A Stein Goodness-of-fit Test for Directional Distributions

Wenkai Xu
Gatsby Computational Neuroscience Unit
University of Tokyo
RIKEN Center for Brain Science

Takeru Matsuda
University of Tokyo
RIKEN Center for Brain Science

Abstract

In many fields, data appears in the form of direction (unit vector) and usual statistical procedures are not applicable to such directional data. In this study, we propose non-parametric goodness-of-fit testing procedures for general directional distributions based on kernel Stein discrepancy. Our method is based on Stein’s operator on spheres, which is derived by using Stokes’ theorem. Notably, the proposed method is applicable to distributions with an intractable normalization constant, which commonly appear in directional statistics. Experimental results demonstrate that the proposed methods control type-I error well and have larger power than existing tests, including the test based on the maximum mean discrepancy.

1 INTRODUCTION

In many applications, data is obtained in the form of directions and they are naturally identified with a vector on the unit hypersphere $S^{d-1} = \{ x \in \mathbb{R}^d | \|x\| = 1 \} \subset \mathbb{R}^d$. For example, wind direction is represented by a vector on the unit circle $S^1 \subset \mathbb{R}^2$ [Genton and Hering, 2007, Hering and Genton, 2010], while the protein structure is described by vectors on the unit sphere $S^2 \subset \mathbb{R}^3$ [Hamelryck et al., 2006]. In addition, usual multivariate data in \mathbb{R}^d is transformed to directional data by applying normalization, and such transformation is useful to analyze scale-invariant features. For example, [Banerjee et al., 2005] transformed text document and gene expression data into directional data and applied model-based clustering. Also, [Wang et al., 2017] showed that projecting face images to a unit hypersphere improves face recognition performance by convolutional neural networks. Statistical methods for such directional data have been widely studied in the field of directional statistics [Mardia and Jupp, 1999, Ley and Verdebout, 2017], and many statistical models of directional distributions have been proposed. One characteristic feature of directional distributions is that they often involve an intractable normalization constant. For example, the Fisher-Bingham distribution [Kent, 1982] is defined by an unnormalized density

$$p(x \mid A, b) \propto \exp(x^\top A x + b^\top x), \quad x \in S^{d-1},$$

and its normalization constant is not represented in closed form. Such intractable normalization constant makes statistical inferences for directional distributions computationally difficult. While directional data are becoming increasingly important in many applications such as bioinformatics, meteorology, chronobiology, and text/image analysis, to the best of our knowledge, goodness-of-fit testing for general directional distributions is not well established.

Several studies [Chwialkowski et al., 2016, Liu et al., 2016] have proposed kernel-based goodness-of-fit testing procedures for distributions on \mathbb{R}^d. These methods employ a model discrepancy measure called kernel Stein discrepancy (KSD), which is based on Stein’s method [Barbour and Chen, 2005, Chen et al., 2010] and reproducing kernel Hilbert space (RKHS) theory [Berlinet and Thomas, 2004, Muandet et al., 2017]. Notably, the KSD test is applicable to unnormalized models, because it utilizes only the derivative of the logarithm of the density like score matching [Hyvärinen, 2005]. This method is also applicable to model comparison [Jitkrittum et al., 2018, 2017, Kanagawa et al., 2019]. Recently, it has been extended to discrete distributions [Yang et al., 2018] and point processes [Yang et al., 2019]. On the other hand, applying Stein’s method in the context of manifold structure is previously studied in [Barp et al., 2018] focusing on numerical integration problems for scalar functions and in [Liu and Zhu, 2018] dealing with Bayesian inference on density functions.

In this study, we develop goodness-of-fit testing procedures for general directional distributions by extending kernel Stein discrepancy. Our contributions are
as follows. We derive Stein’s operator on the unit hypersphere S^{d-1} via Stokes’ theorem and introduce directional kernel Stein discrepancy (dKSD). We propose dKSD-based goodness-of-fit testing procedures for general directional distributions including unnormalized ones, which do not require to sample from the null distribution. We show that the proposed methods control type-I error well and have larger power than existing tests in simulation.

2 BACKGROUND

2.1 Directional Distributions

Several distributions have been proposed for describing directional data on the unit hypersphere $S^{d-1} = \{x \in \mathbb{R}^d \mid \|x\| = 1\}$. Here, we present two representative directional distributions: von Mises-Fisher and Fisher-Bingham. Figure 1 shows samples from these distributions on S^2. See [Mardia and Jupp, 1999] for more detail.

In this paper, we define the probability density of directional distributions by taking the uniform distribution on S^{d-1} as base measure. Namely, the density of the uniform distribution is $p(x) \equiv 1$.

