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Abstract

We prove that the norm version of the adap-
tive stochastic gradient method (AdaGrad-
Norm) achieves a linear convergence rate for
a subset of either strongly convex functions or
non-convex functions that satisfy the Polyak-
 Lojasiewicz (PL) inequality. The paper in-
troduces the notion of Restricted Uniform
Inequality of Gradients (RUIG)—which is a
measure of the balanced-ness of the stochas-
tic gradient norms—to depict the landscape
of a function. RUIG plays a key role in prov-
ing the robustness of AdaGrad-Norm to its
hyper-parameter tuning in the stochastic set-
ting. On top of RUIG, we develop a two-stage
framework to prove the linear convergence of
AdaGrad-Norm without knowing the param-
eters of the objective functions. This frame-
work can likely be extended to other adaptive
stepsize algorithms. The numerical experi-
ments validate the theory and suggest future
directions for improvement.

1 Introduction

Consider the optimization problem of minimizing the
empirical risk:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x)

where fi(x) = f(x,Zi) : Rd → R, i = 1, 2, . . . and
{Z1, . . . ,Zn} are empirical samples drawn uniformly
from an unknown underlying distribution S. In this
paper, we focus on smooth functions F (x) that are
either strongly convex, or non-convex with Polyak-
 Lojasiewicz inequality (Lojasiewicz, 1963; Polyak,
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1963), which are fundamental to a variety of ma-
chine learning problems (Bottou and Cun, 2004; Bot-
tou et al., 2018).

Linear convergence results using stochastic gradient
descent (SGD) or accelerated SGD (Bottou, 1991;
Nash and Nocedal, 1991; Bertsekas, 1999; Nesterov,
2005; Haykin et al., 2005; Bubeck et al., 2015) to solve
the above problem have been established for this class
of functions: SGD with fixed stepsize guarantees linear
convergence to global minima (Allen-Zhu et al., 2018;
Zou et al., 2018a) or up to a radius around the opti-
mal solution (Moulines and Bach, 2011; Needell et al.,
2016); Improved algorithms—like SAG (Schmidt et al.,
2017), SVRG (Johnson and Zhang, 2013) and SAGA
(Defazio et al., 2014)—allow faster linear convergence
to the global minimizer. However, since the above
convergence requires that fixed stepsizes must meet a
certain threshold determined by unknown parameters
such as the level of stochastic noise, Lipschitz smooth-
ness constants, and strong convexity parameters, SGD
and variance reduced SGD are highly sensitive to step-
size tuning in practice. Thus, seeking an algorithm
that is robust to the choice of hyper-parameters is as
crucial as designing an algorithm that gives faster con-
vergence. The paper focuses on the robustness of the
linear convergence of adaptive stochastic gradient de-
scent to unknown hyperparameters.

Adaptive gradient descent methods introduced in
Duchi et al. (2011) and McMahan and Streeter (2010)
update the stepsize on the fly: They either adapt a vec-
tor of per-coefficient stepsizes (Kingma and Ba, 2014;
Lafond et al., 2017; Reddi et al., 2018a; Shah et al.,
2018; Zou et al., 2018b; Staib et al., 2019) or a single
stepsize depending on the norm of the gradient (Levy,
2017; Ward et al., 2018; Wu et al., 2018). The lat-
ter one, AdaGrad-Norm (Ward et al., 2018) has the
following updates:

b2j+1 = b2j + ‖∇fξj (xj)‖2;

xj+1 = xj −
η

bj+1
∇fξj (xj)

where ξj ∼ Unif{1, 2, . . . } such that Eξj
[
∇fξj (x)

]
=

∇F (x),∀x. AdaGrad-Norm has been shown to be ex-
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tremely resilient to the functions' parameters being
unknown (Levy, 2017; Levy et al., 2018; Ward et al.,
2018). In addition to this robustness, AdaGrad-Norm
enjoys O(1=

