Supplementary Materials for "Auditing ML Models for Individual Bias and Unfairness"

A Proofs

A.1 Proof of Proposition in Section 2

Proof of Proposition 2.2. For the simplicity of notations, we drop the subscript of the loss function picked by the auditor, that is, we denote ℓ_h by ℓ . Furthermore, let

$$\ell_{\lambda}^{c}(z) = \ell_{\lambda}^{c}(x,y) \triangleq \sup_{x_{2} \in \mathcal{X}} \left\{ \ell(x_{2},y) - \lambda c((x,y),(x_{2},y)) \right\}.$$

By the duality result of Blanchet and Murthy (2019), for any $\varepsilon > 0$, we have

$$\sup_{P:W(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] = \inf_{\lambda\geq 0} \left\{ \lambda \varepsilon + \mathbb{E}_{Z\sim P_n}[\ell_{\lambda}^c(Z)] \right\}$$

and

$$\sup_{P:W_*(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] = \inf_{\lambda\geq 0} \left\{ \lambda\varepsilon + \mathbb{E}_{Z\sim P_n}[\ell_{\lambda}^{c_*}(Z)] \right\}$$

Let $\lambda_* \in \arg \min_{\lambda \ge 0} \{\lambda \varepsilon + \mathbb{E}_{Z \sim P_n}[\ell_{\lambda}^{c_*}(Z)]\}$. Then we have

$$\sup_{P:W(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] - \sup_{P:W_*(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)]$$
$$= \inf_{\lambda\geq0} \{\lambda\varepsilon + \mathbb{E}_{Z\sim P_n}[\ell_{\lambda}^c(Z)]\} - \lambda_*\varepsilon - \mathbb{E}_{Z\sim P_n}[\ell_{\lambda_*}^{c_*}(Z)]$$
$$\leq \lambda_*\varepsilon + \mathbb{E}_{Z\sim P_n}[\ell_{\lambda_*}^c(Z)] - \lambda_*\varepsilon - \mathbb{E}_{Z\sim P_n}[\ell_{\lambda_*}^{c_*}(Z)]$$
$$= \mathbb{E}_{Z\sim P_n}[\ell_{\lambda_*}^c(Z) - \ell_{\lambda_*}^{c_*}(Z)].$$

By Assumption A3, we have

$$\begin{split} \ell^{c}_{\lambda_{*}}(z) - \ell^{c_{*}}_{\lambda_{*}}(z) &= \sup_{x_{2} \in \mathcal{X}} \left\{ \ell(x_{2}, y) - \lambda_{*} c((x, y), (x_{2}, y)) \right\} - \sup_{x_{2} \in \mathcal{X}} \left\{ \ell(x_{2}, y) - \lambda_{*} c_{*}((x, y), (x_{2}, y)) \right\} \\ &\leq \lambda_{*} \sup_{x_{2} \in \mathcal{X}} |c((x, y), (x_{2}, y)) - c_{*}((x, y), (x_{2}, y))| \\ &\leq \lambda_{*} \eta D^{2}. \end{split}$$

Thus, we conclude that

$$\sup_{P:W(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] - \sup_{P:W_*(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] \leq \lambda_* \eta D^2.$$

Similarly, we have

$$\sup_{P:W_*(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] - \sup_{P:W(P,P_n)\leq\varepsilon} \mathbb{E}_{Z\sim P}[\ell(Z)] \leq \lambda_{\dagger} \eta D^2,$$

where $\lambda_{\dagger} \in \arg \min_{\lambda \geq 0} \{\lambda \varepsilon + \mathbb{E}_{Z \sim P_n}[\ell_{\lambda}^c(Z)]\}.$

Now, it suffices to show that $\lambda_* \leq \frac{L}{\sqrt{\varepsilon}}$ (and similarly $\lambda_{\dagger} \leq \frac{L}{\sqrt{\varepsilon}}$). By the optimality of λ_* ,

$$\lambda_* \varepsilon \leq \lambda_* \varepsilon + \mathbb{E}_{Z \sim P_n} [\sup_{x_2 \in \mathcal{X}} \{\ell(x_2, Y) - \lambda_* d_{x_*}^2(X, x_2)\} - \ell(X, Y)]$$