The von Mises-Fisher (or von Mises when $d = 2$) distribution is a directional counterpart of the isotropic Gaussian distribution on \mathbb{R}^d. Its density is given by

$$p(x \mid \mu, \kappa) = \frac{1}{C_d(\kappa)} \exp(\kappa \mu^T x),$$

for $x \in S^{d-1}$, where $\mu \in S^{d-1}$, $\kappa > 0$,

$$C_d(\kappa) = \frac{\kappa^{d/2 - 1}}{(2\pi)^{d/2} I_{d/2 - 1}(\kappa)},$$

and I_v is the modified Bessel function of the first kind and order v. It is a unimodal distribution with peak at μ and degree of concentration specified by κ.

The Fisher-Bingham (or Kent) distribution is an extension of the von Mises-Fisher distribution [Kent, 1982]. Its density is given by

$$p(x \mid A, b) = \frac{1}{Z(A, b)} \exp(x^T Ax + b^T x),$$

for $x \in S^{d-1}$, where $A \in \mathbb{R}^{d \times d}$ is symmetric and $b \in \mathbb{R}^d$. The normalization constant $Z(A, b)$ is not represented in closed form in general.

The goodness-of-fit test for general directional distributions is not well established, to the best of our knowledge. Tests for specific distributions such as uniform [Figueiredo, 2007, García-Portugués and Verdebou, 2018, Mardia and Jupp, 1999] and von Mises-Fisher

![Figure 1: Samples from directional distributions on S^2](image)

(a) Uniform (b) von Mises-Fisher (c) Fisher-Bingham

...
Now, suppose we have samples x_1, \ldots, x_n from unknown density p on \mathbb{R}^d. Based on (4), estimates of KSD(p, q) are obtained by using U-statistics or V-statistics. These estimates can be used to test the hypothesis $H_0 : p = q$. The critical value is determined by bootstrap based on the theory of U-statistics or V-statistics. In this way, a general method of goodness-of-fit test on \mathbb{R}^d is obtained, which is applicable to unnormalized models as well.

3 STEIN’S OPERATOR ON S^{d-1}

In this section, we derive Stein’s operator for distributions on spheres. The derivation is based on Stokes’ theorem, which is a fundamental theorem in differential geometry.

3.1 Differential Forms and Stokes’ Theorem

The original derivation of Stein’s operator for distributions on \mathbb{R}^d was based on integration by parts, in which the boundary term vanishes due to the decaying property of the probability density. We need a different argument for spheres because its topology is different from \mathbb{R}^d. Specifically, differential forms and Stokes’ theorem are essential to discuss integration by parts on spheres. Here, we briefly review these concepts. See [Flanders, 1963, Spivak, 2018] for more detail and rigorous treatments.

Let M be a d-dimensional closed manifold and take its local coordinate system x^1, \ldots, x^d. We introduce symbols dx^1, \ldots, dx^d and an associative and anti-symmetric operation \wedge between them called the wedge product: $dx^i \wedge dx^j = -dx^j \wedge dx^i$. Note that $dx^i \wedge dx^i = 0$. Then, a p-form on M ($0 \leq p \leq d$) is defined as

$$\omega = \sum_{i_1, \ldots, i_p} f_{i_1, \ldots, i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p},$$

where the sum is taken over all p-tuples $\{i_1, \ldots, i_p\} \subset \{1, \ldots, d\}$ and each f_{i_1, \ldots, i_p} is a smooth function on M. The exterior derivative $d\omega$ of ω is defined as the $(p+1)$-form given by

$$d\omega = \sum_{i_1, \ldots, i_p} \frac{\partial f_{i_1, \ldots, i_p}}{\partial x^i} dx^i \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_p}.$$

For another coordinate system y^1, \ldots, y^d on M, the differential form is transformed by

$$dy^j = \sum_{i=1}^d \frac{\partial y^j}{\partial x^i} dx^i.$$

The integration of a d-form on a d-dimensional manifold is naturally defined like the usual integration on \mathbb{R}^d and invariant with respect to the coordinate selection. Correspondingly, the integration by parts formula on \mathbb{R}^d is generalized in the form of Stokes’ theorem.

Theorem 1 (Stokes’ theorem). Let ∂M be the boundary of M and ω be a $(d-1)$-form on M. Then,

$$\int_M d\omega = \int_{\partial M} \omega.$$

In particular, since ∂S^{d-1} is empty, we obtain the following.

Corollary 1. Let ω be a $(d-2)$-form on S^{d-1}. Then,

$$\int_{S^{d-1}} d\omega = 0. \quad (5)$$

Corollary 1 plays an important role in the derivation of Stein’s operator on S^{d-1}.