p
T) convergence rate for smooth non-

convex functions under the metric minj 2 [T ] kr F (x j )k2

(Ward et al., 2018; Li and Orabona, 2018). This
asymptotic convergence rate has also been proved for
general convex functions (Levy et al., 2018). A lin-
ear convergence rateO (exp(� �T )) 1 is possible for
strongly convex smooth functions using variants of
AdaGrad-Norm in which the �nal update uses a har-
monic sum of the queried gradients (Levy, 2017). Yet,
the analysis in Levy (2017) and Levy et al. (2018) re-
quires a priori information: a convex set with a known
diameter in which the global minimizer resides. The
analysis in Ward et al. (2018) considers the smooth
function under an assumption of a bounded stochastic
gradient norm that rules out the strongly convex cases,
while Li and Orabona (2018) only assumes bounded
variance but requires prior knowledge of smoothness.
Therefore, obtaining a robust linear convergence guar-
antee without prior knowledge of a convex set or the
smoothness parameters, remains an open question for
AdaGrad-Norm with strongly convex objectives.

In this paper, we establish robust linear convergence
guarantees for AdaGrad-Norm for strongly convex
functions without requiring knowledge of smoothness
or strong convexity parameters, nor the knowledge of
a convex set containing the minimizer, and we also ex-
tend our analysis to non-convex functions that satisfy
the Polyak- Lojasiewicz (PL) inequality. 2 Our analy-
sis does not follow the standard analysis|which as-
sumes the bounded variance ^� for E � j [kr f � j (x ) �
r F (x )k2] � �̂ 2; 8j; 8x in Levy et al. (2018); Levy
(2017); Ward et al. (2018); Li and Orabona (2018)|
and avoids likely sub-linear convergence results. The
set of functions for which we guarantee a robust linear
convergence rate using AdaGrad-Norm includes cer-
tain classes of neural networks. Among these many
applications, one function class of particular interest is
the over-parameterized neural network (Vaswani et al.,
2018; Zhang et al., 2016; Du et al., 2019; Zhou et al.,
2019; Bassily et al., 2018). Our contributions are not
only signi�cant for the algorithm in its own right, but
because of the generality of our two-stage framework
for the linear convergence proof, we believe it is easily
applicable to other adaptive algorithms such as Adam
(Kingma and Ba, 2014) and AMSGrad (Reddi et al.,
2018a).

1 � is the condition number
2Note that our results are for the norm version of Ada-

Grad (AdaGrad-Norm), which di�ers from the convergence
of the diagonal version of AdaGrad and its variants (with
momentum) (Balles and Hennig, 2018; Bernstein et al.,
2018; Mukkamala and Hein, 2017; Chen et al., 2018).

Notations k:k denotes the `2-norm. � is either the
� � strongly convex parameter in Assumption (A1a) or
the � � PL Inequality parameter in Assumption (A1b).
In the batch setting, L is the smallest Lipschitz con-
stant of r F (x ); in the stochastic setting, L , supi L i ,
where L i is the Lipschitz constant of r f i (x ). P i (�) is
the probability w.r.t. the i -th sample point.

1.1 Main Contributions

We propose Restricted Uniform Inequality of Gradi-
ents (RUIG) to measure the uniform lower bound of
stochastic gradients according tokx � x � k in a re-
stricted region. On top of RUIG, we show that the
evolution of the error can be divided into the follow-
ing two stages:

� Stage I If bt < �� � �L , kx t � x � k2 increases �rst
(but remains smaller than a certain upper bound),
and contracts after bt � �� , while bt continues grow-
ing until it exceeds �L ;

� Stage II bt > �L , AdaGrad-Norm converges lin-
early. bt increases during the optimization process
but it is always bounded by bmax .

We illustrate these stages in Figure 1 with� = 1.

Figure 1: Two-Stage Convergence of AdaGrad-Norm
with di�erent initial stepsizes: b0 < L versusb0 > L .
Left: Error kx t � x � k2 in logarithmic scale. Right:
Growth of bt to corresponding upper bounds (� bmax ).

We prove the non-asymptotic linear convergence of
AdaGrad-Norm in the strongly convex setting for
stochastic and batch updates; furthermore, we also ex-
tend our results for non-convex functions satisfying PL
inequality. Our main results are as follows (informal):

1. In the stochastic setting, Theorem 1 shows that
AdaGrad-Norm attains min i kx i � x � k2 � � with
high probability after T = O(log 1

� ) iterations for
b0 > �L ; and after T = O( 1

� +log 1
� ) iterations for

b0 � �L , assuming that F (x ) is � � strong convex,
L � smooth, almost stationary and with ( �; �;  )-
RUIG ( 8� > 0, for any �xed x 2 Rd, if kx �
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x � k2 > � , then 9(�;  ) s.t. P � j (kr f � j (x )k2 �
� kx � x � k2) � ; � j = 1 ; 2; : : : ).

