = 1
⌘ log(1 � ✏) + 1

2⌘. It is easy to check that

⌧ 2 (t0,+1), in which the function �(t� ⌘)� (1� ✏)�(t) is monotonic. Thus ⌧ is unique.

Since ⌧ uniquely exists for every ⌘, ⌧(⌘) is a function of ⌘. Now we characterize the properties of ⌧(⌘).

Di↵erentiate w.r.t. ⌘ on both sides of

�(⌧ � ⌘) = (1� ✏)�(⌧),

we get

d

d⌘
(⌧(⌘)� ⌘) =

�(⌧ � ⌘)

�(⌧ � ⌘)� (1� ✏)�(⌧)
� 1

=
(1� ✏)�(⌘)

�(⌧ � ⌘)� (1� ✏)�(⌧)
,

where � is the density of the standard Gaussian distribution. It can be verified that the denominator is strictly
positive. Thus ⌧(⌘)� ⌘ is an increasing function w.r.t. ⌘.
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One can verify that

⌧ = ⌘ = ��1

✓
1

2(1� ✏)

◆

satisfies �(⌧ � ⌘) = (1 � ✏)�(⌧), hence a root of ⌧(⌘) � ⌘ = 0. Since ⌧(⌘) � ⌘ is increasing, the root is unique,
which concludes the proof.

C f-GAN

Theorem 1. Let ✓̂ be the estimator defined in (10), where f and g satisfy Assumption 2 and V satisfies As-
sumption 1. Assuming that  .

p p
n + ✏  c for some su�ciently small constant c, then with probability at least

1� �,

k✓̂n � ✓k .
r

p

n
_ ✏+

r
log 1/�

n
. (11)

Proof. We start with bounding the distance between N (✓, Ip) and N (✓̂, Ip) in terms of DV . With probability at
least 1� 2�, we have

DV(N (✓, Ip)||N (✓̂, Ip)) DV((1� ✏)N (✓, Ip) + ✏H||N (✓̂, Ip)) + 2✏Lg (32)

DV(Q̂n||N (✓̂, Ip)) + 2✏Lg + 2Lg

r
p

n
+ 2Lg

r
log 1/�

n
(33)

DV(Q̂n||N (✓, Ip)) + 2✏Lg + 2Lg

r
p

n
+ 2Lg

r
log 1/�

n
(34)

DV((1� ✏)N (✓, Ip) + ✏H||N (✓, Ip)) + 2✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n
(35)

DV(N (✓, Ip)||N (✓, Ip)) + 4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n
(36)

4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n
, (37)

where (32) and (36) use Lemma 2; (33) and (35) use Lemma 3; (34) follows by the fact that ✓̂ minimizes DV ;
(37) follows from Lemma 1. The bound holds for the supremum over V. In particular, it holds for any V 2 V .
Pick w1 = , u1 = u with kuk = 1 and b1 = �u

>
✓̂, and let

 ⇠(t) = Ez⇠N (0,1) [g (t�(z + ⇠))� f
?(g(t�(z)))] ,

then

 u>(✓̂�✓)() . 4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n

holds for every u and  with probability at least 1� 2�. Since g and f
? are twice continuously di↵erentiable,  00

is continuous in [0,] and | 
00
| can be bounded by some constant M(). A key observation is that  ⇠(t)+M()t2

is convex in [0,]. Thus, by subgradient inequality,

 ⇠() +M()2 �  
0

⇠(0),

where we recall  ⇠(0) = 0 since g(0) = f
?(g(0)). This is because by Frechel inequality

f(x) + f
?(y) = xy , y 2 @f(x)

and by Assumption 2 f(1) = 0 and g(0) 2 @f(1).
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We have

 
0

⇠(0) = g
0(0) (h(⇠)� h(0)) ,

where

h(⇠) = Ez⇠N (0,1)[�(z + ⇠)].

