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Abstract

The problem of selecting a small-size repre-
sentative summary of a large dataset is a
cornerstone of machine learning, optimiza-
tion and data science. Motivated by applica-
tions to recommendation systems and other
scenarios with query-limited access to vast
amounts of data, we propose a new rigor-
ous algorithmic framework for a standard
formulation of this problem as a submodu-
lar maximization subject to a linear (knap-
sack) constraint. Our framework is based
on augmenting all partial Greedy solutions
with the best additional item. It can be in-
stantiated with negligible overhead in any
model of computation, which allows the clas-
sic Greedy algorithm and its variants to be
implemented. We give such instantiations
in the offline (Greedy+Max), multi-pass
streaming (Sieve+Max) and distributed
(Distributed Sieve+Max) settings. Our
algorithms give (1/2− ε)-approximation with
most other key parameters of interest being
near-optimal. Our analysis is based on a new
set of first-order linear differential inequalities
and their robust approximate versions. Exper-
iments on typical datasets (movie recommen-
dations, influence maximization) confirm scal-
ability and high quality of solutions obtained
via our framework. Instance-specific approxi-
mations are typically in the 0.6-0.7 range and
frequently beat even the (1 − 1/e) ≈ 0.63
worst-case barrier for polynomial-time algo-
rithms.
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1 Introduction

A fundamental problem in many large-scale machine
learning, data science and optimization tasks is finding
a small representative subset of a big dataset. This
problem arises from applications in recommendation
systems Leskovec et al. (2007); El-Arini and Guestrin
(2011); Bogunovic et al. (2017); Mitrović et al. (2017);
Yu et al. (2018); Avdiukhin et al. (2019), exemplar-
based clustering Gomes and Krause (2010), facility
location Lindgren et al. (2016), image processing Iyer
and Bilmes (2019), viral marketing Hartline et al.
(2008), principal component analysis Khanna et al.
(2015), and document summarization Lin and Bilmes
(2011); Wei et al. (2013); Sipos et al. (2012) and can
often be formulated as constrained monotone submod-
ular optimization under various constraints such as
cardinality Badanidiyuru et al. (2014); Bateni et al.
(2018); Kazemi et al. (2019), knapsack Huang et al.
(2017), matchings Chakrabarti and Kale (2014), and
matroids Călinescu et al. (2011); Anari et al. (2019)
due to restrictions demanded by space, budget, di-
versity, fairness or privacy. As a result, constrained
submodular optimization has been recently and ex-
tensively studied in various computational models,
including centralized Nemhauser et al. (1978), dis-
tributed Mirzasoleiman et al. (2013); Kumar et al.
(2015); da Ponte Barbosa et al. (2015); Mirrokni and
Zadimoghaddam (2015); Mirzasoleiman et al. (2016);
da Ponte Barbosa et al. (2016); Liu and Vondrák (2019),
streaming Badanidiyuru et al. (2014); Buchbinder et al.
(2015); Norouzi-Fard et al. (2018); Agrawal et al. (2019);
Kazemi et al. (2019), and adaptive Golovin and Krause
(2011); Balkanski and Singer (2018); Balkanski et al.
(2019); Fahrbach et al. (2019); Ene and Nguyen (2019b);
Chekuri and Quanrud (2019) among others.

In this paper we focus on monotone submodular maxi-
mization under a knapsack constraint, which captures
the scenario when the representative subset should have
a small cost or size. While a number of algorithmic tech-
niques exist for this problem, there are few that robustly
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scale to large data and can be easily implemented in
various computing frameworks. This is in contrast with
a simpler cardinality-constrained version in which only
the number of elements is restricted. In this setting
the celebrated Greedy algorithm of Nemhauser et al.
(1978) enjoys both an optimal approximation ratio and
a simplicity that allows easy adaptation in various envi-
ronments. For knapsack constraints, such a simple and
universal algorithm is unlikely. In particular, Greedy
does not give any approximation guarantee.

We develop a framework that augments solutions con-
structed by Greedy and its variations and gives almost
1/2-approximations1 in various computational models.
For example, in the multi-pass streaming setting we
achieve optimal space and almost optimal number of
queries and running time. We believe that our frame-
work is robust to the choice of the computational model
as it can be implemented with essentially the same com-
plexity as that of running Greedy and its variants.