= $\lambda_* \varepsilon + \mathbb{E}_{Z \sim P_n} [\ell_{\lambda_*}^{c_*}(Z) - \ell(Z)]$
 $\leq \lambda \varepsilon + \mathbb{E}_{Z \sim P_n} [\ell_{\lambda}^{c_*}(Z) - \ell(Z)]$
= $\lambda \varepsilon + \mathbb{E}_{Z \sim P_n} [\sup_{x_2 \in \mathcal{X}} \{\ell(x_2, Y) - \ell(X, Y) - \lambda d_{x_*}^2(X, x_2)\}]$

for any $\lambda \geq 0$. By Assumption A2, the right-hand side is at most

$$\lambda_* \varepsilon \le \lambda \varepsilon + \mathbb{E}_{Z \sim P_n} [\sup_{x_2 \in \mathcal{X}} \{ Ld_{x_*}(X, x_2) - \lambda d_{x_*}^2(X, x_2) \}]$$

$$\le \lambda \varepsilon + \sup_{t \ge 0} \{ Lt - \lambda t^2 \}.$$

We minimize the right-hand side with respect to t (set $t = \frac{L}{2\lambda}$) and λ (set $\lambda = \frac{L}{2\sqrt{\varepsilon}}$) to obtain $\lambda_* \varepsilon \leq L\sqrt{\varepsilon}$, or equivalently $\lambda_* \leq \frac{L}{\sqrt{\varepsilon}}$.

A.2 Proofs of Theorems in Section 3

Proof of Theorem 3.1. We are working with Euclidean space $\mathbb{D} = \mathbb{R}^K$ and $\mathbb{E} = \mathbb{R}$.

By Theorem 3.4, $\psi : \mathbb{R}^K \to \mathbb{R}$ is Hadamard directionally differentiable at f_{\star} (tangentially to \mathbb{R}^K).

Since f_n is the empirical version of f_{\star} , by central limit theorem, we have

$$\sqrt{n}(f_n - f_\star) \xrightarrow{d} \mathcal{N}(0, \Sigma(f_\star)) \xrightarrow{d} Z$$

which is tight and supported in \mathbb{R}^K .

Via delta method (Theorem 3.3) with $\psi(\cdot)$ and the derivative formula given by Theorem 3.4, we conclude

$$\sqrt{n}\{\psi(f_n) - \psi(f_\star)\} \stackrel{d}{\to} \psi'_{f_\star}(Z) = \inf\{(\lambda + l)^\top Z : (\nu, \mu, \lambda) \in \Lambda\}.$$

Hence we complete the proof of Theorem 3.1.

The next theorem adapted from from Bonnans and Shapiro (2000) will turn out to be useful.

Theorem A.1 (Proposition 4.27 in Bonnans and Shapiro (2000)). A, \mathbb{B} and \mathbb{V} are Banach spaces. $f : \mathbb{A} \to \mathbb{R}$ is continuously differentiable. $G + \bullet : \mathbb{A} \times \mathbb{V} \to \mathbb{B}$ is continuously differentiable. \mathbb{K} is a closed convex subset of \mathbb{B} . Consider a class of problems

$$(\mathcal{P}_v)$$
: $\min_{x \in \mathbb{A}} f(x)$
subject to $G(x) + v \in \mathbb{K}$

parameterized by $v \in \mathbb{V}$. Let $\varphi(v)$ be the optimal value of the problem \mathcal{P}_v . Suppose that

- 1. for v = 0, the problem \mathcal{P}_0 is convex;
- 2. $\varphi(0)$ is finite;
- 3. $0 \in \inf\{G(\mathbb{A}) \mathbb{K}\}.$

Then the optimal value function $\varphi(v)$ is Hadamard directionally differentiable at v = 0. Furthermore,

$$\lim_{h' \to h, t \to 0^+} \frac{\varphi(th') - \varphi(0)}{t} = \sup\{\lambda^\top h : \lambda \in \Gamma\}$$

for any $h \in \mathbb{V}$, where Γ is the set of optimal solutions of the dual problem of \mathcal{P}_0 .