Since h is increasing and h
0(0) is strictly positive, there exist constants c > 0 and c

0
> 0, such that any ⇠

satisfying |h(⇠)� h(0)| < c
0 has |h(⇠)� h(0)| � c⇠.

Thus

k✓̂ � ✓k = sup
kuk=1

u
>(✓ � ✓̂)

 sup
kuk=1

1

c

⇣
h(u>(✓ � ✓̂))� h(0)

⌘

 sup
kuk=1

1

c · g0(0)
·  

0

u>(✓�✓̂)
(0)

 sup
kuk=1

1

c · g0(0)

⇣
 u>(✓�✓̂)() +M()2

⌘
/


1

c · g0(0)

 
4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n
+M()

!
,

where the first inequality holds when
p p

n + ✏ is su�ciently small such that
���h(u>(✓ � ✓̂))� h(0)

���  c
0. Note

that lim!0 M() = 0, since M() is monotonically decreasing w.r.t. . We can pick  su�ciently small such
that

M()  4✏Lg + 4Lg

r
p

n
.

Thus

k✓̂ � ✓k . ✏+

r
p

n
+

r
log 1/�

n

holds with probability at least 1� �.

D MMD GAN

Theorem 2. Let T be the RKHS unit ball induced by the Gaussian kernel with bandwidth �. For the estimator
defined in (14), with probability at least 1� �,

k✓̂n � ✓k .(2 + �
2)

1
2 (1 +

2

�2
)

p
4

 
1
p
n
_ ✏+

r
log 1/�

n

!
.

Proof. First, since every f 2 T has bounded range:

f(x) = hf, k(·, x)iH  kfk
H
kk(·, x)k

H
=
p
k(x, x)  1,

we can show that the contamination can only change the MMD distance by a constant factor of ✏:

MMD [(1� ✏)P✓ + ✏H,P] = sup
f2T

E(1�✏)P✓+✏Hf(X)�EPf(X)

 sup
f2T

EP✓f(X)�EPf(X) + ✏EHf(X)� ✏EP✓f(X)

 sup
f2T

(EP✓f(X)�EPf(X)) + ✏ sup
f2T

(EHf(X)�EP✓f(X))

 MMD [P✓,P] + 2✏,
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where P is an arbitrary distribution. The reverse direction also holds by a similar argument. Follow the similar
steps in Theorem 1, using Lemma 4, we can show

sup
f2T

EP✓f(X)�EP✓̂
f(X)  2✏+

4
p
n
+ 4

r
log(2/�)

2n
,

holds with probability at least 1��. Recall that the MMD between two distributions is the distance of the mean
embedding in a RKHS (Gretton et al., 2012)

sup
f2T

EP✓f(X)�EP✓̂
f(X) = kµP✓ � µP✓̂

kH.

When P✓ and P✓̂ are both Gaussian distributions, the right hand side can be computed in a closed form:

kµP✓ � µP✓̂
k
2
H

= Ex,x0⇠P✓ [k(x, x
0)]� 2Ex⇠P✓,x0⇠P✓̂

[k(x, x0)] +Ex,x0⇠P✓̂
[k(x, x0)]

= 2Ex⇠N(0,2Ip)


exp

✓
�
x
T
x

2�2

◆�
� 2Ex⇠N(✓�✓̂,2Ip)


exp

✓
�
x
T
x

2�2

◆�

=

s✓
�2

2 + �2

◆p✓
1� exp

✓
�

1

2(2 + �2)
k✓̂ � ✓k

2

◆◆
.

Assuming that 1
n and ✏ are su�ciently small thus kµP✓ � µP✓̂

kH is su�ciently small, such that

1� exp

✓
�

1

2(2 + �2)
k✓̂ � ✓k

2

◆


1

2
,

then by the inequality 1
2x  1� exp(�x),

1

2
·
k✓̂ � ✓k

2

2(2 + �2)
 1� exp

✓
�

1

2(2 + �2)
k✓̂ � ✓k

2

◆
.

