Supplementary Materials for "Auditing ML Models for Individual Bias and Unfairness"

A Proofs

A. 1 Proof of Proposition in Section 2

Proof of Proposition 2.2. For the simplicity of notations, we drop the subscript of the loss function picked by the auditor, that is, we denote ℓ_{h} by ℓ. Furthermore, let

$$
\ell_{\lambda}^{c}(z)=\ell_{\lambda}^{c}(x, y) \triangleq \sup _{x_{2} \in \mathcal{X}}\left\{\ell\left(x_{2}, y\right)-\lambda c\left((x, y),\left(x_{2}, y\right)\right)\right\}
$$

By the duality result of Blanchet and Murthy (2019), for any $\varepsilon>0$, we have

$$
\sup _{P: W\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)]=\inf _{\lambda \geq 0}\left\{\lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda}^{c}(Z)\right]\right\}
$$

and

$$
\sup _{P: W_{*}\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)]=\inf _{\lambda \geq 0}\left\{\lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda}^{c_{*}}(Z)\right]\right\}
$$

Let $\lambda_{*} \in \arg \min _{\lambda \geq 0}\left\{\lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda}^{c_{*}}(Z)\right]\right\}$. Then we have

$$
\begin{aligned}
& \sup _{P: W\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)]-\sup _{P: W_{*}\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)] \\
& =\inf _{\lambda \geq 0}\left\{\lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda}^{c}(Z)\right]\right\}-\lambda_{*} \varepsilon-\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda_{*}}^{c_{*}}(Z)\right] \\
& \leq \lambda_{*} \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda_{*}}^{c}(Z)\right]-\lambda_{*} \varepsilon-\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda_{*}}^{c_{*}}(Z)\right] \\
& =\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda_{*}}^{c}(Z)-\ell_{\lambda_{*}}^{c_{*}}(Z)\right] .
\end{aligned}
$$

By Assumption A3, we have

$$
\begin{aligned}
\ell_{\lambda_{*}}^{c}(z)-\ell_{\lambda_{*}}^{c_{*}}(z) & =\sup _{x_{2} \in \mathcal{X}}\left\{\ell\left(x_{2}, y\right)-\lambda_{*} c\left((x, y),\left(x_{2}, y\right)\right)\right\}-\sup _{x_{2} \in \mathcal{X}}\left\{\ell\left(x_{2}, y\right)-\lambda_{*} c_{*}\left((x, y),\left(x_{2}, y\right)\right)\right\} \\
& \leq \lambda_{*} \sup _{x_{2} \in \mathcal{X}}\left|c\left((x, y),\left(x_{2}, y\right)\right)-c_{*}\left((x, y),\left(x_{2}, y\right)\right)\right| \\
& \leq \lambda_{*} \eta D^{2} .
\end{aligned}
$$

Thus, we conclude that

$$
\sup _{P: W\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)]-\sup _{P: W_{*}\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)] \leq \lambda_{*} \eta D^{2}
$$

Similarly, we have

$$
\sup _{P: W_{*}\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)]-\sup _{P: W\left(P, P_{n}\right) \leq \varepsilon} \mathbb{E}_{Z \sim P}[\ell(Z)] \leq \lambda_{\dagger} \eta D^{2}
$$

where $\lambda_{\dagger} \in \arg \min _{\lambda \geq 0}\left\{\lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda}^{c}(Z)\right]\right\}$.

Now, it suffices to show that $\lambda_{*} \leq \frac{L}{\sqrt{\varepsilon}}$ (and similarly $\lambda_{\dagger} \leq \frac{L}{\sqrt{\varepsilon}}$). By the optimality of λ_{*},

$$
\begin{aligned}
\lambda_{*} \varepsilon & \leq \lambda_{*} \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\sup _{x_{2} \in \mathcal{X}}\left\{\ell\left(x_{2}, Y\right)-\lambda_{*} d_{x_{*}}^{2}\left(X, x_{2}\right)\right\}-\ell(X, Y)\right] \\
& =\lambda_{*} \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda_{*}}^{c_{*}}(Z)-\ell(Z)\right] \\
& \leq \lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\ell_{\lambda}^{c_{*}}(Z)-\ell(Z)\right] \\
& =\lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\sup _{x_{2} \in \mathcal{X}}\left\{\ell\left(x_{2}, Y\right)-\ell(X, Y)-\lambda d_{x_{*}}^{2}\left(X, x_{2}\right)\right\}\right]
\end{aligned}
$$