Proof of Theorem 3.4. We first prove the theorem without constraint $\langle D, \Pi \rangle = 0$. In order to employ Theorem A.1, the result of canonical perturbation, we introduce a parameter $t \in \mathbb{R}$, and the optimization problem $\psi(f_{\star})$ can be equivalently rewritten as

(P1):
$$\max_{t \in \mathbb{R}, \Pi \in \mathbb{R}^{K \times K}_{+}} l^{+}(\Pi^{+}\mathbf{1}_{K} - f_{\star}) + t$$

subject to $\langle C, \Pi \rangle \leq \varepsilon : \nu$
 $\Pi\mathbf{1}_{K} = f_{\star} : \lambda$
 $t = 0 : \eta$

where ν, λ, η are Lagrange multipliers.

The canonical perturbation of problem (P1) is then given by

$$(\mathcal{P}_{u,v,w}): \max_{\substack{t \in \mathbb{R}, \Pi \in \mathbb{R}^{K \times K}_{+}}} l^{\top} (\Pi^{\top} \mathbf{1}_{K} - f_{\star}) + t$$

subject to $\langle C, \Pi \rangle + u \leq \varepsilon$
 $\Pi \mathbf{1}_{K} + v = f_{\star}$
 $t + w = 0,$

which outputs its optimal value $\varphi(u, v, w)$. Thus φ is a function from \mathbb{R}^{K+2} to \mathbb{R} .

Let $\mathbb{A} = \mathbb{R}^{K \times K}_+ \times \mathbb{R}$, $\mathbb{B} = \mathbb{V} = \mathbb{R}^{K+2}$, and $\mathbb{K} = \{(x, f_{\star}^{\top}, 0)^{\top} : x \leq \varepsilon\} \subset \mathbb{R}^{K+2}$. Consider function $f : \mathbb{A} \to \mathbb{R}$ such that $(\Pi, t) \mapsto -\{l^{\top}(\Pi^{\top}\mathbf{1}_K - f_{\star}) + t\}$, and function $G : \mathbb{A} \to \mathbb{B}$ such that $(\Pi, t) \mapsto (\langle C, \Pi \rangle, (\Pi\mathbf{1}_K)^{\top}, t)^{\top}$.

Then, the class of maximization problems $(\mathcal{P}_{u,v,w})$ is equivalent to the following class of minimization problems

$$\begin{aligned} (\mathcal{Q}_{u,v,w}): & \min_{(\Pi,t)\in\mathbb{A}} & f(\Pi,t) \\ & \text{subject to} & G(\Pi,t) + (u,v^{\top},w)^{\top} \in \mathbb{K}. \end{aligned}$$

Denote the optimal value function of $\mathcal{Q}_{u,v,w}$ by $\phi(u,v,w)$.

(i) To check item 1 in Theorem A.1, we note that $\mathcal{Q}_{0,\mathbf{0}_{K},0}$ is a problem of linear programming, and thus a convex optimization problem.

(ii) Item 2 in Theorem A.1 is guaranteed by

$$\varepsilon \ge 0 = \min\{\langle C, \Pi \rangle : \Pi \in \mathbb{R}^{K \times K}_+, \Pi \mathbf{1}_K = f_\star\},\$$

which implies that $\mathcal{Q}_{0,\mathbf{0}_{K},0}$ has a solution, and thus $\phi(0,\mathbf{0}_{K},0)$ is finite.

(iii) $f_{\star} \in \mathbb{R}_{+}^{K}$ ensures that item 3 in Theorem A.1 holds.

Now applying Theorem A.1 to $(\mathcal{Q}_{u,v,w})$, we conclude that ϕ is Hadamard directionally differentiable at the origin. Note that $\varphi = -\phi$, we can further conclude that φ is also Hadamard directionally differentiable at the origin, and

$$\lim_{\substack{\xi' \to \xi \\ t \to 0^+}} \frac{\varphi(0, t\xi') - \varphi(0, \mathbf{0}_{K+1})}{t} = -\lim_{\substack{\xi' \to \xi \\ t \to 0^+}} \frac{\phi(0, t\xi') - \phi(0, \mathbf{0}_{K+1})}{t} = -\sup\{\langle (\lambda^\top, w)^\top, \xi \rangle : (\nu, \lambda, w) \in \Gamma\},$$

where Γ is the set of optimal solutions of the dual problem of (P1).