Combining all of the above, we have proven that

k✓̂ � ✓k  2
p
2 + �2

s

1� exp

✓
�

1

2(2 + �2)
k✓̂ � ✓k2

◆

 2
p
2 + �2

✓
1 +

2

�2

◆ p
4

kµP✓̂
� µP✓kH

 2
p
2 + �2

✓
1 +

2

�2

◆ p
4

 
2✏+

4
p
n
+ 4

r
log(2/�)

2n

!
,

holds with probability at least 1� �.

Corollary 1. Let F be the RKHS unit ball induced by the Gaussian kernel with bandwidth � =
p
p, then with

probability at least 1� �,

k✓̂n � ✓k . p
p

 
1
p
n
_ ✏+

r
log 1/�

n

!
. (15)

Proof. We optimize the bound in Theorem 2 by choosing appropriate bandwidth � according to the dimension
p. Consider the coe�cient (2 + �

2)(1 + 2
�2 )

p
2 in Theorem 2. It achieves its minimum value at � =

p
p, which

turns out to be (2 + p)(1 + 2
p )

p
2  2ep . p. Plugging in the choice of � finishes the proof.

Theorem 3. Consider the population limit of ✓̂ given by MMD-GAN. For any � > 0, there always exists a
contaminated distribution Q such that

k✓̂ � ✓k & p
p✏. (16)
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Proof. Consider a Dirac contamination H = �✓̃.

✓̂ = minimize
⌘2Rp

MMD2[(1� ✏)P✓ + ✏�✓̃,P⌘]. (38)

Since MMD between mixture of Gaussian has a closed form solution, it is easy to show that (38) is equivalent to

minimize
⌘2Rp

�(1� ✏) exp

✓
�

k✓ � ⌘k
2

2(2 + �2)

◆
� ✏

✓
2 + �

2

1 + �2

◆ p
2

exp

 
�

k✓̃ � ⌘k
2

2(1 + �2)

!
.

Although we have a closed form solution for MMD, the objective function is still nonconvex w.r.t. ⌘. However, a
key observation is that the global minimizer must lie in the line segment between ✓ and ✓̃. If not, a projection onto
this line segment has strictly smaller objective value. This observation allows us to parametrize ⌘ = ✓+ t(✓̃� ✓),
where 0  t  1.

minimize
0t1

�(1� ✏) exp

 
�

k✓ � ✓̃k
2

2(2 + �2)
t
2

!
� ✏

✓
2 + �

2

1 + �2

◆ p
2

exp

 
�

k✓ � ✓̃k
2

2(1 + �2)
(t� 1)2

!
.

We first prove the following claim.

Claim: for any � > 0, as long as k✓ � ✓̃k
2 = p(1 + �

2) log 2+�2

1+�2 , then t
?
� ✏.

If the claim holds, then

k✓̂ � ✓k = k⌘
?
� ✓k

= t
?
k✓ � ✓̃k

� ✏

r
p(1 + �2) log

2 + �2

1 + �2

� ✏

p
p log 2,

where the last inequality is because (1 + �
2) log 2+�2

1+�2 � log 2, which finishes the proof. The rest of the proof is
dedicated to proving the claim.

It is su�cient to prove the gradient w.r.t. t is negative in [0, ✏], which is equivalent to prove

(1� ✏) exp

 
�

k✓ � ✓̃k
2

2(2 + �2)
t
2

!
k✓ � ✓̃k

2

2 + �2
t  ✏

✓
2 + �

2

1 + �2

◆ p
2

exp

 
�

k✓ � ✓̃k
2

2(1 + �2)
(t� 1)2

!
k✓ � ✓̃k

2

1 + �2
(1� t)

holds for any t  ✏. Taking logarithm on both sides, it is equivalent to show

log
✏

1� ✏
+ log

1� t

t
+
⇣
p

2
+ 1

⌘
log

2 + �
2

1 + �2
+

k✓ � ✓̃k
2

2(2 + �2)
t
2
�

k✓ � ✓̃k
2

2(1 + �2)
(t� 1)2 � 0 (39)

for any 0  t  ✏. It is easy to see that for t  ✏, we have

log
✏

1� ✏
+ log

1� t

t
� 0.