2. In the batch setting, by using the full gradient,
the above probability  degrades to 1 and� = � 2.
Theorem 2 shows that mini kx i � x � k2 � � after
T = O(log 1

� ) iterations for b0 > � � + L
2 and after

T = O( 1
log(1+ C� ) +log 1

� ) iterations for b0 � � � + L
2 ,

if F (x) is strongly convex and smooth.

3. For non-convex functions with the PL inequal-
ity, we alternatively consider the convergence rate
of mini F (x i ) � F � . Theorem 3 illustrates that
min i F (x i ) � F � � � after T = O(log 1

� ) iterations
for b0 > �L ; and after T = O( 1

log(1+ C� ) + log 1
� )

iterations for b0 � �L .

We show that the convergence is robust starting from
any initialization of b0, without knowing the Lips-
chitz constant or strong convexity parameter a priori.
The robustness is shown in Table 1: when starting
from di�erent initial stepsizes, the convergence rates
of AdaGrad-Norm are only changed according to the
slope in Stage II and negligible gain from the added-on
sublinear part in Stage I. However, changing the initial
stepsize for SGD causes divergence.

2 Problem Setup

Consider the empirical risk F (x ) = 1
n

P n
i =1 f i (x ),

where f i (x ) = f (x ; Z i ) : Rd ! R; i = 1 ; 2; : : : ; n with
possibly in�nite n. In contrast to (stochastic) Gradient
Descent implemented with �xed stepsize, the update
rules of AdaGrad-Norm (see Algorithm 1) dynamically
incorporates the information from previous gradients
into the reciprocal of the learning rates.

Algorithm 1 AdaGrad-Norm

Input: Initialize � > 0; � > 0; T > 0; x 0 2 Rd; b0 2
R; j  0
while j < T do

Generate random variable � j and compute Gj

(stochastic: Gj = r f � j (x j ); batch: Gj = r F (x j ))
b2

j +1  b2
j + kGj k2

x j +1  x j � �
bj +1

Gj

j  j + 1

The algorithm follows the standard assumptions from
Bottou et al. (2018): for each j � 0, the random vec-
tors � j , j = 0 ; 1; 2; : : : ; are mutually independent, in-
dependent ofx j , and satisfy E � j [r f � j (x j )] = r F (x j ).
In the stochastic setting, it draws one sample at a time
and uses unbiased estimators (Gj = r f � j (x j )) of the
full gradients of F (x j ) to update. In the batch setting,
it uses full gradients (Gj = r F (x j )) instead.

In the convergence analysis, we consider the following
two equivalent updates of AdaGrad-Norm:

Square Form: bj +1 =
q

b2
j + kr f � j (x j )k2

Solution Form: bj +1 = bj +
kr f � j (x j )k2

bj + bj +1

Assumptions Throughout the paper, we use di�er-
ent combinations of the following assumptions to ana-
lyze the convergence rates in both the stochastic (with
Assumptions (A1a), (A2), (A3) and (A4)) and batch
(with Assumptions (A1a)/(A1b) and (A2)) settings.

(A1a) � � strongly convex: F (x ) is di�erentiable and
hr F (x ) � r F (y ); x � y i � � kx � yk2; 8x ; y .

(A1b) � � Polyak- Lojasiewicz (PL) Inequality:
kr F (x )k2 � 2� (F (x ) � F (x � )) ; 8x .

(A2) L � smooth: f i (x ) is L i � smooth, 8i : kr f i (x ) �
r f i (y )k � L i kx � yk; 8x ; y . Let L , supi L i ,
F (x ) and f f i (x )g are all L � smooth.

(A3) ( �; �;  )� Restricted Uniform Inequality of
Gradients (RUIG): 8� > 0, for any �xed x 2
D� , f x 2 Rd : kx � x � k2 > � g, 9(�;  ) s.t. � > 0,
 > 0, and P i (kr f i (x )k2 � � kx � x � k2) �  ,
8i = 1 ; 2; : : : .