Furthermore, one can check that $\Gamma = \Lambda \times \{-1\}$, where Λ is the set of optimal solutions of the dual problem of $\psi(f_{\star})$.

Specifically, the dual problem of $\psi(f_{\star})$ is given by

$$\begin{array}{ll} \min_{\nu \ge 0, \lambda_1, \cdots, \lambda_K} & -\varepsilon \nu - \sum_{k=1}^K f_\star^{(k)} \lambda_k \\ \text{subject to} & c_{ij} \nu + \lambda_i \le -l_j, \text{ for } 1 \le i, j \le K. \end{array}$$

Thus, we have

$$\Lambda = \underset{\nu, \geq 0, \lambda \in \mathbb{R}^{K}}{\arg \max} \left\{ \varepsilon \nu + f_{\star}^{\top} \lambda : c_{ij} \nu + \lambda_{i} \leq -l_{j}, 1 \leq i, j \leq K \right\}$$

Note that $\psi(f) = \varphi(0, f_{\star} - f, l^{\top}(f - f_{\star}))$, we conclude that $\psi(f)$ is Hadamard directionally differentiable at f_{\star} , and the derivative formula is given by

$$\begin{split} \psi_{f_{\star}}'(h) &= \lim_{\substack{h' \to h \\ t \to 0^{+}}} \frac{\psi(f_{\star} + th') - \psi(f_{\star})}{t} \\ &= \lim_{\substack{h' \to h \\ t \to 0^{+}}} \frac{\varphi(0, -th', tl^{\top}h') - \varphi(0, \mathbf{0}_{K}, 0)}{t} \\ &= \lim_{\substack{k' \to 0 \\ t \to 0^{+}}} \frac{\varphi(0, t\xi') - \varphi(0, \mathbf{0}_{K+1})}{t} \qquad \left[\text{where } \xi = (-h^{\top}, l^{\top}h)^{\top} \right] \\ &= -\sup\{\langle (\lambda^{\top}, w)^{\top}, \xi \rangle : (\nu, \lambda, w) \in \Gamma\} \\ &= -\sup\{\langle (\lambda^{\top}, -1)^{\top}, (-h^{\top}, l^{\top}h)^{\top} \rangle : (\nu, \lambda) \in \Lambda\} \\ &= -\sup\{-\langle \lambda + l, h \rangle : (\nu, \lambda) \in \Lambda\} \\ &= \inf\{\langle \lambda + l, h \rangle : (\nu, \lambda) \in \Lambda\}. \end{split}$$

For the case with constraint $\langle D, \Pi \rangle = 0$, note that the dual problem of $\psi(f_*)$ changes slightly into

$$\min_{\substack{\nu,\mu \ge 0,\lambda_1,\cdots,\lambda_K}} -\varepsilon\nu - \sum_{k=1}^K f_\star^{(k)} \lambda_k$$
subject to
$$c_{ij}\nu + d_{ij}\mu + \lambda_i \le -l_j, \text{ for } 1 \le i, j \le K,$$

and

$$\Lambda = \underset{\nu,\mu\geq 0,\lambda\in\mathbb{R}^{K}}{\arg\max} \{\varepsilon\nu + f_{\star}^{\top}\lambda : c_{ij}\nu + d_{ij}\mu + \lambda_{i} \leq -l_{j}, 1 \leq i, j \leq K\}.$$

Hence we complete the proof of Theorem 3.4.

A.3 Proofs of Theorems in Section 4

The following lemma adapted from Hong and Li (2018) provides a general recipe for the consistency of our two bootstrap strategies.