for any $\lambda \geq 0$. By Assumption A2, the right-hand side is at most

$$
\begin{aligned}
\lambda_{*} \varepsilon & \leq \lambda \varepsilon+\mathbb{E}_{Z \sim P_{n}}\left[\sup _{x_{2} \in \mathcal{X}}\left\{L d_{x_{*}}\left(X, x_{2}\right)-\lambda d_{x_{*}}^{2}\left(X, x_{2}\right)\right\}\right] \\
& \leq \lambda \varepsilon+\sup _{t \geq 0}\left\{L t-\lambda t^{2}\right\} .
\end{aligned}
$$

We minimize the right-hand side with respect to t (set $t=\frac{L}{2 \lambda}$) and $\lambda\left(\right.$ set $\left.\lambda=\frac{L}{2 \sqrt{\varepsilon}}\right)$ to obtain $\lambda_{*} \varepsilon \leq L \sqrt{\varepsilon}$, or equivalently $\lambda_{*} \leq \frac{L}{\sqrt{\varepsilon}}$.

A. 2 Proofs of Theorems in Section 3

Proof of Theorem 3.1. We are working with Euclidean space $\mathbb{D}=\mathbb{R}^{K}$ and $\mathbb{E}=\mathbb{R}$.
By Theorem 3.4, $\psi: \mathbb{R}^{K} \rightarrow \mathbb{R}$ is Hadamard directionally differentiable at f_{\star} (tangentially to \mathbb{R}^{K}).
Since f_{n} is the empirical version of f_{\star}, by central limit theorem, we have

$$
\sqrt{n}\left(f_{n}-f_{\star}\right) \xrightarrow{d} \mathcal{N}\left(0, \Sigma\left(f_{\star}\right)\right) \stackrel{d}{\sim} Z,
$$

which is tight and supported in \mathbb{R}^{K}.
Via delta method (Theorem 3.3) with $\psi(\cdot)$ and the derivative formula given by Theorem 3.4, we conclude

$$
\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\} \xrightarrow{d} \psi_{f_{\star}}^{\prime}(Z)=\inf \left\{(\lambda+l)^{\top} Z:(\nu, \mu, \lambda) \in \Lambda\right\} .
$$

Hence we complete the proof of Theorem 3.1.

The next theorem adapted from from Bonnans and Shapiro (2000) will turn out to be useful.
Theorem A. 1 (Proposition 4.27 in Bonnans and Shapiro (2000)). \mathbb{A}, \mathbb{B} and \mathbb{V} are Banach spaces. $f: \mathbb{A} \rightarrow \mathbb{R}$ is continuously differentiable. $G+\bullet: \mathbb{A} \times \mathbb{V} \rightarrow \mathbb{B}$ is continuously differentiable. \mathbb{K} is a closed convex subset of \mathbb{B}. Consider a class of problems

$$
\begin{array}{lll}
\left(\mathcal{P}_{v}\right): & \min _{x \in \mathbb{A}} & f(x) \\
& \text { subject to } & G(x)+v \in \mathbb{K}
\end{array}
$$

parameterized by $v \in \mathbb{V}$. Let $\varphi(v)$ be the optimal value of the problem \mathcal{P}_{v}. Suppose that

1. for $v=0$, the problem \mathcal{P}_{0} is convex;
2. $\varphi(0)$ is finite;
3. $0 \in \operatorname{int}\{G(\mathbb{A})-\mathbb{K}\}$.

Then the optimal value function $\varphi(v)$ is Hadamard directionally differentiable at $v=0$. Furthermore,

$$
\lim _{h^{\prime} \rightarrow h, t \rightarrow 0^{+}} \frac{\varphi\left(t h^{\prime}\right)-\varphi(0)}{t}=\sup \left\{\lambda^{\top} h: \lambda \in \Gamma\right\}
$$

for any $h \in \mathbb{V}$, where Γ is the set of optimal solutions of the dual problem of \mathcal{P}_{0}.

