
Laplacian-Regularized Graph Bandits: Algorithms and Theoretical
Analysis

Kaige Yang Xiaowen Dong Laura Toni
University College London University of Oxford University College London

Abstract

We consider a stochastic linear bandit prob-
lem with multiple users, where the relation-
ship between users is captured by an under-
lying graph and user preferences are repre-
sented as smooth signals on the graph. We
introduce a novel bandit algorithm where the
smoothness prior is imposed via the random-
walk graph Laplacian, which leads to a single-
user cumulative regret scaling as Õ(Ψd

√
T)

with time horizon T , feature dimensional-
ity d, and the scalar parameter Ψ ∈ (0, 1)
that depends on the graph connectivity. This
is an improvement over Õ(d

√
T) in Lin-

UCB [Li et al., 2010], where user relation-
ship is not taken into account. In terms
of network regret (sum of cumulative re-
gret over n users), the proposed algorithm
leads to a scaling as Õ(Ψd

√
nT), which

is a significant improvement over Õ(nd
√
T)

in the state-of-the-art algorithm Gob.Lin
[Cesa-Bianchi et al., 2013]. To improve scal-
ability, we further propose a simplified al-
gorithm with a linear computational com-
plexity with respect to the number of users,
while maintaining the same regret. Finally,
we present a finite-time analysis on the pro-
posed algorithms, and demonstrate their ad-
vantage in comparison with state-of-the-art
graph-based bandit algorithms on both syn-
thetic and real-world data.

1 Introduction

In the classical multi-armed bandit (MAB) problem,
an agent takes sequential actions, choosing one arm

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

out of the k available ones and it receives an in-
stantaneous payoff from the chosen arm only. The
goal of the agent is to learn an action policy that
maximizes the cumulative payoff over a course of T
rounds [Robbins, 1952]. MAB problems formalize a
trade-off between exploration and exploitation, and a
particular solution is imposing the principle of opti-
mism in face of uncertainty. Specifically, the agent
assigns to each arm an index called the upper confi-
dence bound (UCB) that with high probability is an
overestimate of the unknown payoff, and selects the
arm with the highest index.

Many variants of the basic MAB problem have
been intensively studied, motivated by real-world
applications such as ads placement and recommender
systems. In the stochastic linear bandit [Auer, 2002],
at each round, the agent receives a hint before
taking the decision. Specifically, before choosing
the arm, the agent is informed of a feature vector
x ∈ Rd associated with each arm, referred to as
the ‘context’. The payoff associated with each arm
is modeled as a noisy linear function of x with an
unknown coefficient vector θ ∈ Rd perturbed by a
noise term η, i.e, y = xTθ + η, where the agent
needs to learn θ based on the context-payoff pair
{x, y} and select an arm accordingly. This problem
has been well understood in the literature and
many studies have already proposed asymptotically
optimal algorithms [Auer, 2002, Dani et al., 2008,
Agrawal and Goyal, 2013, Chapelle and Li, 2011,
Lattimore and Szepesvari, 2016].

The problem is less understood in the case of multiple
users, as opposed to a single user, where we assume a
central agent needs to select arms for multiple users in
a sequential fashion. In this paper, we are interested
in the setting where there are n users sharing the same
set of arm choices D containing m arms. The agent
faces a set of n independent instance of bandit char-
acterized by an unknown θi, i ∈ {1, 2, ..., n} specific to
each user. At each round, one user out of n is selected
uniformly at random, the agent then selects one arm
from D for the user and receives an instantaneous pay-

Laplacian-Regularized Graph Bandits: Algorithms and Theoretical Analysis

off associated with the selected arm and the user. The
overall goal is to minimize the cumulative regret (or
equivalently, maximize the cumulative payoffs), which
is defined as the sum of instantaneous regret experi-
enced by the agent over a finite time horizon T .

In this setting, naively implementing bandit algo-
rithms on each user independently will results in a
cumulative regret that scales linearly with the num-
ber of users n. This is clearly infeasible in case of a
large number of users. In many cases, however, the
users are related in some way and this can be rep-
resented by a network (or graph) that encapsulates
important additional source of information, such as
similarities among users in terms of their preferences
(user feature vectors). Exploiting this structure can
mitigate the scalability problem. The key setup is
therefore to construct a graph where each node repre-
sents a user and the edges identify the affinity between
users. In real-world applications, such a graph can be
a social network of users. This idea leads to a se-
ries of work on the so-called graph-based bandit prob-
lem [Cesa-Bianchi et al., 2013, Gentile et al., 2014,
Liu et al., 2018, Vaswani et al., 2017].