Lemma A.2 (Theorem 3.1 in Hong and Li (2018)). Suppose \mathbb{D} and \mathbb{E} are Banach Spaces and $\phi : \mathbb{D}_{\phi} \subseteq \mathbb{D} \mapsto \mathbb{E}$ is Hadamard directionally differentiable at θ_0 tangentially to \mathbb{D}_0 . Let $\hat{\theta}_n : \{X_i\}_{i=1}^n \mapsto \mathbb{D}_{\phi}$ be such that for some $r_n \uparrow \infty, r_n \left\{ \hat{\theta}_n - \theta_0 \right\} \rightsquigarrow \mathbb{G}_0$ in \mathbb{D} , where \mathbb{G}_0 is tight and its support is included in \mathbb{D}_0 . Then

$$r_n\left(\phi\left(\hat{\theta}_n\right)-\phi\left(\theta_0\right)\right)\rightsquigarrow\phi'_{\theta_0}\left(\mathbb{G}_0\right).$$

Let $\mathbb{Z}_n^* \rightsquigarrow \mathbb{G}_0$ satisfy regularity of measurability ¹. Then for $\epsilon_n \to 0, r_n \epsilon_n \to \infty$,

$$\hat{\phi}'_{n}\left(\mathbb{Z}_{n}^{*}\right) \stackrel{\text{def}}{=} \frac{\phi\left(\hat{\theta}_{n} + \epsilon_{n}\mathbb{Z}_{n}^{*}\right) - \phi\left(\hat{\theta}_{n}\right)}{\epsilon_{n}} \rightsquigarrow \phi'_{\theta_{0}}\left(\mathbb{G}_{0}\right).$$

Proof of Theorem 4.1. Hereafter, \mathbb{G}_0 refers to $\mathcal{N}(f_\star, \Sigma(f_\star))$. By central limit theorem, we have

$$\sqrt{n}\{f_n - f_\star\} \rightsquigarrow \mathbb{G}_0 \text{ and } \sqrt{m}\{f_{n,m}^* - f_\star\} \rightsquigarrow \mathbb{G}_0.$$

Since $m/n \to 0$, we have

$$\sqrt{m}\{f_{n,m}^* - f_n\} = \sqrt{m}\{f_{n,m}^* - f_\star\} - \sqrt{\frac{m}{n}}\sqrt{n}\{f_n - f_\star\} \rightsquigarrow \mathbb{G}_0$$

 $^{{}^{1}\}mathbb{Z}_{n}^{*}$ is asymptotically measurable jointly in the data and the bootstrap weights; $g(\mathbb{Z}_{n}^{*})$ is a measurable function of the bootstrap weights outer almost surely in the data for every bounded, continuous map $g: \mathbb{D} \to \mathbb{R}$; \mathbb{G}_{0} is Borel measurable and separable.

Let $r_n = \sqrt{n}, \epsilon_n = 1/\sqrt{m}$ and $\mathbb{Z}_n^{\star} = \sqrt{m} \{f_{n,m}^* - f_n\}$. Then $\epsilon_n \to 0, r_n \epsilon_n \to \infty$, and $\mathbb{Z}_n^{\star} \rightsquigarrow \mathbb{G}_0$. Applying Lemma A.2, we conclude

$$\sqrt{m}\left\{\psi(f_{n,m}^*) - \psi(f_n)\right\} = \frac{\psi\left(f_n + \frac{1}{\sqrt{m}}\sqrt{m}\left\{f_{n,m}^* - f_n\right\}\right) - \psi(f_n)}{1/\sqrt{m}}$$
$$= \frac{\psi(f_n + \epsilon_n \mathbb{Z}_n^*) - \psi(f_n)}{\epsilon_n} \rightsquigarrow \psi'_{f_\star}(\mathbb{G}_0).$$