Proof of Theorem 3.4. We first prove the theorem without constraint $\langle D, \Pi\rangle=0$. In order to employ Theorem A.1, the result of canonical perturbation, we introduce a parameter $t \in \mathbb{R}$, and the optimization problem $\psi\left(f_{\star}\right)$ can be equivalently rewritten as
(P1) : $\max _{t \in \mathbb{R}, \Pi \in \mathbb{R}_{+}^{K \times K}} l^{\top}\left(\Pi^{\top} \mathbf{1}_{K}-f_{\star}\right)+t$

$$
\begin{array}{lll}
\text { subject to } & \langle C, \Pi\rangle \leq \varepsilon & : \nu \\
& \Pi \mathbf{1}_{K}=f_{\star} & : \lambda \\
& t=0 & : \eta
\end{array}
$$

where ν, λ, η are Lagrange multipliers.
The canonical perturbation of problem (P1) is then given by

$$
\left(\mathcal{P}_{u, v, w}\right): \quad \max _{t \in \mathbb{R}, \Pi \in \mathbb{R}_{+}^{K \times K}} \quad l^{\top}\left(\Pi^{\top} \mathbf{1}_{K}-f_{\star}\right)+t . t= \begin{cases}\text { subject to } & \langle C, \Pi\rangle+u \leq \varepsilon \\ & \Pi \mathbf{1}_{K}+v=f_{\star} \\ & t+w=0,\end{cases}
$$

which outputs its optimal value $\varphi(u, v, w)$. Thus φ is a function from \mathbb{R}^{K+2} to \mathbb{R}.
Let $\mathbb{A}=\mathbb{R}_{+}^{K \times K} \times \mathbb{R}, \mathbb{B}=\mathbb{V}=\mathbb{R}^{K+2}$, and $\mathbb{K}=\left\{\left(x, f_{\star}^{\top}, 0\right)^{\top}: x \leq \varepsilon\right\} \subset \mathbb{R}^{K+2}$. Consider function $f: \mathbb{A} \rightarrow \mathbb{R}$ such that $(\Pi, t) \mapsto-\left\{l^{\top}\left(\Pi^{\top} \mathbf{1}_{K}-f_{\star}\right)+t\right\}$, and function $G: \mathbb{A} \rightarrow \mathbb{B}$ such that $(\Pi, t) \mapsto\left(\langle C, \Pi\rangle,\left(\Pi \mathbf{1}_{K}\right)^{\top}, t\right)^{\top}$.
Then, the class of maximization problems ($\mathcal{P}_{u, v, w}$) is equivalent to the following class of minimization problems

$$
\begin{array}{lll}
\left(\mathcal{Q}_{u, v, w}\right): & \min _{(\Pi, t) \in \mathbb{A}} & f(\Pi, t) \\
& \text { subject to } & G(\Pi, t)+\left(u, v^{\top}, w\right)^{\top} \in \mathbb{K} .
\end{array}
$$

Denote the optimal value function of $\mathcal{Q}_{u, v, w}$ by $\phi(u, v, w)$.
(i) To check item 1 in Theorem A.1, we note that $\mathcal{Q}_{0, \mathbf{0}_{K}, 0}$ is a problem of linear programming, and thus a convex optimization problem.
(ii) Item 2 in Theorem A. 1 is guaranteed by

$$
\varepsilon \geq 0=\min \left\{\langle C, \Pi\rangle: \Pi \in \mathbb{R}_{+}^{K \times K}, \Pi \mathbf{1}_{K}=f_{\star}\right\},
$$

which implies that $\mathcal{Q}_{0, \mathbf{0}_{K}, 0}$ has a solution, and thus $\phi\left(0, \mathbf{0}_{K}, 0\right)$ is finite.
(iii) $f_{\star} \in \mathbb{R}_{+}^{K}$ ensures that item 3 in Theorem A. 1 holds.

Now applying Theorem A. 1 to $\left(\mathcal{Q}_{u, v, w}\right)$, we conclude that ϕ is Hadamard directionally differentiable at the origin. Note that $\varphi=-\phi$, we can further conclude that φ is also Hadamard directionally differentiable at the origin, and

$$
\lim _{\substack{\xi^{\prime} \rightarrow \xi \rightarrow \xi \\ t \rightarrow 0^{+}}} \frac{\varphi\left(0, t \xi^{\prime}\right)-\varphi\left(0, \mathbf{0}_{K+1}\right)}{t}=-\lim _{\substack{\xi^{\prime} \rightarrow \xi \\ t \rightarrow 0^{+}}} \frac{\phi\left(0, t \xi^{\prime}\right)-\phi\left(0, \mathbf{0}_{K+1}\right)}{t}=-\sup \left\{\left\langle\left(\lambda^{\top}, w\right)^{\top}, \xi\right\rangle:(\nu, \lambda, w) \in \Gamma\right\},
$$