1.1 Preliminaries and our contributions

A set function f : 2U → R is submodular if for every
S ⊆ T ⊆ U and e ∈ U it holds that f(e ∪ T )− f(T ) ≤
f(e ∪ S) − f(S). Moreover, f is monotone if for ev-
ery S ⊆ T ⊆ U it holds that f(T ) ≥ f(S). Intu-
itively, elements in the universe contribute non-negative
utility, but their resulting gain is diminishing as the
size of the set increases. In the monotone submodu-
lar maximization problem subject to a knapsack con-
straint, each item e has cost c(e). Given a parameter
K > 0, the task is to maximize a non-negative mono-
tone submodular function f(S) under the constraint
c(S) :=

∑
e∈S c(e) ≤ K. Without loss of generality, we

assume that mine∈S c(e) ≥ 1, which can be achieved
by rescaling the costs and taking all items with cost 0.
Then K̃ = min(n,K) is an upper bound on the number
of elements in any feasible solution.

Any algorithm for submodular maximization requires
query access to f . As query access can be expensive, the
number of queries is typically considered one of the per-
formance metrics. Furthermore, in some critical appli-
cations of submodular optimization such as recommen-
dation systems, another constraint often arises from
the fact that only queries to feasible sets are allowed
(e.g. when click-through rates can only be collected for
sets of ads which can be displayed to the users). Prac-
tical algorithms for submodular optimization hence
typically only make such queries, an assumption com-
monly used in the literature (see e.g. Norouzi-Fard et al.
(2018)). For any algorithm that only makes queries on
feasible sets, it is easy to show that Ω(n2) queries are

1Algorithm gives an α-approximation if it outputs S such
that f(S) ≥ αf(OPT), where OPT is optimum solution.

required to go beyond 1/2-approximation under various
assumptions on f (Theorem 2.14). Hence it is natural
to ask whether we can get a 1/2-approximation, while
keeping other performance metrics of interest nearly
optimal and hence not compromising on practicality.
We answer this question positively.

We first state the following simplified result in the most
basic offline model (i.e. when an algorithm can access
any element at any time) to illustrate the main ideas
and then improve parameters in our other results. In
this model, we are given an integer knapsack capacity
K ∈ Z+ and a set E of elements e1, . . . , en from a finite
universe U .2

Theorem 1.1 (Offline Greedy+Max)
Let K̃ = min(n,K). There exists an offline algo-
rithm Greedy+Max (Algorithm 1) that gives a 1/2-
approximation for the submodular maximization prob-
lem under a knapsack constraint with query complexity
and running time O

(
K̃n
)
(Theorem 2.6).

In the single-pass streaming model, the algorithm
is given K and a stream E consisting of elements
e1, . . . , en ∈ U , which arrive sequentially. The objective
is to minimize the auxiliary space used by algorithm
throughout the execution. In the multi-pass streaming
model, the algorithm is further allowed to make mul-
tiple passes over E. This model is typically used for
modeling storage devices with sequential access (e.g.
hard drives) while using a small amount of RAM. In
this setting minimizing the number of passes becomes
another key priority. Note that since Ω(K̃) is a trivial
lower bound on space and Ω(n) is a trivial lower bound
on time and query complexity of any approximation
algorithm that queries feasible sets, our next result is
almost optimal in most parameters of interest.

Theorem 1.2 (Multi-pass streaming algorithm
Sieve+Max) Let K̃ = min(n,K). There exists a
multi-pass streaming algorithm Sieve+Max (Algo-
rithm 2) that uses O

(
K̃
)

space and O (1/ε) passes
over the stream and outputs a (1/2− ε)-approximation
to the submodular maximization problem under a knap-
sack constraint, with query complexity and running
time3 O

(
n(1/ε+ log K̃)

)
(see Theorem 2.10).

We also give an algorithm in the massively-parallel
2W.l.o.g. for all e we have 1 ≤ c(e) ≤ K as one can

rescale the capacity and costs and filter out all items with
cost more than K (in all our results this means replacing
K with the aspect ratio K/mine∈E c(e)).

3Note that when 1
ε

� K, in terms of running time
our streaming algorithm is more efficient than our offline
algorithm. Hence, in the offline setting one can use the best
of the two algorithms depending on the parameters.
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computation (MPC) model Karloff et al. (2010) used
to model MapReduce/Spark-like systems. We use the
most restrictive version, which only allows linear to-
tal memory, running time and communication per
round Andoni et al. (2014). In this model, the in-
put set E of size n is arbitrarily distributed across m
machines, each with s = O(n/m) memory so that the
overall memory is O (n). A standard setting of pa-

rameters for submodular optimization is m =
√
n/K̃

and s = O(
√
nK̃) (see e.g. Liu and Vondrák (2019);

Avdiukhin et al. (2019)). One of the machines is desig-
nated as the central machine and outputs the solution
in the end. The machines communicate to each other in
a number of synchronous rounds. In each round, each
machine receives an input of size O(

√
nK̃), performs

a local linear-time computation, and sends an output
of size O(

√
nK̃) to other machines before the next

round begins. The primary objective in this model is
minimizing the number of rounds. Our main result in
this model is given below.