Finally, note that $\sqrt{n}\{\psi(f_n) - \psi(f_\star)\} \rightsquigarrow \psi'_{f_\star}(\mathbb{G}_0)$, we have

$$\begin{split} \sup_{g \in \mathrm{BL}_{1}(\mathbb{R})} & \left| \mathbb{E} \left[g \left(\sqrt{m} \left\{ \psi(f_{n,m}^{*}) - \psi(f_{n}) \right\} \right) | f_{n} \right] - \mathbb{E} \left[g \left(\sqrt{n} \left\{ \psi(f_{n}) - \psi(f_{\star}) \right\} \right) \right] \right| \\ \leq \sup_{g \in \mathrm{BL}_{1}(\mathbb{R})} & \left| \mathbb{E} \left[g \left(\sqrt{m} \left\{ \psi(f_{n,m}^{*}) - \psi(f_{n}) \right\} \right) | f_{n} \right] - \mathbb{E} \left[g \left(\psi_{f_{\star}}^{\prime}(\mathbb{G}_{0}) \right) \right] \right| \\ & + \sup_{g \in \mathrm{BL}_{1}(\mathbb{R})} \left| \mathbb{E} \left[g \left(\psi_{f_{\star}}^{\prime}(\mathbb{G}_{0}) \right) \right] - \mathbb{E} \left[g \left(\sqrt{n} \left\{ \psi(f_{n}) - \psi(f_{\star}) \right\} \right) \right] \right| \\ &= o_{p}(1) + o_{p}(1) = o_{p}(1) \end{split}$$

by triangle inequality. Hence we complete the proof of Theorem 4.1.

Proof of Theorem 4.2. By central limit theorem, we have

$$\sqrt{n} \{f_n - f_\star\} \rightsquigarrow \mathbb{G}_0 \sim \mathcal{N}(\mathbf{0}_k, \Sigma(f_\star)).$$

As $\epsilon \to 0, n \to \infty$, we have

$$\mathbb{T}(f_n, \epsilon) \to \mathbb{R}^K$$
 and $z_n^* \sim \mathcal{N}(\mathbf{0}_K, \Sigma(f_n); \mathbb{T}) \rightsquigarrow \mathcal{N}(\mathbf{0}_k, \Sigma(f_\star)) \sim \mathbb{G}_0$

Let $r_n = \sqrt{n}, \epsilon_n = \epsilon$, and $\mathbb{Z}_n^* = z_n^*$. Then $\epsilon_n \to 0, r_n \epsilon_n \to \infty$, and $\mathbb{Z}_n^* \rightsquigarrow \mathbb{G}_0$. Applying Lemma A.2, we conclude

$$\epsilon^{-1}\left\{\psi(f_n + \epsilon z_n^*) - \psi(f_n)\right\} = \frac{\psi(f_n + \epsilon_n \mathbb{Z}_n^*) - \psi(f_n)}{\epsilon_n} \rightsquigarrow \psi'_{f_\star}(\mathbb{G}_0).$$

Similar to the previous proof, note that $\sqrt{n}\{\psi(f_n) - \psi(f_\star)\} \rightsquigarrow \psi'_{f_\star}(\mathbb{G}_0)$, we have

$$\begin{split} \sup_{g \in \mathrm{BL}_{1}(\mathbb{R})} & \left| \mathbb{E} \left[g \left(\epsilon^{-1} \left\{ \psi(f_{n} + \epsilon z_{n}^{*}) - \psi(f_{n}) \right\} \right) | f_{n} \right] - \mathbb{E} \left[g \left(\sqrt{n} \left\{ \psi(f_{n}) - \psi(f_{\star}) \right\} \right) \right] \right] \\ \leq \sup_{g \in \mathrm{BL}_{1}(\mathbb{R})} & \left| \mathbb{E} \left[g \left(\epsilon^{-1} \left\{ \psi(f_{n} + \epsilon z_{n}^{*}) - \psi(f_{n}) \right\} \right) | f_{n} \right] - \mathbb{E} \left[g \left(\psi_{f_{\star}}^{\prime}(\mathbb{G}_{0}) \right) \right] \right| \\ & + \sup_{g \in \mathrm{BL}_{1}(\mathbb{R})} \left| \mathbb{E} \left[g \left(\psi_{f_{\star}}^{\prime}(\mathbb{G}_{0}) \right) \right] - \mathbb{E} \left[g \left(\sqrt{n} \left\{ \psi(f_{n}) - \psi(f_{\star}) \right\} \right) \right] \right| \\ & = o_{p}(1) + o_{p}(1) = o_{p}(1) \end{split}$$

by triangle inequality. Hence we complete the proof of Theorem 4.2.