Despite the previous effort, several important limita-
tions still remain to be addressed. First, the graph
Laplacian matrix is commonly used in graph-based al-
gorithms, but the justification of its usage remains in-
sufficient (and as to which version of the graph Lapla-
cian leads to optimal policies). As a consequence, the
advantage of graph-based bandit is largely shown em-
pirically in previous works, without rigorous theoret-
ical analysis. Furthermore, scalability remains a seri-
ous limitation of such algorithms. Involving user graph
into bandit algorithms typically results in a computa-
tional complexity that scales quadratically with the
number of users, which is clearly infeasible in case of
large number of users. In this paper, we address the
above limitations with the following main contribu-
tions:

• We propose a bandit algorithm GraphUCB
based on the random-walk graph Laplacian, and
show its theoretical advantages over other graph
Laplacian matrices in reducing cumulative regret.
We demonstrate empirically that GraphUCB
outperforms state-of-the-art graph-based bandit
algorithms in terms of cumulative regret.
• As a key ingredient of the proposed algorithm,

we derive a novel UCB representing the single-
user bound while embedding the graph structure,
which reduces the size of the confidence set, in
turn leading to lower regret;
• To improve scalability, we further propose a sim-

plified algorithm GraphUCB-Local whose com-
plexity scales linearly with respect to the number

of users, yet still holding the same regret upper
bound as GraphUCB;
• Finally, we derive a finite-time analysis on both

algorithms and show a lower regret upper bound
than other state-of-the-art graph-based bandit al-
gorithms.

2 Related work

Graph-based bandit algorithms can be roughly catego-
rized as: i) topology-based bandits, where the graph
topology itself is exploited to improve learning perfor-
mance, and ii) spectral bandits, where the user feature
vectors θ are modeled as signals defined on the under-
lying graph, whose characteristics are then exploited
in the graph spectral domain via tools provided by
graph signal processing [Shuman et al., 2013] to assist
learning.

In topology-based bandits, the key intuition is to
achieve dimensionality reduction in the user space
by exploiting the graph topology. Specifically, users
can be clustered based on the graph topology and
a per-cluster feature vector can be learned, substan-
tially reducing the dimensionality of the problem as
opposed to the case in which one vector is learned
per user. For example, [Gentile et al., 2014] clusters
users based on the connected components of the user
graph, and [Li et al., 2016] generalizes it to consider
both the user graph and item graph. On the other
hand, [Yang and Toni, 2018] makes use of community
detection techniques on graphs to find user clusters.
More broadly, in the spirit of dimensionality reduc-
tion, even without constructing an explicit user graph,
the work in [Korda et al., 2016] proposes a distributed
clustering algorithm while [Nguyen and Lauw, 2014]
applies k-means clustering to the user features. De-
spite the differences in the proposed techniques, these
studies share two common drawbacks: 1) the learning
performance depends on the clustering algorithm be-
ing used, which tends to be expensive for large-scale
graphs; 2) learning a per-cluster (and not per-user)
feature vector means ignoring the subtle difference be-
tween users within the same cluster. In short, cluster-
ing can reduce the dimensionality of the user space,
but it does not necessarily preserve key users charac-
teristics. To achieve both goals simultaneously, there
is a need for a proper mathematical framework able
to incorporate the user relationship into learning in a
more direct way.

On the spectral bandit side, the strong assumption
that users can be grouped into clusters is relaxed; users
are assumed to be similar with their neighbors in the
graph and such similarity is reflected by the weight
of graph edges. [Wu et al., 2016] employs a graph

Kaige Yang, Xiaowen Dong, Laura Toni

Laplacian-regularized estimator, which promotes simi-
lar feature vectors for users connected in the graph. In
their setting, however, each arm is selected by all users
jointly. This work results in a network regret scaling
with Õ(dn

√
T). [Vaswani et al., 2017] casts the same

estimator as GMRF (Gaussian Markov Random Filed)
and proposes a Thompson sampling algorithm, leading
to a much simpler algorithmic implementation without
a UCB evaluation. However, the regret bound remains
Õ(dn

√
T). To the best of our knowledge, an efficient

algorithm able to address the multi-user MAB prob-
lem with a sub-linear regret bound is still missing.

A proper bound and mathematical derivation of spec-
tral MAB are provided in [Valko et al., 2014], which
represents the payoffs of arms as smooth signals on
a graph with the arms being the nodes. Specifically,
the arm features x are modeled as eigenvectors of the
graph Laplacian and the sparsity of such eigenvectors
is exploited to reduce the dimensionality of x, to a so-
called ‘effective dimension’ term d̃. This work shows an
improved regret bound Õ(d̃

√
T) where d̃ is significant

less than d in LinUCB [Abbasi-Yadkori et al., 2011].
While interesting, the proposed solution applies to the
single-user with high-dimensional arm set. Whereas,
in our setting, the dimensionality issue is caused by the
large number of users, leading to a completely different
mathematical problem.

Among these works on graph bandit, the one that is
most similar to our work in terms of problem definition
and proposed solution is [Cesa-Bianchi et al., 2013].
In [Cesa-Bianchi et al., 2013], the graph is exploited
such that each user shares instantaneous payoff
with neighbors, which is promoted by a Laplacian-
regularized estimator. This implicitly imposes
smoothness among the feature vectors of users, result-
ing in the estimate of similar feature vectors for users
connected by edges with strong weights in the graph.

In our paper, we proposed the GraphUCB algorithm
that builds on and improves the work of Gob.Lin in
a number of important ways:

• First, Gob.Lin employs the combinatorial Lapla-
cian as a regularizer, whereas our algorithm Gra-
phUCB makes use of the random-walk graph
Laplacian. We prove theoretically that the com-
binatorial Laplacian results in a cumulative re-
gret scaling with the number of users, which could
be large. However, random-walk graph Laplacian
overcomes this serious drawback and yields a sub-
linear regret with the number of users.
• Second, UCB used in Gob.Lin results in a cu-

mulative regret that scales with Õ(nd
√
T) which

is worse than LinUCB Õ(d
√
nT). We propose a

new UCB that leads to a cumulative regret scaling

with Õ(Ψd
√
nT) where Ψ ∈ (0, 1).