Theorem 1.3 (MPC algorithm Distributed
Sieve+Max) Let K̃ = min(n,K). There exists
an MPC algorithm Distributed Sieve+Max (Al-

gorithm 3)that runs in O (1/ε) rounds on
√
n/K̃ ma-

chines, each with O(
√
nK̃) memory. Each machine

uses query complexity and runtime O(
√
nK̃) per round.

The algorithm outputs a (1/2− ε)-approximation to the
submodular maximization problem under a knapsack
constraint(see Theorem 2.13).

In particular, our algorithm uses execution time
O(
√
nK̃/ε) and total communication, CPU time and

number of queries O (n/ε).

1.2 Relationship to previous work

The classic version of the problem considered in this
work sets c(e) = 1 for all e ∈ U and is known as
monotone submodular maximization under a cardinal-
ity constraint and has been extensively studied. The
celebrated result of Nemhauser et al. (1978) gives a
1− 1/e ≈ 0.63-approximation using Greedy, which is
optimal unless P 6= NP , Feige (1998). The problem of
maximizing a monotone submodular function under a
knapsack constraint was introduced by Wolsey (1982),
who gave an algorithm with ≈ 0.35-approximation.
Khuller et al. (1999) gave a simple GreedyOrMax al-
gorithm with 1−1/

√
e ≈ 0.39-approximation as well as a

more complicated algorithm PartialEnum+Greedy
which requires a partial enumeration over an initial seed
of three items and hence runs in O

(
K̃n4

)
time. Par-

tialEnum+Greedy was later analyzed by Sviridenko

(2004) who showed a (1 − 1/e) ≈ 0.63-approximation,
matching the hardness of Feige (1998). The subsequent
search for more efficient algorithms has motivated a
number of further studies. Badanidiyuru and Von-
drák (2014) and Ene and Nguyen (2019a) give algo-
rithms with approximation 1− 1/e− ε. However while
these algorithms are theoretically interesting, they are
self-admittedly impractical due to their exponential
dependence on large polynomials in 1/ε.

Compared to the well-studied cardinality-constrained
case, streaming literature on monotone submodular
optimization under a knapsack constraint is relatively
sparse. A summary of results in the streaming setting
is given in Figure 1. Prior to our work, the best re-
sults in streaming are by Huang et al. (2017); Huang
and Kakimura (2019). While the most recent work
of Huang and Kakimura (2019) achieves the (1/2− ε)-
approximation, its space, runtime and query complex-
ities are far from optimal and depend on large poly-
nomials of 1/ε, making it impractical for large data.
Compared to this result, our Theorem 1.2 gives an
improvement on all main parameters of interest, lead-
ing to near-optimal results. On the other hand, for
the cardinality-constrained case, an optimal single-pass
(1/2− ε)-approximation has very recently been achieved
by Kazemi et al. (2019). While using different ideas,
our multi-pass streaming result matches theirs in terms
of approximation, space and improves slightly on the
number of queries and runtime (from O

(
n log K̃/ε

)
to

O
(
n(1/ε + log K̃)

)
) only at the cost of using a constant

number of passes for constant ε.

In the distributed setting, Mirzasoleiman et al. (2013)
give an elegant two round protocol for monotone sub-
modular maximization subject to a knapsack constraint
that achieves a subconstant guarantee. Kumar et al.
(2015) later give algorithms for both cardinality and
matroid constraints that achieve a constant factor ap-
proximation, but the number of rounds is Θ(log ∆),
where ∆ is the maximum increase in the objective due
to a single element, which is infeasible for large datasets
since ∆ even be significantly larger than the size of the
entire dataset. da Ponte Barbosa et al. (2015, 2016)
subsequently give a framework for both monotone and
non-monotone submodular maximization under cardi-
nality, matroid, and p-system constraints. Specifically,
the results of da Ponte Barbosa et al. (2016) achieves
almost 1/2-approximation for these settings using two
rounds, a result subsequently matched by Liu and Von-
drák Liu and Vondrák (2019) without requiring the
duplication of items, as well as a (1− 1/e− ε) approxi-
mation using O (1/ε) rounds. da Ponte Barbosa et al.
(2015) also gives a two-round algorithm for a knapsack
constraint that achieves roughly 0.17-approximation in
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Reference Approx. Passes Space Runtime and Queries
Huang et al. (2017) 1/3− ε 1 O