Proof of Theorem 4.3. By standard results in Politis et al. (1999), under bootstrap consistency, we have

$$\liminf_{n \to \infty} \mathbb{P}\left(\psi(f_{\star}) \in \left[\psi(f_n) - \frac{c_{1-\alpha/2}^*}{\sqrt{n}}, \psi(f_n) - \frac{c_{\alpha/2}^*}{\sqrt{n}}\right]\right) = 1 - \alpha$$

if the limiting distribution is continuous at the boundary of quantiles;

$$\liminf_{n \to \infty} \mathbb{P}\left(\psi(f_{\star}) \in \left[\psi(f_n) - \frac{c_{1-\alpha/2}^{\star}}{\sqrt{n}}, \psi(f_n) - \frac{c_{\alpha/2}^{\star}}{\sqrt{n}}\right]\right) > 1 - \alpha$$

if the limiting distribution is discontinuous at the boundary of quantiles.

Proof of Theorem 4.5. For any $f_{\star} \in \Delta_K$ such that $\psi(f_{\star}) \leq \delta$,

$$\mathbb{P}\left(\sqrt{n}\psi(f_n) > \sqrt{n}\delta + c_{1-\alpha}\right)$$

=1 - $\mathbb{P}\left(\sqrt{n}\psi(f_n) \le \sqrt{n}\delta + c_{1-\alpha}\right)$
=1 - $\mathbb{P}\left(\sqrt{n}\{\psi(f_n) - \psi(f_\star)\} \le c_{1-\alpha} + \sqrt{n}(\delta - \psi(f_\star))\right)$
 $\le 1 - \mathbb{P}(\sqrt{n}\{\psi(f_n) - \psi(f_\star)\} \le c_{1-\alpha})$
 $\le 1 - (1 - \alpha)$
= α

where $c_{1-\alpha}$ is the $(1-\alpha)$ -th quantile of $\sqrt{n}\{\psi(f_n) - \psi(f_\star)\}$. With Bootstrap consistency,

$$\limsup_{n \to \infty} \sup_{f_{\star} \in \Delta_{K}: \psi(f_{\star}) \le \delta} \mathbb{P}_{f_{\star}} \left(\sqrt{n} \psi(f_{n}) > \sqrt{n} \delta + c_{1-\alpha}^{*} \right)$$
$$\leq \limsup_{n \to \infty} \sup_{f_{\star} \in \Delta_{K}: \psi(f_{\star}) \le \delta} \mathbb{P}_{f_{\star}} \left(\sqrt{n} \psi(f_{n}) > \sqrt{n} \delta + c_{1-\alpha} \right) = \alpha.$$

For any $f_{\star} \in \Delta_K$ such that $\psi(f_{\star}) > \delta$,

$$\mathbb{P}\left(\sqrt{n}\psi(f_n) > \sqrt{n}\delta + c_{1-\alpha}^*\right) \to 1.$$

B Bootstrap methods

Algorithm 1 m-out-of-n bootstrap1: require: m (rule of thumb: $2\sqrt{n}$), $B \in \mathbb{N}$ 2: set $S = \emptyset$ 3: for $i = 1, 2, \cdots, B$ do:4: draw $Y^* \sim \text{Multinomial}(m; f_n)$ 5: append $\sqrt{m}\{\psi(Y^*/m) - \psi(f_n))\}$ to S6: end for7: output: S

Algorithm 2 numerical derivative method

1: require: ϵ (rule of thumb: $n^{-1/4}$), $B \in \mathbb{N}$ 2: set $S = \emptyset$, i = 13: while $i \leq B$ do: 4: draw $Z^* \sim \mathcal{N}(\mathbf{0}_K, \Sigma(f_n))$ 5: if $f_n + \epsilon Z^* \in \mathbb{R}_+^K$: 6: append $\epsilon^{-1} \{ \psi(f_n + \epsilon Z^*) - \psi(f_n)) \}$ to S7: $i \leftarrow i + 1$ 8: else: 9: continue 10: output: S