• Finally, the computational complexity of
Gob.Lin is quadratic with respect to the number
of users. Our simplified algorithm GraphUCB-
Local scales linearly with the number of users,
and at the same time enjoys the same regret
bound as GraphUCB. This significantly im-
proves the scalability of the proposed graph
bandit algorithm.

3 Setting

We consider a linear bandit problem with m arms and
n users. We denote by U the user set with cardinality
|U| = n and by D the arm set with |D| = m. Each
arm is described by a feature vector x ∈ Rd, while each
user is described by a parameter vector θ ∈ Rd, with d
being the dimension of both vectors. The affinity be-
tween users is encoded by an undirected and weighted
graph G = (V,E), where V = {1, 2, .., n} represents
the node set for n users and E represents the edge set.
The graph G is known a priori and identified by its ad-
jacency matrix W ∈ Rn×n, where Wij = Wji captures
the affinity between θi and θj . The combinatorial
Laplacian of G is defined as L = D−W, where D is a
diagonal matrix with Dii =

∑n
i=1Wii. The symmetric

normalized Laplacian is defined as L̃ = D−1/2LD−1/2.
In addition, the random-walk graph Laplacian is de-
fined as L = D−1L.

In our setting, the unknown user features Θ =
[θ1,θ2, ...,θn]T ∈ Rn×d are assumed to be smooth over
G. The smoothness of Θ over graph G can then be
quantified using the Laplacian quadratic form of any
of the three Laplacian defined above. In this work, we
choose the random-walk graph Laplacian L because of
its two unique properties Lii = 1 and

∑
j 6=i Lij = −1.

The benefit of these properties will be clear after the
introduce of our proposed bandit algorithm (see Re-
mark 1). Mathematically, the Laplacian quadratic
form based on L is (see Appendix H for the deriva-
tion):

tr(ΘTLΘ) =
1

4

d∑
k=1

∑
i∼j

(
Wij

Dii
+
Wji

Djj

)(
Θik −Θjk

)2
(1)

where Θik is the (i, k)-th element of Θ. The more the
graph G reflects the similarity between users correctly,
the smaller the quadratic term tr(ΘTLΘ). Specifi-
cally, tr(ΘTLΘ) is small when Θik and Θjk are similar

given a large weight
Wij

Dii
+

Wji

Djj
.

Equipped with the above notation, we now introduce
the multi-user bandit problem, in which an agent needs
to take sequential decisions (e.g., recommendations)
for a multitude of users appearing over time. At each

Laplacian-Regularized Graph Bandits: Algorithms and Theoretical Analysis

time t = 1, . . . , T , the agent is informed about the user
it to serve, with the user being selected uniformly at
random from the user set U . Then, the agent selects
an arm xt ∈ D to be recommended to user it. Upon
this selection, the agent observes a payoff yt, which is
assumed to be generated by noisy versions of linear
functions of the users and item vectors. Namely,

yt = xTt θit + ηt (2)

where the noise ηt is assumed to be σ-sub-Gaussian
for any t.

The agent is informed about the graph G and the arm
feature vectors xa, a ∈ {1, 2, ...,m}, while Θ is un-
known and needs to be inferred. The goal of the
agent is to learn a selection strategy that minimizes
the cumulative regret with respect to an optimal strat-
egy, which always selects the optimal arm for each
user. Formally, after a time horizon T , the cumula-
tive (pseudo) regret is defined as:

RT =

T∑
t=1

(
(x∗t)

Tθit − xTt θit

)
(3)

where xt and x∗t are the arm selected by the agent and
the optimal strategy at t, respectively. Note that the
optimal choice depends on t as well as on the user it.
For notation convenience in the rest of the paper, at
each time step t, we use i to generally refer to the user
appeared and xt to represent the feature vector of the
arm selected.

4 Laplacian-Regularized Estimator

To estimate the user parameter Θ at time t, we make
use of the Laplacian-regularized estimator:

Θ̂t = arg min
Θ∈Rn×d

n∑
i=1

∑
τ∈Ti,t

(xTτ θi−yτ)2 +α tr(ΘTLΘ)

(4)
where θi is the i-th row of Θ, Ti,t is the set of time
steps at which user i is served up to time t. xτ is
the feature of arm selected by the learner, yτ is the
payoff from user i at time τ , and α is the regularization
parameter. Clearly, Eq. 4 is convex and can be solved
via convex optimization techniques. Specifically, it has
a closed form solution [Alvarez et al., 2012]:

vec(Θ̂t) = (ΦtΦ
T
t + αL⊗ I)−1ΦtYt (5)

where ⊗ is the Kronecker product, vec(Θ̂t) ∈ Rnd is

the concatenation of the columns of Θ̂t, I ∈ Rd×d
is the identity matrix, and Yt = [y1, y2, ..., yt]

T ∈
Rt is the collection of all payoffs. Finally, Φt =
[φ1,φ2, ...,φt] ∈ Rnd×t, where φt ∈ Rnd, is a long

sparse vector indicating that the arm with feature xt
is selected for user i. Formally,

φTt = (0, ..., 0︸ ︷︷ ︸
(i−1)×d times

,xTt , 0, ...0︸ ︷︷ ︸
(n−i)×d times

) . (6)

While Eq. 4 provides the estimate of feature vectors
of all users at t, i.e., Θ̂t, the agent is interested in
the estimation of each single-user feature vector θ̂i,t.