3.2 Spherical Coordinate System

In this paper, we use the spherical coordinate system $\theta = (\theta^1, \ldots, \theta^{d-1})$ on S^{d-1} defined by

$$\begin{pmatrix} \theta^1 \\ \theta^2 \\ \theta^3 \\ \vdots \\ \theta^{d-1} \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta^1 \\ \sin \theta^1 \cos \theta^2 \\ \sin \theta^1 \sin \theta^2 \cos \theta^3 \\ \vdots \\ \sin \theta^1 \cdots \sin \theta^{d-1} \end{pmatrix} \in S^{d-1}, \quad (6)$$

where $(\theta^1, \ldots, \theta^{d-2}) \in [0, \pi)^{d-2}$ and $\theta^{d-1} \in [0, 2\pi)$. In this coordinate system, the volume element [Flanders, 1963] is given by

$$dS = J(\theta^1, \ldots, \theta^{d-1}) d\theta^1 \wedge \cdots \wedge d\theta^{d-1},$$

where

$$J(\theta^1, \ldots, \theta^{d-1}) = \sin^{d-2}(\theta^1) \sin^{d-3}(\theta^2) \cdots \sin(\theta^{d-2}).$$

Note that $J(\theta^1) = 1$ when $d = 2$. Since the surface area of S^{d-1} is $S_{d-1} = 2\pi^{d/2}/\Gamma(d/2)$, the uniform distribution on S^{d-1} corresponds to the $(d-1)$-form η on S^{d-1} given by

$$\eta = \frac{1}{S_{d-1}} J(\theta^1, \ldots, \theta^{d-1}) d\theta^1 \wedge \cdots \wedge d\theta^{d-1}.$$

By using this, the directional distribution on S^{d-1} with density p is represented by the $(d-1)$-form ω given by

$$\omega = p\eta.$$

Thus, expectation of a function g with respect to p is obtained by

$$E_p[g] = \int_{S^{d-1}} g\omega = \frac{1}{S_{d-1}} \int_0^{2\pi} \cdots \int_0^\pi g(\theta)p(\theta) J(\theta) d\theta^1 \cdots d\theta^{d-1}.$$
3.3 Stein’s Operator on S^{d-1}

Now, we derive Stein’s operator on S^{d-1} in the spherical coordinate.

Theorem 2 (Stein’s operator on S^{d-1}). Let p be a smooth probability density on S^{d-1}. For smooth functions $f_1, \ldots, f_{d-1}: S^{d-1} \rightarrow \mathbb{R}$, define a function $A_pf : S^{d-1} \rightarrow \mathbb{R}$ by

$$A_pf = \sum_{i=1}^{d-1} \left(\frac{\partial f_i}{\partial \theta^i} + f_i \frac{\partial}{\partial \theta^i} \log(pJ) \right). \quad (7)$$

Then,

$$E_p[A_pf] = 0.$$

Proof. Let $d\theta^{(-i)} = d\theta^{i+1} \wedge \cdots \wedge d\theta^{d-1} \wedge d\theta^{i+1} \cdots \wedge d\theta^{d-1}$ be a $(d-2)$-form on S^{d-1} for $i = 1, \ldots, d-1$. Consider a $(d-2)$-form ω on S^{d-1} defined by

$$\omega = \sum_{i=1}^{d-1} f_i d\theta^{(-i)}.$$

Then,

$$d(pJ\omega) = \sum_{i=1}^{d-1} \left(f_i \frac{\partial}{\partial \theta^i} (pJ) + pJ \frac{\partial f_i}{\partial \theta^i} \right) d\theta^{i+1} \wedge \cdots \wedge d\theta^{d-1} = (pJ A_pf) d\theta^1 \wedge \cdots \wedge d\theta^{d-1}.$$

From Corollary 1, $E_p[A_pf] = \int_{S^{d-1}} d(pJ\omega) = 0$. \hfill \square

Although Stein’s operator on S^{d-1} has a similar form to the original Stein’s operator on \mathbb{R}^d in (3), its derivation is different from the original one due to the topology of spheres. Whereas the original derivation on \mathbb{R}^d required vanishing density at the boundary, our derivation on S^{d-1} is free from such assumption. Also note that, although we use the spherical coordinate system in this paper, we can derive Stein’s operator in other coordinate systems as well.

4 KERNEL STEIN DISCREPANCY ON S^{d-1}

Based on Stein’s operator on S^{d-1} in (7), we define the Stein discrepancy and its kernelized counterpart between two directional distributions via kernel mean embeddings, similar to [Chwialkowski et al., 2016, Liu et al., 2016].