(A4) convex and almost stationary: (Moulines
and Bach, 2011; Needell et al., 2016; Vaswani
et al., 2018) f i (x ) is convex, 8i . Let x � =
arg minx F (x ), then P i (r f i (x � ) = 0) = 1 ; 8i , i.e.
the probability of x � being a stationary point is
almost surely over all sample data points.

Assumption (A3) is a su�cient condition to guarantee
the linear convergence for AdaGrad-Norm with any
initialization of stepsize, but it is not necessary when
the initial stepsize is smaller than the unknown critical
values, i.e. 1

�L or 2
� ( � + L ) . Examples of systems with

this property are in Section 3.

Assumption (A4) is the key condition for linear con-
vergence ofkx � x � k2 in the stochastic approxima-
tion algorithms (Roux et al., 2012; Wu et al., 2018)
as it imposes a strong condition on each component
function at the point x � . However, this assumption is
much weaker than (Strong or Weak3) Growth Condi-
tion in Schmidt and Roux (2013); Vaswani et al. (2018)
where it is assumed that8x 2 Rd, maxi kr f i (x )k2 �
B kr F (x )k2 or E i kr f i (x )k2 < B (F (x ) � F � ), for
some constantB . We use the weaker assumption and

3The weak growth condition in Cevher and V~u (2019)
is weaker than that in Vaswani et al. (2018).
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Table 1: Summary of convergence rates of (stochastic) GD in strongly convex setting

Setting Algorithm Initial stepsize Iterations to achieve kx best � x � k2 � � 1

Stochastic GD
�xed stepsize � 0 = 1

2 sup i L i
O( sup i L i

� log � 0
� ) (Needell et al., 2016)

AdaGrad-Norm 2 � 0 = 1
b0

< 1
sup i L i

O( sup i L � 0

� log � 0
� )

AdaGrad-Norm arbitrary O( 1
� + sup i L i � 0

� log � 0
� )

Deterministic GD
�xed stepsize � 0 = 2

� + L O( ( � + L )2

4�L log � 0
� ) (Bubeck et al., 2015)

AdaGrad-Norm � 0 = 1
b0

< 2
� + L O( L � 0

� log � 0
� )

AdaGrad-Norm arbitrary O( 1
log(1+ C� ) + L � 0

� log � 0
� )

1 � 0 = kx 0 � x � k2 is the initial distance to the minimizer x � .
2 AdaGrad-Norm with � = 1.

characterize a better convergence rate for AdaGrad-
Norm over many optimization problems that satisfy
Assumption (A4). One particularly relevant applica-
tion is the over-parameterized neural network. Note
that Assumption (A4) implies that there exists almost
no noise at the solution, which may not be appropriate
for certain applications.

3 Restricted Uniform Inequality of
Gradients

In this section, we concretely explain our Assumption
(A3) in Section 2 and restate it as follows:

Assumption. (�; �;  )� Restricted Uniform In-
equality of Gradients (RUIG): 8� > 0, for any
�xed x 2 D � , f x 2 Rd : kx � x � k2 > � g, 9(�;  ) s.t.
� > 0,  > 0, and

P i (kr f i (x )k2 � � kx � x � k2) � ; 8i = 1 ; 2; : : :

The RUIG gives a lower bound on the probability  ,
with which the norm of any unbiased gradient esti-
mator kr f i (x )k is larger than the distance betweenx
and x � by a constant factor � , if x is in a restricted
region D� . This inequality depicts a set of functions
f F (x )g that preserve a at landscape around x � for
each component loss functionf i (x ) and characterize
the relatively sharper curvature beyond the region.

The constant tuple (�; �;  ) is determined by the dis-
tribution of the dataset. In general, � and  are neg-
atively correlated, i.e., � ! 0,  ! 1. The error �
could be independent of� and  . However, with large
� , the product � is more likely far away from zero. In
addition, if � 2 � � 1 � 0, then D� 2 � D � 1 � D 0 = Rd.

We provide some examples where we can directly com-
pute the lower bounds on� and  for a restricted re-
gion D� . (See Appendix E.2 for an empirical example.)

Note that these bounds depend on the datasetf a i g1
i =1 ,

hence they are data-dependent.