Mathematically, θ̂i,t can be obtained by decoupling
users in Eq. 5. This however is highly complex due
to the inversion (ΦtΦ

T
t + αL⊗ I)−1, which the agent

needs to preform at each time step (we recall that the
Laplacian is high-dimensional). We notice that the

close-form solution of θ̂i,t can be closely approximated

via a Taylor expansion of (ΦtΦ
T
t +αL⊗I)−1, as stated

in Lemma 1 and further commented and tested empir-
ically in Appendix A.

Lemma 1. Θ̂t is obtained from Eq. 5, let θ̂i,t be the

i-th row of Θ̂t which is the estimate of θi. θ̂i,t can be
approximated by1:

θ̂i,t ≈ A−1i,t Xi,tYi,t − αA−1i,t

n∑
j=1

LijA−1j,tXj,tYj,t (7)

where Ai,t =
∑
τ∈Ti,t xτx

T
τ ∈ Rd×d is the Gram ma-

trix related to the choices made by user i, Ti,t is the set
of time at which user i is served up to time t, and Lij is
the (i, j)-th element in L. Xi,t ∈ Rd×|Ti,t| is the collec-
tion of features of arms that are selected for user i up
to time t with {xτ}, τ ∈ Ti,t as columns. Yi,t ∈ R|Ti,t|
is the collection of payoffs associated with user i up to
time t, whose elements are {yτ}, τ ∈ Ti,t.

Proof. See Appendix A.

4.1 Construction of Confidence Set

For the agent to balance exploration and explo-
ration in sequential decisions, we need to quantify
the uncertainty over the estimation of θ̂i,t. This

is possible by defining a confidence set around θ̂i,t
based on Mahalanobis distance using its precision
matrix, as commonly adopted in bandit literature
[Lattimore and Szepesvári, 2018]. Let Λi,t ∈ Rd×d be

the precision matrix of θ̂i,t, the confidence set is for-
mally defined as:

Ci,t = {θi,t : ||θ̂i,t − θi||Λi,t ≤ βi,t} (8)

where βi,t is the upper bound of ||θ̂i,t − θi||Λi,t which
is what we are interested in for the bandit algorithm.

1Ai,t(and Aj,t) is not full-rank when |Ti,t| < d.
To guarantee inversion, in practice we set Ai,t =∑
τ∈Ti,t xτx

T
τ + λId with λ = 0.01.

Kaige Yang, Xiaowen Dong, Laura Toni

With this goal in mind, we seek an expression for
Λi,t. Let Λt ∈ Rnd×nd denote the precision matrix

of vec(Θ̂t) ∈ Rnd, where Λi,t ∈ Rd×d is the i-th block
matrix along the diagonal of Λt. Defining the precision
matrix of vec(Θ̂t) ∈ Rnd as:

Λt = MtA
−1
t Mt (9)

with At = ΦtΦ
T
t , L⊗ = L ⊗ I, and Mt = At +αL⊗,

we have:

Λi,t = Ai,t + 2αLiiI + α2
n∑
j=1

L2
ijA
−1
j,t (10)

where Ai,t and Aj,t are defined in Lemma 1, and Lij
is the (i, j)-th element in L. A detailed derivation
of Eq. 10 is presented in Appendix B and Appendix
C. Given Eq. 10, we can upper bound the size of the
confidence set, which provides the value of βi,t.

Lemma 2. Let Vi,t = Ai,t + αLiiI, and I ∈ Rd×d is
the identity matrix. Given a scalar δ ∈ [0, 1], and by
defining ∆i =

∑n
j=1 Lijθj, the size of the confidence

set defined in Eq. 8 is upper bounded with probability
1− δ by βi,t:

βi,t = σ

√
2 log

|Vi,t|1/2
δ|αI|1/2

+
√
α||∆i||2 (11)

Proof. See Appendix D.

It is worth mentioning that the bound βi,t depends
on ∆i, which reflects information contained in the
graph structure. In the case of random-walk Lapla-
cian in which Lii = 1 and

∑
j 6=i−Lij = 1, ∆i =

θi − (
∑
j 6=i−Lijθj) measures the difference between

user feature θi and the weighted average of its neigh-
bors. To show the effect of graph structure on θi,
we consider two extreme cases: a) an empty graph2,
i.e., Lii = 1 and Lij = 0. In this case, ∆i =
θi, which recovers the confidence set used in Lin-
UCB [Abbasi-Yadkori et al., 2011]; b) a fully con-
nected graph withWij = 1 which means Lii = 1, Lij =
1

n−1 and θi = θj . In this case, ∆i = θi − n−1
n−1θi = 0,

leading to a much lower bound than the one in case a)
and with no graph structure to be exploited. In be-
tween, ∆i depends on the similarity between θi and
its neighbors θj , j 6= i. In general, the smoother the
signal is on the graph (in the sense of a small Lapla-
cian quadratic in Eq. 1), the lower the ||∆i||2. This
has been empirically shown in Figure 1(a), where we
depict ||∆i||2 as a function of the level of smoothness
quantified by tr(ΘTLΘ) where smaller value means
smoother Θ over the graph.