Let \mathcal{H} be an RKHS on S^{d-1} with reproducing kernel k and let \mathcal{H}^{d-1} be its product. We define the directional kernel Stein discrepancy (dKSD) by

$$\text{dKSD}(p, q) = \sup_{\|f\|_{\mathcal{H}^{d-1}} \leq 1} E_p[A_qf] \quad (8)$$

Let x and \tilde{x} be points on S^{d-1} with spherical coordinates θ and $\tilde{\theta}$, respectively. We identify the kernel function $k(x, \tilde{x})$ with a function of θ and $\tilde{\theta}$ through (6) and take its derivatives. For example, when $d = 2$ and $k(x, \tilde{x}) = \exp(\kappa x^\top \tilde{x}) = \exp(\kappa \cos(\theta - \tilde{\theta}))$, we have

$$\frac{\partial^2}{\partial \theta^i \partial \tilde{\theta}^j} k(x, \tilde{x}) = \kappa (\cos(\theta - \tilde{\theta}) - \kappa \sin^2(\theta - \tilde{\theta})) \exp(\kappa \cos(\theta - \tilde{\theta})).$$

Let

$$h_q(x, \tilde{x}) = k(x, \tilde{x}) \sum_{i=1}^{d-1} \frac{\partial}{\partial \theta^i} \log(q(\tilde{\theta}) J(\tilde{\theta})) + \frac{\partial}{\partial \tilde{\theta}^i} \log(q(\tilde{\theta}) J(\tilde{\theta})) \quad (9)$$

Similarly to the original KSD (4), dKSD is rewritten as follows.

Theorem 3. Assume p and q are smooth densities on S^{d-1} and the reproducing kernel k of \mathcal{H} is a smooth function on $S^{d-1} \times S^{d-1}$. Then,

$$\text{dKSD}^2(p, q) = \mathbb{E}_{x, \tilde{x} \sim p} [h_q(x, \tilde{x})]. \quad (9)$$

Proof. Since Stein’s operator A_q is linear from (7), $E_p[A_qf]$ is a linear functional of $f \in \mathcal{H}^{d-1}$. Then, from Riesz representation theorem, there uniquely exists $q = (g_1, \ldots, g_{d-1}) \in \mathcal{H}^{d-1}$ such that $E_p[A_qf] = \langle f, g \rangle_{\mathcal{H}^{d-1}}$. By using the reproducing property of \mathcal{H}, we obtain

$$g_i(x) = \mathbb{E}_{\tilde{x} \sim p} \left[k(x, \tilde{x}) \frac{\partial}{\partial \tilde{\theta}^i} \log(q(\tilde{\theta}) J(\tilde{\theta})) + \frac{\partial}{\partial \tilde{\theta}^i} k(x, \tilde{x}) \right], \quad (10)$$

for $i = 1, \ldots, d-1$. Thus, the maximization in (8) is attained by $f = g/\|g\|_{\mathcal{H}^{d-1}}$ and $\text{dKSD}(p, q) = \|g\|_{\mathcal{H}^{d-1}}$. Therefore, after straightforward calculations, we obtain (9). \hfill \square

Importantly, the function h_q in (9) does not involve p. Therefore, we can estimate $\text{dKSD}^2(p, q)$ based on samples from p and apply it to goodness-of-fit testing.

From the following theorem, $\text{dKSD}^2(p, q)$ provides a proper discrepancy measure between directional distributions. Let

$$L_i(x) = \frac{\partial}{\partial \theta^i} \log \frac{q(\tilde{\theta})}{p(\theta)}, \quad i = 1, \ldots, d-1.$$
Theorem 4. Let p and q be smooth densities on \mathcal{S}^{d-1}. Assume the following: 1) The kernel k is C_0-universal [Carmeli et al., 2010, Definition 4.1]; 2) $E_{\tilde{x} \sim p} h_p(x, \tilde{x}) < \infty$; 3) $E_p ||L(x)||^2 < \infty$.

Then, $\text{dKSD}^2(p, q) \geq 0$ and $\text{dKSD}^2(p, q) = 0$ if and only if $p = q$.

Proof. From the proof of Theorem 3, we have $\text{dKSD}^2(p, q) = ||g||^2_H^2 \geq 0$, where $g = (g_1, \ldots, g_{d-1})$ is defined as (10). If $p = q$, then $\text{dKSD}^2(p, q) = 0$ from the definition (8) and Theorem 2. Conversely, if $\text{dKSD}^2(p, q) = 0$, then $g = 0$, namely $g_i = 0$ for $i = 1, \ldots, d - 1$. Then, from $\log(q/p) = \log(qJ) - \log(pJ)$, we obtain

$$E_{\tilde{x} \sim p} [L_i(x)k(x, \tilde{x})] = g_i(x) - E_{\tilde{x} \sim p} [A_pk(x, \tilde{x})] = 0,$$

for every x. Since k is C_0-universal, it implies $L_i = 0$ [Carmeli et al., 2010, Theorem 4.2b]. Therefore, $\log(q/p)$ is constant on \mathcal{S}^{d-1}. Since both p and q are densities on \mathcal{S}^{d-1} that integrate to one, we obtain $p = q$.