where Γ is the set of optimal solutions of the dual problem of (P 1).
Furthermore, one can check that $\Gamma=\Lambda \times\{-1\}$, where Λ is the set of optimal solutions of the dual problem of $\psi\left(f_{\star}\right)$.
Specifically, the dual problem of $\psi\left(f_{\star}\right)$ is given by

$$
\begin{array}{ll}
\min _{\nu \geq 0, \lambda_{1}, \cdots, \lambda_{K}} & -\varepsilon \nu-\sum_{k=1}^{K} f_{\star}^{(k)} \lambda_{k} \\
\text { subject to } & c_{i j} \nu+\lambda_{i} \leq-l_{j}, \text { for } 1 \leq i, j \leq K .
\end{array}
$$

Thus, we have

$$
\Lambda=\underset{\nu, \geq 0, \lambda \in \mathbb{R}^{K}}{\arg \max }\left\{\varepsilon \nu+f_{\star}^{\top} \lambda: c_{i j} \nu+\lambda_{i} \leq-l_{j}, 1 \leq i, j \leq K\right\}
$$

Note that $\psi(f)=\varphi\left(0, f_{\star}-f, l^{\top}\left(f-f_{\star}\right)\right)$, we conclude that $\psi(f)$ is Hadamard directionally differentiable at f_{\star}, and the derivative formula is given by

$$
\begin{aligned}
\psi_{f_{\star}}^{\prime}(h)= & \lim _{\substack{h^{\prime} \rightarrow h \\
t \rightarrow 0^{+}}} \frac{\psi\left(f_{\star}+t h^{\prime}\right)-\psi\left(f_{\star}\right)}{t} \\
= & \lim _{\substack{h^{\prime} \rightarrow h \\
t \rightarrow 0^{+}}} \frac{\varphi\left(0,-t h^{\prime}, t l^{\top} h^{\prime}\right)-\varphi\left(0, \mathbf{0}_{K}, 0\right)}{t} \\
= & \left.\lim _{\xi^{\prime} \rightarrow \xi} \frac{\varphi\left(0, t \xi^{\prime}\right)-\varphi\left(0, \mathbf{0}_{K+1}\right)}{t} \quad \quad \quad \text { where } \xi=\left(-h^{\top}, l^{\top} h\right)^{\top}\right] \\
& =-\sup \left\{\left\langle\left(\lambda^{\top}, w\right)^{\top}, \xi\right\rangle:(\nu, \lambda, w) \in \Gamma\right\} \\
= & -\sup \left\{\left\langle\left(\lambda^{\top},-1\right)^{\top},\left(-h^{\top}, l^{\top} h\right)^{\top}\right\rangle:(\nu, \lambda) \in \Lambda\right\} \\
= & -\sup \{-\langle\lambda+l, h\rangle:(\nu, \lambda) \in \Lambda\} \\
= & \inf \{\langle\lambda+l, h\rangle:(\nu, \lambda) \in \Lambda\} .
\end{aligned}
$$

For the case with constraint $\langle D, \Pi\rangle=0$, note that the dual problem of $\psi\left(f_{\star}\right)$ changes slightly into

$$
\begin{array}{ll}
\min _{\nu, \mu \geq 0, \lambda_{1}, \cdots, \lambda_{K}} & -\varepsilon \nu-\sum_{k=1}^{K} f_{\star}^{(k)} \lambda_{k} \\
\text { subject to } & c_{i j} \nu+d_{i j} \mu+\lambda_{i} \leq-l_{j}, \text { for } 1 \leq i, j \leq K,
\end{array}
$$

and

$$
\Lambda=\underset{\nu, \mu \geq 0, \lambda \in \mathbb{R}^{K}}{\arg \max }\left\{\varepsilon \nu+f_{\star}^{\top} \lambda: c_{i j} \nu+d_{i j} \mu+\lambda_{i} \leq-l_{j}, 1 \leq i, j \leq K\right\}
$$

Hence we complete the proof of Theorem 3.4.