2For isolated node, we set Lii = 1.

Algorithm 1: GraphUCB

Input : α, T , L, δ
Initialization : For any i ∈ {1, 2, ..., n}
θ̂0,i = 0 ∈ Rd, Λ0,i = 0 ∈ Rd×d,
A0,i = 0 ∈ Rd×d, βi,t = 0.

for t ∈ [1, T] do
User index i is selected

1. Ai,t ← Ai,t−1 + xt−1x
T
t−1.

2. Aj,t ← Aj,t−1, ∀j 6= i.
3. Update Λi,t via Eq. 10.
4. Select xt via Eq. 12

where βi,t is defined in Eq. 11
5. Receive the payoff yt
6. Update Θ̂t via Eq. 4

end

Now that we have introduced ∆i, we are ready to mo-
tivate the choice of the random-walk graph Laplacian
instead of other commonly used graph Laplacians.

Remark 1. The two unique properties Lii = 1 and∑
j 6=i−Lij = 1 of the random-walk graph Laplacian
L ensure a bounded regret and lower regret with more
similar users. The same cannot be guaranteed with the
combinatorial or normalized Laplacian.

To see this more clearly, if the combinatorial Laplacian
L = D−W is used in the Laplacian-regularized esti-
mator (Eq. 4), the term ∆i becomes ∆i = Dii(θi +∑
j 6=i

Wij

Dii
θj). This term scales linearly with Dii,

the degree of each user i, resulting in a regret that
also scales with Dii and may become rather large for
densely connected graphs. On the other hand, if the
symmetric normalized Laplacian L̃ = D−1LD−1 is
used in Eq. 4, we have

∑
j 6=i−L̃ij 6= 1. It follows

that
∑
j 6=i−L̃ijθj will not be a convex combination

of θj , j 6= i, which means that there is no guaran-
tee for ∆i to be located inside the Euclidean ball de-
fined by ||θi||2 ≤ 1,∀i ∈ [1, ..., n], leading to an un-
bounded regret. By contrast, the two unique proper-
ties Lii = 1 and

∑
j 6=i−Lij of the random-walk norm-

laized Laplaican L ensure a bounded regret and less
regret if users are similar.

5 Algorithms

We now introduce our proposed GraphUCB bandit
algorithm, sketched in Algorithm 1 and based on the
principle of optimism in face of uncertainty :

xt = arg max
x∈D

(
xT θ̂i,t + βi,t||x||Λ−1

i,t

)
. (12)

GraphUCB is designed based on the Laplacian regu-
larized estimator Eq. 4 and the arm selection principle

Laplacian-Regularized Graph Bandits: Algorithms and Theoretical Analysis

in Eq. 12. Formally, at each time t, an user index
i is selected randomly from the user set U . The al-
gorithm first updates Λi,t based on the Gram matrix
Ai,t and Aj,t. Then, it selects the arm xt from the
arm set D following Eq. 12. Upon receiving the in-
stantaneous payoff yt, it updates the features of all
users Θ̂t by solving Eq. 4. The process then continues
to time t + 1, and is repeated until T . In Eq. 11 the
∆i is based on the unknown ground-truth θi and θj .
In practice, it is replaced by its empirical counterpart
∆̂i =

∑n
i=1 Lij θ̂i,t where θ̂i,t is the i-th row of Θ̂t.

One limitation of GraphUCB is its high computa-
tional complexity. Specifically, in solving Eq. 4, the
running time is dominated by the inversion (ΦtΦ

T
t +

αL ⊗ I)−1, which is in the order O(n2d2). This is
impractical when the user number n is large. Recall
that in the learning setting, at each time t, only one
user is selected. Thus, it suffices to only update θ̂i,t
(i.e., a local rather than global update). Therefore, we
propose to make use of Lemma 1 instead of Eq. 4 to
estimate θ̂i,t, which results in a significant reduction
in computational complexity. Clearly, the complexity
of the approximation in Lemma 1 is dominated by the
inversion of (Ai,t + αLiiI)−1 or A−1j,t , which is in the

order O(d2). Since the approximation involves n such
inversions, the total complexity isO(nd2), i.e., it scales
linearly (rather than quadratically) with n.

By using Lemma 1, we therefore propose a second algo-
rithm GraphUCB-Local serving as a simplified ver-
sion of GraphUCB. The only difference lies in the
number of users updated per round. GraphUCB up-
dates all users Θ̂t via Eq. 4 (closed-form solution),

while GraphUCB-Local only updates one user θ̂i,t
via Lemma 1 (approximated solution). Pseudocode of
GraphUCB-Local is presented in Appendix E.

6 Analysis

Before providing the finite-time analysis on the pro-
posed algorithms, we define:

Ψi,T =

∑
τ∈Ti,T ||xτ ||

2
Λ−1
i,τ∑

τ∈Ti,T ||xτ ||
2
V−1
i,τ

(13)

where Ti,T is the set of time steps in which user i is
served up to time T , Ai,τ =

∑
`∈Ti,τ x`x

T
` , Vi,τ =

Ai,τ + αLiiI and Λi,τ is defined as in Eq. 10. More-
over, ||xτ ||2Λ−1

i,τ

and ||xτ ||2V−1
i,τ

quantify the variance of

predicted payoff ŷτ = θ̂
T

i,τxτ in the cases where the
graph structured is exploited or ignored, respectively.