RKHS on \mathcal{S}^{d-1} To apply dKSD for goodness-of-fit testing, we need to choose an RKHS on \mathcal{S}^{d-1} that satisfies the conditions in Theorem 4. In this paper, we use the RKHS generated by the von-Mises Fisher kernel:

$$k(x, \tilde{x}) = \exp(\kappa x^\top \tilde{x}), \quad x, \tilde{x} \in \mathcal{S}^{d-1},$$

where $\kappa > 0$ is a concentration parameter that has a similar role to the band-width parameter in the Gaussian kernel. Since both x and \tilde{x} have unit norm, their inner product $x^\top \tilde{x}$ is equal to the cosine of their angular separation. We discuss the method to choose κ in Section 5.3. See [Gneiting et al., 2013] for general discussion on RKHS on \mathcal{S}^{d-1}.

5 GOODNESS-OF-FIT TESTING VIA dKSD

In this section, we develop goodness-of-fit testing procedures based on dKSD. Suppose $x_1, \ldots, x_n \sim p$ and we test $H_0 : p = q$ with significance level α.

5.1 Test with U-statistics

From (9), an unbiased estimate of $\text{dKSD}^2(p, q)$ is obtained in the form of U-statistics [Lee, 1990]:

$$\text{dKSD}^2_u(p, q) = \frac{1}{n(n-1)} \sum_{i \neq j} h_q(x_i, x_j). \quad (11)$$

Algorithm 1 dKSD test via U-statistics (dKSDu)

Input:
- samples $x_1, \ldots, x_n \sim p$
- null density q
- kernel function k
- test size α
- bootstrap sample size B

Objective: Test $H_0 : p = q$ versus $H_1 : p \neq q$.

Test procedure:
1. Compute the U-statistics $\text{dKSD}^2_u(p, q)$ via (11).
2. Compute $n \times n$ matrix H with $H_{ij} = h_q(x_i, x_j)$ and its eigenvalues $\hat{c}_1, \ldots, \hat{c}_n$.
3. for $t = 1 : B$
4. Sample $Z_1, \ldots, Z_n \sim \mathcal{N}(0, 1)$ independently.
5. Compute $S_i = \sum_{j=1}^n \hat{c}_j (Z_j^2 - 1)$.
6. end for
7. Determine the $(1 - \alpha)$-quantile $\gamma_{1-\alpha}$ of S_1, \ldots, S_B.

Output:
- Reject H_0 if $n \cdot \text{dKSD}^2_u(p, q) > \gamma_{1-\alpha}$; otherwise do not reject.

From the U-statistics theory [Lee, 1990], the asymptotic distribution of $\text{dKSD}^2_u(p, q)$ is explicitly obtained as follows. Here, \xrightarrow{d} denotes the convergence in distribution.

Theorem 5. Under the conditions in Theorem 4, the following statements hold.

1. Under $H_0 : p = q$, the asymptotic distribution of $\text{dKSD}^2_u(p, q)$ is

$$n \cdot \text{dKSD}^2_u(p, q) \xrightarrow{d} \sum_{j=1}^\infty c_j (Z_j^2 - 1), \quad (12)$$

where Z_j are i.i.d. standard Gaussian random variables and c_j are the eigenvalues of the kernel $h_q(x, \tilde{x})$ under $p(\tilde{x})$:

$$\int h_q(x, \tilde{x})\phi_j(\tilde{x})d\tilde{x} = c_j\phi_j(x), \quad \phi_j(x) \neq 0.$$

2. Under $H_1 : p \neq q$, the asymptotic distribution of $\text{dKSD}^2_u(p, q)$ is

$$\sqrt{n}(\text{dKSD}^2_u(p, q) - \text{dKSD}^2(p, q)) \xrightarrow{d} \mathcal{N}(0, \sigma^2_u),$$

where $\sigma^2_u = \text{Var}_{x \sim p}[E_{\tilde{x} \sim p}[h_q(x, \tilde{x})]] \neq 0$.

The proof is essentially the same with Theorem 4.1 of [Liu et al., 2016]. We employ Theorem 5 for goodness-of-fit. Namely, we generate bootstrap samples from an approximation of the null distribution (12) of $n \cdot \text{dKSD}^2_u(p, q)$ and compare their $(1 - \alpha)$ quantile with the realized value of $n \cdot \text{dKSD}^2_u(p, q)$. To approximate
the null, we truncate the infinite sum in (12) following [Gretton et al., 2009]: \(\sum_{j=1}^{n} \hat{\epsilon}_j (Z_j^2 - 1) \), where \(\hat{\epsilon}_j \) are eigenvalues of the \(n \times n \) matrix \(H \) with \(H_{ij} = h(x_i, x_j) \) and \(Z_1, \ldots, Z_n \) are independent standard Gaussian random variables. The testing procedure is outlined in Algorithm 1.