Further,

⇣
p

2
+ 1

⌘
log

2 + �
2

1 + �2
+

k✓ � ✓̃k
2

2(2 + �2)
t
2
�

k✓ � ✓̃k
2

2(1 + �2)
(t� 1)2

is a quadratic function w.r.t. t, and is monotonic increasing when 0  t  1. Thus its minimum value is achieved
at t = 0, which is

⇣
p

2
+ 1

⌘
log

2 + �
2

1 + �2
�

k✓ � ✓̃k
2

2(1 + �2)
=
⇣
p

2
+ 1

⌘
log

2 + �
2

1 + �2
�

p

2
log

2 + �
2

1 + �2

�0,

where the first inequality is because the specific choice of ✓̃ in the claim. Thus the left hand side of (39) is
positive, which finishes the proof.
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E Wasserstein GAN

Theorem 4. Consider W-GAN with p = 1. Let the contamination distribution H = �✓̃. Suppose ✏ is su�ciently

small, then |✓ � ✓̂| . ✏. Further, there exists a contamination distribution such that |✓ � ✓̂| & ✏.

Proof. Without loss of generality, we assume that ✓ = 0 and ✓̃ > 0. Recall that the Wasserstein distance with
Euclidean distance as ground cost in one dimension has a closed-form expression (Peyré et al., 2019) as follows:

minimize
⌘2R

Z +1

�1

����(t� ⌘)� (1� ✏)�(t)� ✏1t�✓̃

��� dt, (40)

where � is the CDF of the standard Gaussian distribution. It is clear that the minimizer ⌘? � 0.

Let L be the objective in (40) and let ⌘0 = ��1
⇣

1
2(1�✏)

⌘
. We show that if ⌘ > ⌘0 then dL

d⌘ > 0, hence the

solution ⌘?  ⌘0. By Lemma 6, if ⌘ > ⌘0, then ⌧(⌘) > ⌘, where ⌧(⌘) (uniquely) satisfies �(⌧ � ⌘) = (1� ✏)�(⌧).
Given a fixed ⌘ > ⌘0, we discuss two cases.

Case 1: ✓̃  ⌧(⌘)

Decompose (40) into two terms:

L =

Z ✓̃

�1

+

Z +1

✓̃

����(t� ⌘)� (1� ✏)�(t)� ✏1t�✓̃

��� dt

=

Z ✓̃

�1

(��(t� ⌘) + (1� ✏)�(t)) dt+

Z +1

✓̃
(��(t� ⌘) + (1� ✏)�(t) + ✏) dt.

Taking the derivative of the objective function w.r.t. ⌘, we get

dL

d⌘
=

Z ✓̃

�1

�(t� ⌘) dt+

Z +1

✓̃
�(t� ⌘) dt > 0,

where � is the density of the standard Gaussian distribution.

Case 2: ✓̃ � ⌧(⌘)

Decompose (40) into three terms:

L =

Z ⌧(⌘)

�1

+

Z ✓̃

⌧(⌘)
+

Z +1

✓̃

����(t� ⌘)� (1� ✏)�(t)� ✏1t�✓̃

��� dt

=

Z ⌧

�1

��(t� ⌘) + (1� ✏)�(t) dt+

Z ✓̃

⌧
�(t� ⌘)� (1� ✏)�(t) dt+

Z +1

✓̃
��(t� ⌘) + (1� ✏)�(t) + ✏ dt.

Taking the derivative of the objective function w.r.t. ⌘, we get

dL

d⌘
=

Z ⌧(⌘)

�1

�(t� ⌘) dt�

Z ✓̃

⌧(⌘)
�(t� ⌘) dt+

Z +1

✓̃
�(t� ⌘) dt

>

Z ⌧(⌘)�⌘

�1

�(t) dt�

Z +1

⌧(⌘)�⌘
�(t) dt

> 0,

where we recall that ⌧(⌘)� ⌘ > 0.