Lemma 3. Let Ψi,T be as defined in Eq. 13 and
||xτ ||2 ≤ 1 for any τ ≤ T , then:

Ψi,T ∈ (0, 1)

(a) (b)

Figure 1: (a) ||∆i||2 vs. smoothness (tr(ΘTLΘ)), (b)
Ψi,T vs. time.

and as T →∞, Ψi,T → 1. This implies:∑
τ∈Ti,T

||xτ ||2Λ−1
i,τ

≤
∑
τ∈Ti,T

||xτ ||2V−1
i,τ

.

Proof on the bound Ψi,T is provided in Appendix F.
The Lemma highlights the importance in taking into
account the graph structure in the payoff estimation,
showing that the uncertainty of ŷτ is reduced when
the graph structure is exploited. This effect dimin-
ishes with time: in Fig. 1(b), we see that as more data
are collected, the graph-based estimator approaches
the estimator in which users parameters are estimated
independently (since Ψi,T → 1).

6.1 Regret Upper Bound

We present the cumulative regret upper bounds satis-
fied by both GraphUCB and GraphUCB-Local.

Theorem 1. Ψi,T is defined in Eq. 13, Λi,T defined
in Eq. 10 and ∆i =

∑n
j=1 Lijθj. Without loss of gen-

erality, assume ||θi||2 ≤ 1 for any i ∈ {1, 2, ..., n} and
||xτ ||2 ≤ 1 for any τ ≤ T . Then, for δ ∈ [0, 1], for
any user i ∈ {1, 2, ..., n} the cumulative regret over
time horizon T satisfies the following upper bound with
probability 1− δ:

Ri,T =
∑
τ∈Ti,T

rτ = O
((√

d log(|Ti,T |) +
√
α||∆i||2

)
×

Ψi,T

√
d|Ti,T | log(|Ti,T |)

)
.

(14)

Assuming that users are served uniformly up to time
horizon T , i.e., |Ti,T | = T/n, the network regret (the
total cumulative regret experienced by all users) satis-
fies the following upper bound with probability 1− δ:

RT =

n∑
i=1

Ri,T =

n∑
i=1

Õ
(

Ψi,T d
√
T/n

)
= Õ

(
d
√
Tnmax

i∈U
Ψi,T

)
.

(15)

Kaige Yang, Xiaowen Dong, Laura Toni

Proof. See Appendix G.

Remark 2. Both GraphUCB and GraphUCB-
Local satisfy Theorem 1.

The regret upper bound in Theorem 1 is derived based
on GraphUCB-Local algorithm (Appendix G). Due
to the approximation error introduced in the Taylor
expansion, the regret of GraphUCB-Local is worse
than that of GraphUCB. Therefore, Theorem 1 is
also an upper bound of GraphUCB.

6.2 Comparison with LinUCB and Gob.Lin

Under the same setting, the single-user regret upper
bound of LinUCB [Li et al., 2010] is:

Ri,T = O
((√

d log(|Ti,T |) +
√
α||θi||2

)
×√

d|Ti,T | log(|Ti,T |)
) (16)

Since ||∆i||2 ≤ ||θi||2 and Ψi,T ∈ (0, 1) (Lemma
2 and Lemma 3), GraphUCB (and GraphUCB-
Local) leads to a lower regret −Eq. 14− than Lin-
UCB −Eq. 16.

The cumulative regret experienced by all users in
Gob.Lin [Cesa-Bianchi et al., 2013] is upper bounded
by:

RT = 4

√
T (σ2 log

|Mt|
δ

+ L(θ) log |Mt| = Õ(nd
√
T)

(17)

where L(θ) =
∑n
i=1 ||θi||2 +

∑
(i,j)∈E ||θi − θj ||2.

Clearly, the cumulative regret achieved by Gra-
phUCB in Eq. 15 is in the order of Õ(

√
n) which is

better than that in Eq. 17. This is mainly due to the
different UCBs used in these algorithms. Specifically,
Gob.Lin proposed the following bound:

βt = σ

√
log
|Mt|
δ

+ L(θ) = Õ(
√
nd), (18)

while we propose a lower single-user bound βi,t =

Õ(
√
d) (Eq. 11). As described in Remark 1, the bound

in Eq. 18 grows with the degree of the network, which
in the bound is hidden in L(θ). We emphasize that in
practice GOB.Lin could perform much better than its
regret upper bound Eq. 17, if βt defined in Eq. 18 is
replaced by λ

√
log(t+ 1) where λ is a tunable param-

eter. This is exactly what the authors of Gob.Lin
did in their original paper when reporting empirical
results. We follow the same trick when implement-
ing Gob.Lin in our experiments, and show that Gra-
phUCB still achieves better performance empirically.

(a) RBF (s=0.5) (b) ER (p=0.4)

Figure 2: Cumulative regret vs. time for different type
of graphs (ER and RBF) consistently generated with
the same level of smoothness and sparsity between
graphs.