5.2 Wild Bootstrap Test with V-statistics

Here, we propose another testing procedure with wild bootstrap adapted from [Chwialkowski et al., 2016, Section 2.2], which is applicable even when observations \(x_1, \ldots, x_n \sim p \) are not independent. It is based on the V-statistics

\[
dKSD_v^2(p, q) = \frac{1}{n^2} \sum_{i,j} h_q(x_i, x_j). \tag{13}
\]

For each \(t = 1, \ldots, B \), we sample uniform i.i.d. variables \(U_1, \ldots, U_n \sim \text{U}[0, 1] \), let \(W_{0,t} = 1 \) and define

\[
W_{i,t} = 1_{\{U_i > a_t\}} W_{i-1,t} - 1_{\{U_i < a_t\}} W_{i-1,t}, \tag{14}
\]

for \(i = 1, \ldots, n \), where \(1_{\{\cdot\}} \) denotes the indicator function and \(a_t \) is the probability of sign change which is set to 0.5 when \(x_1, \ldots, x_n \) are independent.

Then, wild bootstrap samples are given by

\[
S_t = \frac{1}{n^2} \sum_{i,j} W_{i,t} W_{j,t} h(x_i, x_j), \quad t = 1, \ldots, n. \tag{15}
\]

We reject the null if the test statistic \(dKSD_v^2(p, q) \) in (13) exceeds the \((1 - \alpha)\) quantile of \(S_1, \ldots, S_B \). The testing procedure is outlined in Algorithm 2.

Algorithm 2 dKSD test via wild bootstrap (dKSDv)

Input:
- samples \(x_1, \ldots, x_n \sim p \)
- null density \(q \)
- kernel function \(k \)
- test size \(\alpha \)
- bootstrap sample size \(B \)

Objective: Test \(H_0 : p = q \) versus \(H_1 : p \neq q \).

Test procedure:
1. Compute the V-statistics \(dKSD_v^2(p, q) \) via (13).
2. for \(t = 1 : B \) do
3. Sample \(W_1, \ldots, W_n \) via (14).
4. Compute \(S_t \) by (15).
5. end for
6. Determine the \((1 - \alpha)\)-quantile \(\gamma_1 - \alpha \) of \(S_1, \ldots, S_B \).

Output:
- Reject \(H_0 \) if \(dKSD_v^2(p, q) > \gamma_1 - \alpha \); otherwise do not reject.

5.3 Kernel Choice

In kernel-based testing, the performance is sensitive to the choice of kernel parameters such as the bandwidth parameter in Gaussian kernels [Gretton et al., 2012]. For the proposed dKSD tests with the von Mises-Fisher kernel \(k(x, x') = \exp(\kappa x^\top x') \), the choice of concentration parameter \(\kappa \) is crucial. Namely, if \(\kappa \) is too small, the test magnifies any small difference between observed samples, and gives high type-I error. On the other hand, if \(\kappa \) is too large, the test fails to detect the discrepancy between two different distributions. Previous works [Chwialkowski et al., 2016, Gretton et al., 2012, Jitkrittum et al., 2018, 2016, 2017] proposed to choose the kernel parameter by maximizing the test power, which is defined as the probability of rejecting \(H_0 \) when it is false. Here, we provide a method for choosing the kernel parameter by maximizing the test power of dKSDu.

We employ an approximation formula for the test power of dKSDu under \(H_1 : p \neq q \). Since

\[
D := \sqrt{n} \frac{dKSD_u^2(p, q) - dKSD^2(p, q)}{\sigma_u} \overset{d}{\to} \mathcal{N}(0, 1)
\]

from Theorem 5, we have

\[
\Pr_{H_1}(n \cdot dKSD_v^2(p, q) > r) = \Pr_{H_1}\left(D > \frac{r}{\sqrt{n} \sigma_u} - \sqrt{n} \frac{dKSD_u^2(p, q)}{\sigma_u} \right) \approx 1 - \Phi\left(\frac{r}{\sqrt{n} \sigma_u} - \sqrt{n} \frac{dKSD^2(p, q)}{\sigma_u} \right),
\]

for large \(n \) and fixed \(r \), where \(\Phi \) denotes the cumulative distribution function of the standard Gaussian distribution and \(\sigma_u^2 \) is defined in Theorem 5. Following the argument in [Sutherland et al., 2016], we use the approximation

\[
\frac{r}{\sqrt{n} \sigma_u} - \sqrt{n} \frac{dKSD^2(p, q)}{\sigma_u} \approx -\sqrt{n} \frac{dKSD^2(p, q)}{\sigma_u}.
\]

Thus, to maximize the test power, we choose \(\kappa \) by

\[
\kappa^* = \arg \max_{\kappa} \frac{dKSD^2(p, q)}{\sigma_u}.
\]