Example 1. Least Square Problem Suppose that

F (x ) =
1
n

nX

i =1

1
2

(ha i ; x i � yi )2 (1)

where each data pointa i consists ofd features andy =
Ax � . Suppose the entries of all the vectorsa i are i.i.d.
standard Gaussian random variables. In this case, for
any �xed x 2 Rd; kr f i (x )k2 = ka i k2ha i ; x � x � i 2.
Let �x , x � x �

kx � x � k and Y , ha i ; �x i ; 8i . Using the fact
that a linear combination of independent normal dis-
tributions is N (

P
j cj � j ;

P
j c2

j � 2
j ), Y � N (0; k �x k2),

i.e. Y � N (0; 1), then Y 2 � � 2(1). For example, from
the distribution table of � 2(1), 8i = 1 ; 2; : : : ; n,

P i

�
kr f i (x )k2 � 0:45 min

j
fk a j k2gkx � x � k2

�
� 0:5

In the above case,� � 0:45 minj fk a j k2g and  �
0:5 in RUIG, where ka j k2 � � 2(d). Then, from
the tail bound of � 2(d), we have P j (ka j k2 �
(1 � t)d) � 1 � e� dt 2 =8; 8t 2 (0; 1). In gen-
eral, � is not small|especially when the data is
fairly dense. Furthermore, from the chi-squared dis-
tribution, other possible tuples

�
�

min j fk a j k2 g ; 
�

are

f (0:015; 0:9); (0:1; 0:75); (1:3; 0:25); (2:7; 0:1)g. The in-
equality is for any �xed x, so D� is extended to D0.

Example 2. � � Strongly Convex Function

(i) Consider f f i (x )g � i � strongly convex (Defazio
et al., 2014) and x � = arg min x F (x ) such that
r f i (x � ) = 0. By strong convexity, kr f i (x )k2 �
(min j � j )2kx � x � k2; 8x ; 8i = 1 ; 2; : : : . In this
case, the uniform probability  degenerates to 1,
� = (min j � j )2, and x is not restricted to D� .
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This class includes sum of convex functions such
as squared and logistic loss with̀ 2-regularization.

(ii) A more general function class: f i (x ) 2 H 1 [ H 2,
where H 1 := f g(x ) : g(x ) is � i -strongly convex
and r g(x � ) = 0g and H 2 := f h(x ) : h(x ) is
not strongly convexg. f i (x ) draws from H 1 with
probability  and from H 2 with probability 1 �  ,
where 0<  < 1 and F (x ) = 1

n

P n
i =1 f i (x ).

Convergence Under RUIG Assumption Under
the RUIG assumption, the reciprocal of the step-size
(i.e. bt ) in AdaGrad-Norm increases quickly with high
probability in Stage I until it exceeds a threshold|for
example, �L |to reach Stage II.
Lemma 1. (Two-case high-probability lower
bound for bN in the stochastic setting) For
AdaGrad-Norm (Algorithm 1), 8� > 0, supposeF (x )
satis�es (�; �;  )� RUIG. For any �xed C, after N =l

C 2 � b2
0

�� + �


m
+ 1 steps, either bN > C or min j kx j �

x � k2 � � , with high probability 1� exp(� � 2

2(N (1 �  )+ � ) ).

Letting � 1 , exp(� � 2

2(N (1 �  )+ � ) ), the high probability
1 � � 1 is derived by applying the standard Bernstein
Inequality (Wainwright, 2019) for the Bernoulli dis-
tribution (see Appendix C). When N= logN ! 1 ,
let � =

p
4c (1 �  )N logN , then � 1 � N � c; On the

other hand, if N � logN , let � � (log N )t +0 :5, then
� 1 � exp(� (c0logN )2t ) ! 0 as N ! 1 . As long as
 � (log N )t +0 :5=N, the number of iterations �

 � N
in Lemma 1. In the two examples, can be chosen to
be at least 0.5, which leads to the high probability. In
Example 2(i),  = 1, every step is deterministic, the
probability degenerates to 1.