To sum up, in both cases dL
d⌘ is positive, thus any ⌘ > ⌘0 cannot be the solution to (40). Lastly, we roughly

estimate ⌘0.

lim
✏!0

⌘0

✏
= lim

✏!0

��1
⇣

1
2(1�✏)

⌘

✏
= lim

✏!0

1

�

⇣
��1

⇣
1

2(1�✏)

⌘⌘ ·
1

2
=

r
⇡

2
.
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Therefore, when ✏ is su�ciently small, ⌘? behaves like a linear function of ✏, i.e. |✓̂ � ✓|  ⌘0 . ✏.

For the lower bound, consider a contamination �✓̃ with ✓̃ ! +1. We prove that any ⌘ < ⌘0, cannot be the
solution either. Decompose L into three terms:

L =

Z ⌧(⌘)

�1

+

Z ✓̃

⌧(⌘)
+

Z +1

✓̃

����(t� ⌘)� (1� ✏)�(t)� ✏1t�✓̃

��� dt.

Taking the derivative of the objective function w.r.t. ⌘, we get

dL

d⌘
=

Z ⌧(⌘)

�1

�(t� ⌘) dt�

Z ✓̃

⌧(⌘)
�(t� ⌘) dt+

Z +1

✓̃
�(t� ⌘) dt

=

Z ⌧(⌘)�⌘

�1

�(t) dt�

Z 0

⌧(⌘)�⌘
�(t) dt�

Z ✓̃�⌘

0
�(t) dt+

Z +1

✓̃�⌘
�(t� ⌘) dt.

As ✓̃ goes to infinity, the forth term goes to zero, and the third term will become larger than the first term (recall
that ⌧(⌘)� ⌘ < 0 since ⌘ < ⌘0). Thus

lim
✓̃!+1

dL

d⌘
= �

Z 0

⌧(⌘)�⌘
�(t) dt < 0,

which indicates that any ⌘ < ⌘0 cannot be the solution, i.e. |✓̂ � ✓| � ⌘0 & ✏.

F Adaptation

Theorem 5. Assuming that  .
p p

n + ✏  c for some su�ciently small constant c, with probability at least
1� �, the estimator defined in (20) satisfies

k✓̂n � ✓k .
r

s log ep
s

n
_ ✏+

r
log 1/�

n
. (21)

Proof. The proof follows the same idea in the proof of Theorem 1. The only di↵erence is that in the sparse
setting, we can use Lemma 5 to get a better sample complexity.

First, by Lemma 5 and following similar steps to the proof of Theorem 1, we can show that

DV(N (✓, Ip),N (✓̂, Ip) . ✏Lg + Lg

r
s log ep

s

n
+ Lg

r
log 1/�

n

holds with probability at least 1� �. Next, we can prove the following improved bound of the Euclidean distance
in a similar way to Theorem 1:

k✓̂ � ✓k  sup
kuk02s

���uT
⇣
✓ � ✓̂

⌘���

 DV(N (✓, Ip),N (✓̂, Ip)

. ✏+

r
s log ep

s

n
+

r
log 1/�

n
,

whenever  and ✏+
q

s log ep
s

n is su�ciently small, which finishes the proof.

Theorem 6. Let ⇥ = {✓ 2 Rp : k✓k0  s} and P✓ = N (✓, Ip). There exist absolute constants c1 and c2, such

that for any estimator ✓̂,

sup
✓2⇥

sup
Q2Q✓

Q

 
k✓̂ � ✓k � c1

 r
s log ep/s

n
_ ✏

!!
� c2.
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Proof. When ✏ = 0, it is well known that there exist absolute constants c1 and c2 such that

inf
✓̂

sup
✓2⇥

P✓

✓
k✓̂ � ✓k

2
� c1 ·

s log ep/s

n

◆
� c2.