In practice, we use part of the data to calculate \(dKSD_u^2(p, q)/(\hat{\sigma}_u + \lambda) \), where \(\hat{\sigma}_u \) is an unbiased estimate of \(\sigma_u \), and a regularization parameter \(\lambda > 0 \) is added for numerical stability. Then, we select \(\kappa^* \) by grid search and apply the dKSD tests to the rest of the data. In our experiments, this method had better testing performance than selecting the kernel parameter by the methods proposed in density estimation literature [García-Portugués et al., 2013b,a, Taylor, 2008].
5.4 Test with Maximum Mean Discrepancy

A proxy way to tackle the goodness-of-fit test on S^{d-1} is via the two-sample test with maximum mean discrepancy (MMD) [Gretton et al., 2007]. Namely, to test whether x_1, \ldots, x_n is from density q, we draw samples y_1, \ldots, y_m from q and determine whether x_1, \ldots, x_n and y_1, \ldots, y_m are from the same distribution. See [Gretton et al., 2007] for details. We compare the performance of the proposed dKSD tests with the MMD two-sample test in Section 6. Note that the MMD two-sample test requires to sample from the null distribution q, which can be computationally intensive for directional distributions especially in high dimension. On the other hand, the proposed dKSD tests do not need samples from the null.

6 EXPERIMENTAL RESULTS

Here, we validate the proposed dKSD tests by simulation. We employ the von Mises-Fisher kernel for both the dKSD tests and MMD two-sample test in Section 5.4. The bootstrap sample size is set to $B = 1000$. The significance level is set to $\alpha = 0.01$. In MMD two-sample test, we set $m = n$.

6.1 Circular Uniform Distribution

First, we consider the circular ($d = 2$) uniform distribution, for which several goodness-of-fit tests have been proposed such as Rayleigh test and Kuiper test [Mardia and Jupp, 1999]. See Supplementary Material for details of Rayleigh test and Kuiper test. We compare the proposed dKSD tests with these existing tests and MMD two-sample test. We repeated 600 trials to calculate rejection rates.

<table>
<thead>
<tr>
<th>n</th>
<th>Rayleigh</th>
<th>Kuiper</th>
<th>dKSDu</th>
<th>dKSDv</th>
<th>MMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.006</td>
<td>0.010</td>
<td>0.011</td>
<td>0.007</td>
<td>0.013</td>
</tr>
<tr>
<td>50</td>
<td>0.015</td>
<td>0.011</td>
<td>0.015</td>
<td>0.015</td>
<td>0.016</td>
</tr>
<tr>
<td>100</td>
<td>0.010</td>
<td>0.011</td>
<td>0.008</td>
<td>0.011</td>
<td>0.030</td>
</tr>
<tr>
<td>200</td>
<td>0.015</td>
<td>0.018</td>
<td>0.010</td>
<td>0.015</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Table 1: Type-I error of tests for the circular uniform distribution

<table>
<thead>
<tr>
<th>n</th>
<th>Rayleigh</th>
<th>Kuiper</th>
<th>dKSDu</th>
<th>dKSDv</th>
<th>MMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.138</td>
<td>0.128</td>
<td>0.560</td>
<td>0.338</td>
<td>0.133</td>
</tr>
<tr>
<td>50</td>
<td>0.308</td>
<td>0.267</td>
<td>0.750</td>
<td>0.898</td>
<td>0.317</td>
</tr>
<tr>
<td>100</td>
<td>0.712</td>
<td>0.667</td>
<td>0.820</td>
<td>1.0</td>
<td>0.583</td>
</tr>
<tr>
<td>200</td>
<td>0.980</td>
<td>0.962</td>
<td>0.900</td>
<td>1.0</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Table 2: Rejection rates for the circular uniform distribution under the von Mises distribution with $\kappa = 0.5$

\[p(x \mid A) \propto \exp(x^\top A x), \quad x \in S^{d-1}, \]

where $A \in \mathbb{R}^{d \times d}$ is symmetric. The normalization constant does not have closed form in general. We compare

6.2 von Mises-Fisher Distribution

Next, we consider the von Mises-Fisher distribution $\text{vMF}(\mu, \kappa)$ in (1). We compare the proposed dKSD tests with MMD two-sample test. We repeated 200 trials to calculate rejection rates.

We set the null and alternative distributions to $\text{vMF}(\mu_0, 1)$ and $\text{vMF}(\mu, 1 + \sigma)$, respectively, where $\mu_0 = (1, 0, \ldots, 0) \in S^{d-1}$, $\mu \in S^{d-1}$ and $\sigma \geq 0$. We generated samples from the von Mises-Fisher distribution by using the methods proposed in [Jakob, 2012]. Figure 2(a) plots the rejection rate under the null ($\mu = \mu_0, \sigma = 0$) with respect to n for $d = 3$. The type-I errors of dKSD tests are well controlled to the significance level $\alpha = 0.01$. Figure 2(b) plots the rejection rate with respect to n for $d = 3$, $\mu = \mu_0$ and $\sigma = 1$. Both dKSDu and dKSDv have larger power than MMD two-sample test. Figure 2(c) plots the rejection rate with respect to σ for $d = 3$, $n = 200$ and $\mu = \mu_0$. The dKSDu has the largest power and achieves almost 100% power around $\kappa = 0.3$. Figure 2(d) plots the rejection rate with respect to d for $n = 200$, $\mu = (1/\sqrt{d})\mathbf{1}_d$ and $\sigma = 0.5$, where $\mathbf{1}_d$ denotes the all one vector. Although the test power decreases for higher dimension, dKSD tests have larger power than MMD two-sample test in all dimensions.