4 Linear Convergence Rates

Throughout this section, we mainly focus on the linear
convergence of AdaGrad-Norm (Algorithm 1) in both
stochastic and batch settings. We highlight the ro-
bustness of the convergence rates to hyper-parameter
tuning by applying our general two-stage framework.
Proofs of all theorems and lemmas are in Appendix.
Theorem 1. (Convergence in strongly convex
and stochastic setting) Consider the AdaGrad-
Norm Algorithm in the stochastic setting, suppose that
F (x ) is strongly convex, smooth, almost stationary
with x � = arg min x F (x ), and satis�es Restricted Uni-
form Inequality of Gradients (i.e. with Assumptions
(A1a), (A2), (A3), (A4)), then

Case 1: If b0 > �L , then kx T � x � k2 � � with high
probability 1 � � h after

T =
�

b0 + L � 0=�
�

log
� 0

�� h

�
+ 1

iterations, where � 0 = kx 0 � x � k2;

Case 2: If b0 � �L , then min i kx i � x � k2 � � with
high probability 1 � � h � exp(� � 2

2(N (1 �  )+ � ) ) after

T =
�

� 2L 2 � b2
0

��
+

�


+
L (� + � =� )

�
log

�
�� h

�
+ 1

iterations, where � = kx 0 � x � k2 + � 2(log � 2 L 2

b2
0

+ 1)

and N =
l

� 2 L 2 � b2
0

�� + �


m
.

Our theorem establishes not only the robustness to
hyper-parameters of the AdaGrad-Norm algorithm
but also, more importantly, the strong linear conver-
gence in the stochastic setting. To put the theorem in
context, we compare with the sub-linear convergence
rate of AdaGrad-Norm (i.e., T = O

�
1=�2

�
) in Levy

et al. (2018); Levy (2017); Ward et al. (2018); Li and
Orabona (2018). The key breakthrough in our the-
orem is that we use a novel assumption in high di-
mensional probability (c.f. RUIG) and utilize the nice
landscape property at the solution (c.f. Assumption
(A4)), instead of following the standard analysis of
SGD where it is often assumed that there is noise at
the solution, E � j [kr f � j (x ) � r F (x )k2] � �̂ 2; 8x .

The high probability guarantee can be veri�ed in
both stages: In Stage I, the high probability � 1 ,
exp(� � 2

2(N (1 �  )+ � ) ) is guaranteed by the high prob-
ability explanation in Lemma 1; In Stage II, � h is de-
rived from removing expectation in Ekx � x � k2 with
high probability 1 � � h by Markov Inequality. In gen-
eral, � h is appropriately chosen to be a small term.

Remark 1. The classic result (Needell et al., 2016)
for SGD in the strongly convex setting with � 2 ,
Ekr f i (x � )k2 = 0 is: with stepsize � t = 1

2 sup i L i
, af-

ter T = 2 sup i L i

� log 2� 0
� iterations, Ekx T � x � k2 � � .

Theorem 1 recovers the convergence rate up to a factor
di�erence of � 0 in multiplier and � h in the log term
with high probability, if b0 > supi L i . Hence, if the
initialization of x 0 is extremely bad, the convergence
is relatively slow. However, with tuning � = �(� 0),
the convergence rate is(c1

L
� + c2) log � 0

�� h
as expected.

See the numerical experiments of extreme initialization
of x 0 and corresponding tuning� in Appendix E.1.

In the batch setting, the full gradient at each step is
available. Now, the moving direction becomes noise-
less (i.e. Gj = r F (x j )), and the uniform probability
 in P i (kr f i (x )k2 � � kx � x � k2) �  degenerates to
1. Hence, the linear convergence rate is guaranteed in
Stage II instead of with high probability.

Theorem 2. (Convergence in strongly convex
and batch setting) Consider the AdaGrad-Norm Al-
gorithm in the batch setting, suppose thatF (x ) is
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L � smooth and � -strongly convex (i.e. with Assump-
tions (A1a) and (A2)), and x � = arg min x F (x ).
Then min0� i � T � 1 kx i � x � k2 � � after

Case 1: If b0 > � � + L
2 ,

T = 1 +
�

max
�

L (1 + � 0=� 2)
�

;
� + L

2�

�
log

� 0

�

�

iterations, where � 0 = kx 0 � x � k2;

Case 2: If b0 � � � + L
2 ,

T =1 +
�

max
�

L (1 + � =� 2)
�

;
� + L

2�

�
log

�
�

+
log(� 2(� + L )2=4b2

0)
log(1 + 4� 2�=(� + L)2)

�

iterations, where � = kx 0 � x � k2 + � 2(log ( � + L )2

4b2
0

+ 1) .