A. 3 Proofs of Theorems in Section 4

The following lemma adapted from Hong and Li (2018) provides a general recipe for the consistency of our two bootstrap strategies.
Lemma A. 2 (Theorem 3.1 in Hong and Li (2018)). Suppose \mathbb{D} and \mathbb{E} are Banach Spaces and $\phi: \mathbb{D}_{\phi} \subseteq \mathbb{D} \mapsto \mathbb{E}$ is Hadamard directionally differentiable at θ_{0} tangentially to \mathbb{D}_{0}. Let $\hat{\theta}_{n}:\left\{X_{i}\right\}_{i=1}^{n} \mapsto \mathbb{D}_{\phi}$ be such that for some $r_{n} \uparrow \infty, r_{n}\left\{\hat{\theta}_{n}-\theta_{0}\right\} \rightsquigarrow \mathbb{G}_{0}$ in \mathbb{D}, where \mathbb{G}_{0} is tight and its support is included in \mathbb{D}_{0}. Then

$$
r_{n}\left(\phi\left(\hat{\theta}_{n}\right)-\phi\left(\theta_{0}\right)\right) \rightsquigarrow \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right) .
$$

Let $\mathbb{Z}_{n}^{*} \rightsquigarrow \mathbb{G}_{0}$ satisfy regularity of measurability ${ }^{1}$. Then for $\epsilon_{n} \rightarrow 0, r_{n} \epsilon_{n} \rightarrow \infty$,

$$
\hat{\phi}_{n}^{\prime}\left(\mathbb{Z}_{n}^{*}\right) \xlongequal{\text { def }} \frac{\phi\left(\hat{\theta}_{n}+\epsilon_{n} \mathbb{Z}_{n}^{*}\right)-\phi\left(\hat{\theta}_{n}\right)}{\epsilon_{n}} \rightsquigarrow \phi_{\theta_{0}}^{\prime}\left(\mathbb{G}_{0}\right) .
$$

Proof of Theorem 4.1. Hereafter, \mathbb{G}_{0} refers to $\mathcal{N}\left(f_{\star}, \Sigma\left(f_{\star}\right)\right)$. By central limit theorem, we have

$$
\sqrt{n}\left\{f_{n}-f_{\star}\right\} \rightsquigarrow \mathbb{G}_{0} \text { and } \sqrt{m}\left\{f_{n, m}^{*}-f_{\star}\right\} \rightsquigarrow \mathbb{G}_{0} .
$$

Since $m / n \rightarrow 0$, we have

$$
\sqrt{m}\left\{f_{n, m}^{*}-f_{n}\right\}=\sqrt{m}\left\{f_{n, m}^{*}-f_{\star}\right\}-\sqrt{\frac{m}{n}} \sqrt{n}\left\{f_{n}-f_{\star}\right\} \rightsquigarrow \mathbb{G}_{0}
$$

[^0]Let $r_{n}=\sqrt{n}, \epsilon_{n}=1 / \sqrt{m}$ and $\mathbb{Z}_{n}^{\star}=\sqrt{m}\left\{f_{n, m}^{*}-f_{n}\right\}$. Then $\epsilon_{n} \rightarrow 0, r_{n} \epsilon_{n} \rightarrow \infty$, and $\mathbb{Z}_{n}^{\star} \rightsquigarrow \mathbb{G}_{0}$. Applying Lemma A. 2, we conclude

$$
\begin{aligned}
\sqrt{m}\left\{\psi\left(f_{n, m}^{*}\right)-\psi\left(f_{n}\right)\right\} & =\frac{\psi\left(f_{n}+\frac{1}{\sqrt{m}} \sqrt{m}\left\{f_{n, m}^{*}-f_{n}\right\}\right)-\psi\left(f_{n}\right)}{1 / \sqrt{m}} \\
& =\frac{\psi\left(f_{n}+\epsilon_{n} \mathbb{Z}_{n}^{*}\right)-\psi\left(f_{n}\right)}{\epsilon_{n}} \rightsquigarrow \psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right) .
\end{aligned}
$$

Finally, note that $\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\} \rightsquigarrow \psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)$, we have

$$
\begin{aligned}
& \sup _{g \in \mathrm{BL}_{1}(\mathbb{R})}\left|\mathbb{E}\left[g\left(\sqrt{m}\left\{\psi\left(f_{n, m}^{*}\right)-\psi\left(f_{n}\right)\right\}\right) \mid f_{n}\right]-\mathbb{E}\left[g\left(\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\}\right)\right]\right| \\
& \leq \sup _{g \in \mathrm{BL}_{1}(\mathbb{R})}\left|\mathbb{E}\left[g\left(\sqrt{m}\left\{\psi\left(f_{n, m}^{*}\right)-\psi\left(f_{n}\right)\right\}\right) \mid f_{n}\right]-\mathbb{E}\left[g\left(\psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]\right| \\
& \quad+\sup _{g \in \mathrm{BL}_{1}(\mathbb{R})}\left|\mathbb{E}\left[g\left(\psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]-\mathbb{E}\left[g\left(\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\}\right)\right]\right| \\
& =o_{p}(1)+o_{p}(1)=o_{p}(1)
\end{aligned}
$$

by triangle inequality. Hence we complete the proof of Theorem 4.1.