6.3 Fisher-Bingham Distribution

Finally, we consider the Fisher-Bingham distribution $\text{FB}(A)$: the distribution in the Fisher-Bingham family that only includes second order terms:

\[p(x \mid A) \propto \exp(x^\top A x), \quad x \in S^{d-1}, \]

where $A \in \mathbb{R}^{d \times d}$ is symmetric. The normalization constant does not have closed form in general. We compare
A Stein Goodness-of-fit Test for Directional Distributions

(a) $d = 3$, $\mu = \mu_0$, $\sigma = 0$

(b) $d = 3$, $\mu = \mu_0$, $\sigma = 1$

(c) $d = 3$, $n = 200$, $\mu = \mu_0$

(d) $n = 200$, $\mu = \frac{1}{\sqrt{2}}$, $\sigma = \frac{1}{2}$

(e) $d = 3$, $\sigma = 0$

(f) $d = 3$, $\sigma = 1$

(g) $d = 3$, $n = 200$

(h) $n = 200$, $\sigma = 1$

Figure 2: Rejection rates for (a)-(d) von Mises-Fisher and (e)-(h) Bingham distributions

We repeated 200 trials to calculate rejection rates.

We set the null distribution to $\text{FB}(A)$ with

$$A_{ij} = \begin{cases} 2 & (i = j) \\ 1 & (i \neq j) \end{cases},$$

and the alternative distribution to $\text{FB}(A')$ with $A' = A + \sigma 1_{d,d}$, where $\sigma \geq 0$ and $1_{d,d}$ denotes the $d \times d$ matrix with all entries one. We generated samples from the Fisher-Bingham distribution via rejection sampling with angular central Gaussian proposals [Kent et al., 2013, Fallaize and Kypraios, 2016].

Figure 2(e) plots the rejection rate under the null ($\sigma = 0$) with respect to n for $d = 3$. The type-I errors of dKSD tests are approximately controlled to the significance level $\alpha = 0.01$. Figure 2(f) plots the rejection rate with respect to n for $d = 3$ and $\sigma = 1$. The dKSD tests have larger power and achieve almost 100% power around $n = 100$. Figure 2(g) plots the rejection rate with respect to σ for $n = 200$ and $d = 3$. Again, the dKSD tests have larger power and capture small perturbation. Figure 2(h) plots the rejection rate with respect to d for $n = 200$ and $\sigma = 1$. The dKSD tests attain almost 80% power even when the dimension is as large as 15, whereas the power of the MMD two-sample test is smaller than 20% for all dimensions.

Table 4 presents the computational time for $d = 3$. The dKSD test grows rapidly with the sample size n, because it requires to sample from the Bingham distribution.

<table>
<thead>
<tr>
<th>n</th>
<th>dKSDu</th>
<th>dKSDv</th>
<th>MMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.005</td>
<td>0.009</td>
<td>0.091</td>
</tr>
<tr>
<td>50</td>
<td>0.011</td>
<td>0.015</td>
<td>0.120</td>
</tr>
<tr>
<td>100</td>
<td>0.027</td>
<td>0.030</td>
<td>0.180</td>
</tr>
<tr>
<td>200</td>
<td>0.096</td>
<td>0.105</td>
<td>0.379</td>
</tr>
<tr>
<td>300</td>
<td>0.227</td>
<td>0.238</td>
<td>0.704</td>
</tr>
<tr>
<td>500</td>
<td>0.588</td>
<td>0.574</td>
<td>2.614</td>
</tr>
</tbody>
</table>

Table 4: Computational time (in seconds) for Bingham.

7 CONCLUSION

In this study, we developed goodness-of-fit testing procedures for general directional distributions including unnormalized ones, based on an extension of Stein’s operator and kernel Stein discrepancy. Experimental results demonstrated that the proposed methods control type-I errors well and attain larger power than existing tests, without sampling from the null distribution.

Although we focused on the unit hypersphere S^{d-1}, our derivation of Stein’s operator and kernel Stein discrepancy is applicable to general manifolds as well. It is an interesting future work to extend the proposed methods to general manifolds such as Stiefel manifolds and Grassmann manifolds.
Acknowledgement

TM was supported by JSPS KAKENHI Grant Number 19K20220. WX was supported by Gatsby Charitable Foundation.

References