Remark 2. Let b0 > � + L
2 and � = �(

p
� 0), then

T = ( c1
L
� + c2) log � 0

� . Theorem 2 recovers the
classic result of GD with constant stepsize|whose
T = ( � + L )2

4�L log � 0
� |up to a constant factor di�er-

ence. Note that the order of � w.r.t � 0 is di�erent
from � = O(� 0) in Remark 1, but the e�ect of tuning
� in both settings for extreme case is similar.

For non-convex functions that satisfy the � � PL in-
equality, we extend the proof of linear convergence by
bounding F (x j ) � F � at each step in Theorem 3.

Theorem 3. (Convergence in non-convex batch
setting) Consider the AdaGrad-Norm Algorithm in
the batch setting, suppose thatF (x ) is L � smooth and
satis�es the � � PL inequality (i.e. with Assumptions
(A1b) and (A2)), and F � = inf x F (x ) > �1 , then

Case 1: If b0 > �L , min0� i � T � 1 F (x i ) � F � � � after

T =

&
b0 + 2

� (F (x 0) � F � )

��
log

F (x 0) � F �

�

'

+ 1

iterations;

Case 2: If b0 � �L , min0� i � T � 1 F (x i ) � F � � � after

T =
�

log(� 2L 2=b2
0)

log(1 + 2��= (�L )2)
+

�L + (2 =� )�
��

log
�
�

�
+ 1

iterations, where � = � 2 L
2 (1 + 2 log �L

b0
) + F (x 0) � F � .

Compared with the result in Ward et al. (2018),
our theory|using additional Assumption (A1b)|
signi�cantly improves from sublinear convergence rate
to linear convergence in Stage II. The Assumption
(A1b) is a generally well-known condition satis�ed
by a wide range of non-convex optimization prob-
lems including over-parameterized neural networks

(Soltanolkotabi et al., 2019; Kleinberg et al., 2018;
Li and Yuan, 2017; Vaswani et al., 2018; Wu et al.,
2019). For the convergence of AdaGrad-Norm in the
over-parameterized problem, Wu et al. (2019) proved
the same convergence rate as ours. The convergence
rate in Wu et al. (2019) was tailored to a multi-layer
network with two fully connected layers. Our theorem
is for general functions, however, with some additional
assumptions such as� � PL inequality.

5 Two-Stage Framework

We develop the following two-stage proof framework to
analyze the convergence rate starting from any point
x0 and any initial stepsize parameter b0 in both the
stochastic and batch settings. See the demonstration
of the two-stage behavior in Figure 1.

Stage I If we initialize with small b0|i.e. our initial
step size is large|we can get a better convergence in
Stage I than SGD with constant stepsize. In Stage
I, b0 grows to some given level, such asL and � + L

2 ,
which depends on di�erent settings, with deterministic
iterations unless the function achieves a global minimal
with tolerance � , i.e. kx � x � k2 � � . Details are in two-
case lemmas: Lemma 1 and 2. By Lemma 3,kx � x � k
is bounded by radius � = R(b0; kx 0 � x � k; C) before
bt grows up to C, instead of blowing up.

Stage II After Stage I, bt exceeds a certain threshold
deterministically in the batch setting and with high
probability in the stochastic setting. Conditioned on
this, the update is a contraction in the strongly convex
setting, i.e. kx j +1 � x � k2 � (1 � P (bmax ; �; L ))kx j �
x � k2, whereP is a function s.t. 0 < P(bmax ; �; L ) < 1.
bmax is bounded by Lemma 4.

5.1 Growth of bt in Stage I

We introduce some lemmas that are critical in the
proof of the growth of bt in Stage I in the section.
Note that in the stochastic setting, RUIG is a su�-
cient condition for bt 's growth in Stage I to achieve a
certain threshold with high probability, so the corre-
sponding two-case growth ofbt is provided in Lemma
1. Detailed proofs are provided in Appendix C.