Proof of Theorem 4.2. By central limit theorem, we have

$$
\sqrt{n}\left\{f_{n}-f_{\star}\right\} \rightsquigarrow \mathbb{G}_{0} \sim \mathcal{N}\left(\mathbf{0}_{k}, \Sigma\left(f_{\star}\right)\right)
$$

As $\epsilon \rightarrow 0, n \rightarrow \infty$, we have

$$
\mathbb{T}\left(f_{n}, \epsilon\right) \rightarrow \mathbb{R}^{K} \quad \text { and } \quad z_{n}^{*} \sim \mathcal{N}\left(\mathbf{0}_{K}, \Sigma\left(f_{n}\right) ; \mathbb{T}\right) \rightsquigarrow \mathcal{N}\left(\mathbf{0}_{k}, \Sigma\left(f_{\star}\right)\right) \sim \mathbb{G}_{0}
$$

Let $r_{n}=\sqrt{n}, \epsilon_{n}=\epsilon$, and $\mathbb{Z}_{n}^{*}=z_{n}^{*}$. Then $\epsilon_{n} \rightarrow 0, r_{n} \epsilon_{n} \rightarrow \infty$, and $\mathbb{Z}_{n}^{\star} \rightsquigarrow \mathbb{G}_{0}$. Applying Lemma A.2, we conclude

$$
\epsilon^{-1}\left\{\psi\left(f_{n}+\epsilon z_{n}^{*}\right)-\psi\left(f_{n}\right)\right\}=\frac{\psi\left(f_{n}+\epsilon_{n} \mathbb{Z}_{n}^{*}\right)-\psi\left(f_{n}\right)}{\epsilon_{n}} \rightsquigarrow \psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)
$$

Similar to the previous proof, note that $\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\} \rightsquigarrow \psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)$, we have

$$
\begin{aligned}
& \quad \sup _{g \in \mathrm{BL}_{1}(\mathbb{R})}\left|\mathbb{E}\left[g\left(\epsilon^{-1}\left\{\psi\left(f_{n}+\epsilon z_{n}^{*}\right)-\psi\left(f_{n}\right)\right\}\right) \mid f_{n}\right]-\mathbb{E}\left[g\left(\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\}\right)\right]\right| \\
& \leq \sup _{g \in \mathrm{BL}_{1}(\mathbb{R})}\left|\mathbb{E}\left[g\left(\epsilon^{-1}\left\{\psi\left(f_{n}+\epsilon z_{n}^{*}\right)-\psi\left(f_{n}\right)\right\}\right) \mid f_{n}\right]-\mathbb{E}\left[g\left(\psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]\right| \\
& \quad+\sup _{g \in \mathrm{BL}_{1}(\mathbb{R})}\left|\mathbb{E}\left[g\left(\psi_{f_{\star}}^{\prime}\left(\mathbb{G}_{0}\right)\right)\right]-\mathbb{E}\left[g\left(\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\}\right)\right]\right| \\
& \quad=o_{p}(1)+o_{p}(1)=o_{p}(1)
\end{aligned}
$$

by triangle inequality. Hence we complete the proof of Theorem 4.2.

Proof of Theorem 4.3. By standard results in Politis et al. (1999), under bootstrap consistency, we have

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(\psi\left(f_{\star}\right) \in\left[\psi\left(f_{n}\right)-\frac{c_{1-\alpha / 2}^{*}}{\sqrt{n}}, \psi\left(f_{n}\right)-\frac{c_{\alpha / 2}^{*}}{\sqrt{n}}\right]\right)=1-\alpha
$$

if the limiting distribution is continuous at the boundary of quantiles;

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(\psi\left(f_{\star}\right) \in\left[\psi\left(f_{n}\right)-\frac{c_{1-\alpha / 2}^{*}}{\sqrt{n}}, \psi\left(f_{n}\right)-\frac{c_{\alpha / 2}^{*}}{\sqrt{n}}\right]\right)>1-\alpha
$$

if the limiting distribution is discontinuous at the boundary of quantiles.