7 Experiment Results

We evaluate the proposed algorithms and compare
them to LinUCB (no graph information exploited
in the bandit), Gob.Lin (graph exploited in the fea-
tures estimation) and CLUB (graph exploited to clus-
ter users). All results reported are averaged across 20
runs. In all experiments, we set confidence probabil-
ity parameter δ = 0.01, noise variance σ = 0.01, and
regularization parameter α = 1. For Gob.Lin, we use
βi,t = λ

√
log(t+ 1), and λ is set using the best value

in range [0, 1]. For CLUB, the edge deletion parame-
ter α2 is tuned to its best value.

7.1 Experiments on Synthetic Data

In the synthetic simulations, we first generate a graph
G and then generate a smooth Θ via Eq. 19 which is
proposed in [Yankelevsky and Elad, 2016]:

Θ = arg min
Θ∈Rn×d

||Θ−Θ0||2F + γtr(ΘTLΘ) (19)

where Θ0 ∈ Rn×d is a randomly initialized matrix,
and L is the random-walk graph Laplacian of G. The
second term in Eq. 19 promotes the smoothness of Θ:
the larger the γ, the smoother the Θ over the graph3.
In all experiments, n = 20, d = 5. To simulate G, we
follow two random graph models commonly used in the
network science community: 1) Radial basis function
(RBF) model, a weighted fully connected graph, with
edge weightsWij = exp(−ρ||θi−θj ||2); 2) Erdős Rényi
(ER) model, an unweighted graph, in which each edge
is generated independently and randomly with proba-
bility p.

3The regularization parameter γ in Eq. 19 is used to
generate a smooth function in the synthetic settings, while
the parameter α in Eq. 4 is used in the bandit algorithm
to infer the smooth prior when estimating user features.

Laplacian-Regularized Graph Bandits: Algorithms and Theoretical Analysis

(a) (b)

Figure 3: Cumulative regret for RBF graphs with dif-
ferent level of smoothness (a) and sparsity (b).

In Figure 2, we depict the cumulative per-user regret
as a function of time for both RBF and ER graphs for
both our proposed algorithms and competitors. The
regret is averaged over all users and over all runs. Un-
der all graph models, GraphUCB outperforms its
competitors consistently with a large margin. Also
GraphUCB-Local consistently outperform competi-
tor algorithms, with however slightly degradated per-
formance with respect to GraphUCB. This is due to
the approximation introduced by Eq. 7. Gob.Lin is
a close runner since it is also based on the Laplacian
regularized estimator, but it performs worse than the
proposed algorithms, as already explained in the previ-
ous section. CLUB performs relative poor since there
is no clear clusters in the graph. Nevertheless, it still
outperforms LinUCB by grouping users into clusters
in the early stage which speeds up the learning process.
It is worth noting that the two subfigures depict the
same algorithm for two different graph models (RBF
and ER) with the same level of smoothness and spar-
sity. The trend of the cumulative regret is the same,
highlighting that the algorithm is not affected by the
graph model. This behavior is reinforced in Appendix
I where we provide further results.

We are now interested in evaluating the performance
of the proposed algorithms against different graph
topologies, by varying signal smoothness and sparsity
of graph (edge density) as follows:
Smoothness [γ]: We first generate a RBF graph. To
control the smoothness, we vary γ ∈ [0, 10].
Sparsity [s]: We first generate a RBF graph, then
generate a smooth Θ via Eq. 19. To control the spar-
sity, we set a threshold s ∈ [0, 1] on edge weights Wij

such that Wij less than s are removed.

Figure 3 depicts the cumulative regret for different
level of smoothness and sparsity of G. GraphUCB
and GraphUCB-Local show similar patterns (with
GraphUCB-Local leading to higher regret due
to the already commented approximation): (i) the
smoother Θ the lower the regret, which is consistent

(a) MovieLens (b) Netflix

Figure 4: Performance on Real-World data.

with the Laplacian-regualrized estimator of Eq. 4;
(ii) denser graphs lead to lower regret since more
connectivity provides more graph information which
speeds up the learning process.

7.2 Experiments on Real-World Data

We then carry out experiments on two real-world
datasets : Movielens [Lam and Herlocker, 2006] and
Netflix [Bennett et al., 2007]. We follow the data
pre-processing steps in [Valko et al., 2014], described
in details in Appendix K. The cumulative regret
over time is depicted in Figure 4 for both datasets.
Both GraphUCB and GraphUCB-Local outper-
form baseline algorithms in all cases. Similarly to
the synthetic experiments, LinUCB performs poorly,
while Gob.Lin shows a regret behavior more similar
to the proposed algorithms. In the case of Movielens,
CLUB outperforms Gob.Lin. A close inspection of
the data reveals that ratings provided by all users are
highly concentrated. It means most users like a few
set of movies. This is a good model for the clustering
algorithm implemented in CLUB, hence the gain.

8 Conclusion

In this work, we propose a graph-based ban-
dit algorithm GraphUCB and its scalable version
GraphUCB-Local, both of which outperform the
state-of-art bandit algorithms in terms of cumulative
regret. On the theoretical side, we introduce a novel
UCB embedding the graph structure in a natural way
and show clearly that exploring the graph prior could
reduce the cumulative regret. We demonstrate that
the graph structure helps reduce the size of confidence
set of the estimation of user features and the uncer-
tainty of predicted payoff. As for future research di-
rections, one possibility is to relax the assumption that
the user graph is available and infer the graph from the
data, ideally in a dynamic fashion.