Lemma 2. (Two-case lower bound for bN in the
batch setting) For �xed � 2 (0; 1) and C, consider
AdaGrad-Norm in the batch setting to minimize the
objective function F (x ), then

(a) If F (x ) is � � strongly convex, then after N =l
log( C 2 =b2

0 )
log(1+ � 2 �=C 2 )

m
+ 1 iterations, either bN > C

or min0� i � N � 1 kx i � x � k2 � � , where x � =
arg min F (x );
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Figure 2: Error in log scale of least square problem:F (x ) = 1
2n kAx � yk2. The left and central �gures show

error kx t � x � k2 in the noiseless case. The right �gure shows the lossF (x t ) in the noisy case.

(b) If F (x ) is a non-convex function satisfying� � PL

inequality, then after N =
l

log( C 2 =b2
0 )

log(1+2 ��=C 2 )

m
itera-

tions, either bN > C or min0� i � N � 1 F (x i )� F � �
� , where F � = inf x F (x ) > �1 .

Lemma 1 and 2 depict the two-stage growth ofbt ,
which is less and over certain thresholds, in stochastic
and batch settings, respectively.

Remark 3. In Lemma 1 and 2, we provide the worst
cases for the growth ofbt . However, bt actually grows
very quickly in practice, especially in the stochastic
setting. For Lemma 2, since log(1 + x) � x, for
x = � 2�=C 2 small, N � C 2

� 2 � log C 2

b0
.

Lemma 3. (Upper bound for kx J � 1 � x � k2) For
any �xed C and � , consider AdaGrad-Norm in ei-
ther stochastic or batch setting withGj (x � ) = 0 ; 8j
(stochastic: r f j (x � ) = 0; batch: r F (x � ) = 0) using
update rule b2

j +1 = b2
j + kGj k2. Suppose thatJ is the

�rst index s.t. bJ > C , then

kx J � 1 � x � k2 � k x 0 � x � k2 + � 2(log(C2=b2
0) + 1)

Lemma 3 gives an upper bound on the distance be-
tween the snapshot before contraction and the opti-
mal solution x � i.e. kx J � 1 � x � k. It guarantees that
the extreme distance tox � is always bounded during
AdaGrad-Norm updates, even without projection, or
additional assumption, for example, 8t; kx t � x � k2 �
D , for some constantD , in Adam (Kingma and Ba,
2014) and AMSGrad (Reddi et al., 2018b).

5.2 Upper Bounds on bt in Stage II

In Stage II, we focus on the maximum value that bt

can obtain during the optimization process.

Lemma 4. (Upper bound for bmax ) Consider
AdaGrad-Norm in either stochastic or batch setting
with Gj (x � ) = 0; 8j (stochastic: r f j (x � ) = 0; batch:
r F (x � ) = 0), for any �xed C � �L , if J is the �rst
index s.t. bJ > C , then bmax , maxl � 0 bJ + l is upper
bounded by

bmax � C + ( L=� )(kx 0 � x � k2 + � 2(log(C2=b2
0) + 1))

Lemma 4 indicates that even thoughb2
t increases due

to adding kGt k2 to b2
t at each iteration, it is always up-

per bounded bybmax . The asymptotic behavior of the
stepsize (i.e. �

bt
) is O( 1p

t
) at �rst, and it approaches to

a constant in the end asx t ! x � , which also explains
the auto-tuning nature of AdaGrad-Norm.

After bt exceeds certain thresholds like�L= 2, the fol-
lowing Lemma 5 shows that AdaGrad-Norm is indeed
a descent algorithm, i.e. kx t � x � k2 will not increase
subsequently, so we can takex T as x best in Stage II.

Lemma 5. (Descent lemma for kx t � x � k2) Once
bj > �L= 2, Algorithm 1 is a descent algorithm for the
error kx t � x � k2. Furthermore, if kx j � 1 � x � k2 � � ,
then 8l � 0, x j � 1+ l will stay in the ball centering at
x � with radius

p
� , i.e. kx j � 1+ l � x � k2 � � .

6 Numerical Experiments

In this section, we present numerical results to com-
pare AdaGrad-Norm and (stochastic) Gradient De-
scent methods with �xed stepsize � j = 1

b0
(GD const

or SGD const) or square-root decaying stepsize� j =
1

b0 +0 :2
p

j (GD sqrt or SGD sqrt), in the stochastic and
batch settings, respectively.

Consider the least square problem from (1). The
Lipschitz constants are L i = ka i k2 and �L =
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