Proof of Theorem 4.5. For any $f_{\star} \in \Delta_{K}$ such that $\psi\left(f_{\star}\right) \leq \delta$,

$$
\begin{aligned}
& \mathbb{P}\left(\sqrt{n} \psi\left(f_{n}\right)>\sqrt{n} \delta+c_{1-\alpha}\right) \\
= & 1-\mathbb{P}\left(\sqrt{n} \psi\left(f_{n}\right) \leq \sqrt{n} \delta+c_{1-\alpha}\right) \\
= & 1-\mathbb{P}\left(\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\} \leq c_{1-\alpha}+\sqrt{n}\left(\delta-\psi\left(f_{\star}\right)\right)\right) \\
\leq & 1-\mathbb{P}\left(\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\} \leq c_{1-\alpha}\right) \\
\leq & 1-(1-\alpha) \\
= & \alpha,
\end{aligned}
$$

where $c_{1-\alpha}$ is the $(1-\alpha)$-th quantile of $\sqrt{n}\left\{\psi\left(f_{n}\right)-\psi\left(f_{\star}\right)\right\}$. With Bootstrap consistency,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \sup _{f_{\star} \in \Delta_{K}: \psi\left(f_{\star}\right) \leq \delta} \mathbb{P}_{f_{\star}}\left(\sqrt{n} \psi\left(f_{n}\right)>\sqrt{n} \delta+c_{1-\alpha}^{*}\right) \\
\leq & \limsup _{n \rightarrow \infty} \sup _{f_{\star} \in \Delta_{K}: \psi\left(f_{\star}\right) \leq \delta} \mathbb{P}_{f_{\star}}\left(\sqrt{n} \psi\left(f_{n}\right)>\sqrt{n} \delta+c_{1-\alpha}\right)=\alpha .
\end{aligned}
$$

For any $f_{\star} \in \Delta_{K}$ such that $\psi\left(f_{\star}\right)>\delta$,

$$
\mathbb{P}\left(\sqrt{n} \psi\left(f_{n}\right)>\sqrt{n} \delta+c_{1-\alpha}^{*}\right) \rightarrow 1
$$

B Bootstrap methods

```
Algorithm \(1 m\)-out-of- \(n\) bootstrap
    require: \(m\) (rule of thumb: \(2 \sqrt{n}\) ), \(B \in \mathbb{N}\)
    set \(\mathcal{S}=\varnothing\)
    for \(i=1,2, \cdots, B\) do:
        draw \(Y^{*} \sim \operatorname{Multinomial}\left(m ; f_{n}\right)\)
        append \(\left.\sqrt{m}\left\{\psi\left(Y^{*} / m\right)-\psi\left(f_{n}\right)\right)\right\}\) to \(\mathcal{S}\)
    end for
    output: \(\mathcal{S}\)
```

```
Algorithm 2 numerical derivative method
    require: \(\epsilon\) (rule of thumb: \(n^{-1 / 4}\) ), \(B \in \mathbb{N}\)
    set \(\mathcal{S}=\varnothing, i=1\)
    while \(i \leq B\) do:
        draw \(Z^{*} \sim \mathcal{N}\left(\mathbf{0}_{K}, \Sigma\left(f_{n}\right)\right)\)
        if \(f_{n}+\epsilon Z^{*} \in \mathbb{R}_{+}^{K}\) :
            append \(\left.\epsilon^{-1}\left\{\psi\left(f_{n}+\epsilon Z^{*}\right)-\psi\left(f_{n}\right)\right)\right\}\) to \(\mathcal{S}\)
            \(i \leftarrow i+1\)
        else:
            continue
    output: \(\mathcal{S}\)
```


[^0]: ${ }^{1} \mathbb{Z}_{n}^{*}$ is asymptotically measurable jointly in the data and the bootstrap weights; $g\left(\mathbb{Z}_{n}^{*}\right)$ is a measurable function of the bootstrap weights outer almost surely in the data for every bounded, continuous map $g: \mathbb{D} \rightarrow \mathbb{R} ; \mathbb{G}_{0}$ is Borel measurable and separable.