Kaige Yang, Xiaowen Dong, Laura Toni

Acknowledge

This work has been partially funded by Cisco Research
Center.

References

[Abbasi-Yadkori et al., 2011] Abbasi-Yadkori, Y.,
Pál, D., and Szepesvári, C. (2011). Improved algo-
rithms for linear stochastic bandits. In Advances
in Neural Information Processing Systems, pages
2312–2320.

[Agrawal and Goyal, 2013] Agrawal, S. and Goyal, N.
(2013). Thompson sampling for contextual bandits
with linear payoffs. In International Conference on
Machine Learning, pages 127–135.

[Alvarez et al., 2012] Alvarez, M. A., Rosasco, L.,
Lawrence, N. D., et al. (2012). Kernels for vector-
valued functions: A review. Foundations and
Trends R© in Machine Learning, 4(3):195–266.

[Auer, 2002] Auer, P. (2002). Using confidence bounds
for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3(Nov):397–422.

[Bennett et al., 2007] Bennett, J., Lanning, S., et al.
(2007). The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35. New York,
NY, USA.

[Cesa-Bianchi et al., 2013] Cesa-Bianchi, N., Gentile,
C., and Zappella, G. (2013). A gang of bandits.
In Advances in Neural Information Processing Sys-
tems, pages 737–745.

[Chapelle and Li, 2011] Chapelle, O. and Li, L.
(2011). An empirical evaluation of thompson sam-
pling. In Advances in neural information processing
systems, pages 2249–2257.

[Dani et al., 2008] Dani, V., Hayes, T. P., and
Kakade, S. M. (2008). Stochastic linear optimiza-
tion under bandit feedback.

[Gentile et al., 2014] Gentile, C., Li, S., and Zappella,
G. (2014). Online clustering of bandits. In Interna-
tional Conference on Machine Learning, pages 757–
765.

[Korda et al., 2016] Korda, N., Szörényi, B., and
Shuai, L. (2016). Distributed clustering of linear
bandits in peer to peer networks. In Journal of
machine learning research workshop and conference
proceedings, volume 48, pages 1301–1309. Interna-
tional Machine Learning Societ.

[Lam and Herlocker, 2006] Lam, S. and Herlocker, J.
(2006). Movielens data sets. Department of Com-
puter Science and Engineering at the University of
Minnesota.

[Lattimore and Szepesvari, 2016] Lattimore, T. and
Szepesvari, C. (2016). The end of optimism? an
asymptotic analysis of finite-armed linear bandits.
arXiv preprint arXiv:1610.04491.

[Lattimore and Szepesvári, 2018] Lattimore, T. and
Szepesvári, C. (2018). Bandit algorithms. preprint.

[Li et al., 2010] Li, L., Chu, W., Langford, J., and
Schapire, R. E. (2010). A contextual-bandit ap-
proach to personalized news article recommenda-
tion. In Proceedings of the 19th international con-
ference on World wide web, pages 661–670. ACM.

[Li et al., 2016] Li, S., Karatzoglou, A., and Gentile,
C. (2016). Collaborative filtering bandits. In Pro-
ceedings of the 39th International ACM SIGIR con-
ference on Research and Development in Informa-
tion Retrieval, pages 539–548. ACM.

[Liu et al., 2018] Liu, B., Wei, Y., Zhang, Y., Yan, Z.,
and Yang, Q. (2018). Transferable contextual bandit
for cross-domain recommendation. In Thirty-Second
AAAI Conference on Artificial Intelligence.

[Nguyen and Lauw, 2014] Nguyen, T. T. and Lauw,
H. W. (2014). Dynamic clustering of contextual
multi-armed bandits. In Proceedings of the 23rd
ACM International Conference on Conference on
Information and Knowledge Management, pages
1959–1962. ACM.

[Robbins, 1952] Robbins, H. (1952). Some aspects of
the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535.

[Shuman et al., 2013] Shuman, D. I., Narang, S. K.,
Frossard, P., Ortega, A., and Vandergheynst, P.
(2013). The emerging field of signal processing on
graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE Sig-
nal Processing Magazine, 30(3):83–98.

[Valko et al., 2014] Valko, M., Munos, R., Kveton, B.,
and Kocák, T. (2014). Spectral bandits for smooth
graph functions. In International Conference on
Machine Learning, pages 46–54.

[Vaswani et al., 2017] Vaswani, S., Schmidt, M., and
Lakshmanan, L. V. (2017). Horde of bandits us-
ing gaussian markov random fields. arXiv preprint
arXiv:1703.02626.

Laplacian-Regularized Graph Bandits: Algorithms and Theoretical Analysis

[Wu et al., 2016] Wu, Q., Wang, H., Gu, Q., and
Wang, H. (2016). Contextual bandits in a collabora-
tive environment. In Proceedings of the 39th Inter-
national ACM SIGIR conference on Research and
Development in Information Retrieval, pages 529–
538. ACM.

[Yang and Toni, 2018] Yang, K. and Toni, L. (2018).
Graph-based recommendation system. In 2018
IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pages 798–802. IEEE.

[Yankelevsky and Elad, 2016] Yankelevsky, Y. and
Elad, M. (2016). Dual graph regularized dictionary
learning. IEEE Transactions on Signal and Infor-
mation Processing over Networks, 2(4):611–624.