In addition, the modulus of continuity for sparse Gaussian mean estimation is

!(✏,⇥) = sup

⇢
k✓1 � ✓2k

2 : TV(N (✓1, Ip),N (✓2, Ip)) 
✏

1� ✏
, ✓1, ✓2 2 ⇥

�

& ✏
2
.

Thus, by Chen et al. (2018, Theorem 5.1)

inf
✓̂

sup
✓2⇥,Q

E(1�✏)P✓+✏Qk✓̂ � ✓k
2 &s log ep/s

n
_ !(✏,⇥)

&s log ep/s

n
_ ✏

2

Theorem 7. Let ✓̂n be the estimator defined in (22). Assuming that  .
p p

n + ✏  c for some su�ciently small
constant c, then with probability at least 1� �,

k✓̂n � ✓k .
r

p

n
_ ✏+

r
log 1/�

n
.

Proof. Follow in the similar argument as the proof of Theorem 1, we can show that

sup
V 2V

EN (✓,⌃)g(V (X))�E
N (✓̂,⌃̂)f

?(g(V (X))) . 4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n

holds with probability at least 1 � 2�. Pick w1 = , wj = 0 for j > 1, u1 = u
p

u>⌃u
, where kuk = 1, and

b1 = �u
>

1 ✓̂. We have

sup
kuk=1

Ex⇠N (✓,⌃)g

✓
�

✓
1

p

u>⌃u
u
>

⇣
x� ✓̂

⌘◆◆
�Ex⇠N (✓̂,⌃̂)f

?
� g

✓
�

✓
1

p

u>⌃u
u
>

⇣
x� ✓̂

⌘◆◆

= sup
kuk=1

Ez⇠N (0,1)g

✓
�

✓
z +

1
p

u>⌃u
(✓ � ✓̂)

◆◆
�Ez⇠N (0,1)f

?
� g

 
�

 p
u>⌃̂u

p

u>⌃u
z

!!

4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n

Define

 ⇠(t) = Ez⇠N (0,1)g

✓
t�

✓
z +

1
p

u>⌃u
(✓ � ✓̂)

◆◆
�Ez⇠N (0,1)f

?
� g

 
t�

 p
u>⌃̂u

p

u>⌃u
z

!!
.

Then with probability at least 1� 2�, we have

�u>(✓�✓̂)(t) . 4✏Lg + 4Lg

r
p

n
+ 4Lg

r
log 1/�

n
.

By subgradient inequality of  ⇠(t) +M()2, we have

�⇠() +M()2 � �
0

⇠(0),
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where M() is the bound on the second order derivative of � in [0,] and  ⇠(0) = 0 by a similar argument as

the proof of Theorem 1. Next, we upper bound k✓̂ � ✓k using �0⇠(0). A simple observation is that

Ez⇠N (0,1)�(z) = Ez⇠N (0,1)�

 p
u>⌃̂u

p

u>⌃u
z

!
=

1

2
.

Thus (recall that @f?(g(0)) = 1)

�
0

⇠(0) = Ez⇠N (0,1)g
0(0)�

✓
z +

1
p

u>⌃u
⇠

◆
�Ez⇠N (0,1)g

0(0)�

 p
u>⌃̂u

p

u>⌃u
z

!

= Ez⇠N (0,1)


g
0(0)�

✓
z +

1
p

u>⌃u
⇠

◆
�Ez⇠N (0,1)g

0(0)� (z)

�
,

which is exactly  0
⇠

p
u>⌃u

(0) defined in the proof of Theorem 1. Thus, following the same argument, we have

k✓̂ � ✓k
p

u>⌃u
. ✏+

r
p

n
+

r
log 1/�

n
,

whenever  .
p p

n + ✏ and
p p

n + ✏ is su�ciently small. Finally, notice that
p

u>⌃u is upper bounded by some
constant since ⌃ has bounded spectral norm, which finishes the proof.
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