(
1
εK logK

)
O
(

1
εn logK

)
Huang et al. (2017) 4/11− ε 1 O

(
1
εK logK

)
O
(

1
εn logK

)
Huang et al. (2017) 2/5− ε 3 O

(
1
ε2K log2K

)
O
(

1
εn logK

)
Huang and Kakimura (2019) 1/2− ε O (1/ε) O

(
1
ε7K log2K

)
O
(

1
ε8n log2K

)
Sieve+Max (Alg. 2) 1/2− ε O (1/ε) O (K) O

(
n
(

1
ε + logK

))
Fig. 1: Monotone submodular maximization under a knapsack constraint in the streaming model.

expectation.

For extensions to other constraints, non-monotone ob-
jectives and other generalizations see e.g. Chakrabarti
and Kale (2014); Chekuri et al. (2015); Chan et al.
(2017); Elenberg et al. (2017); Epasto et al. (2017);
Mirzasoleiman et al. (2018); Feldman et al. (2018);
Chekuri and Quanrud (2019).

1.3 Our techniques

Let f (e |S) = f(e ∪ S) − f(S) be the marginal gain
and ρ (e |S) = f (e |S) /c(e) be the marginal density
of e with respect to S. Greedy starts with an empty
set G and repeatedly adds an item that maximizes
ρ (e |G) among the remaining items that fit. While
by itself this does not guarantee any approximation,
the classic result of Khuller et al. (1999) shows that
GreedyOrMax algorithm, which takes the best of
the greedy solution and the single item with maximum
value, gives a 0.39-approximation but cannot go beyond
0.44-approximation. Our algorithm Greedy+Max
(Algorithm 1) instead attempts to augment every par-
tial greedy solution with the item giving the largest
marginal gain. For each i, let Gi be the set of the first
i items taken by greedy. We augment this solution
with the item si which maximizes f (si | Gi) among the
remaining items that fit. Greedy+Max then outputs
the best solution among such augmentations.

Our main technical contribution lies in the analysis
of this algorithm and its variants, which shows a 1/2-
approximation (this analysis is tight, see Example 2.1 ).
Let o1 be the item from OPT with the largest cost. The
main idea is to consider the last partial greedy solution
such that o1 still fits. Since o1 has the largest cost in
OPT, we can augment the partial solution with any
element from OPT, and all of them have a non-greater
marginal density than the next selected item. While
Greedy+Max augments partial solutions with the
best item, for the sake of analysis it suffices to consider
only augmentations with o1 (note that the item itself
is unknown to the algorithm).

To simplify the presentation, in the analysis we rescale

f and the costs so that f(OPT) = 1 and K = 1.
Suppose that at some point, the partial greedy solution
has collected elements with total cost x ∈ [0, 1]. We use
a continuous function g(x) to track the performance
of Greedy. We also introduce a function g1(x) to
track the performance of augmentation with o1 and
then show that g and g1 satisfy a differential inequality
g1(x) + (1 − c (o1))g′(x) ≥ 1 (Lemma 2.5), where g′
denotes the right derivative. To give some intuition
about the proof, consider the case when there exists
a partial greedy solution of cost exactly 1− c (o1). If
g1(1−c (o1)) ≥ 1/2, then the augmenation with o1 gives
a 1/2-approximation. Otherwise, by the differential
inequality, g′(1− c (o1)) ≥ 1/2(1−c(o1)). Since g(0) = 0
and g′ is non-increasing, g(1−c (o1)) ≥ (1−c (o1))g′(1−
c (o1)) ≥ 1/2. See full analysis for how to handle the
cases when there is no partial solution of cost exactly
1− c (o1).

Our streaming algorithm Sieve+Max and distributed
algorithm Distributed Sieve+Max approximately
implement Greedy+Max in their respective settings.
Sieve+Max makes O (1/ε) passes over the data, and
for each pass it selects items with marginal density
at least a threshold cf(OPT)

K(1+ε)i in the i-th pass for some
constant c > 0. This requires having a constant-factor
approximation of f(OPT) which can be computed us-
ing a single pass. Distributed Sieve+Max combines
the thresholding approach with the sampling technique
developed by Liu and Vondrák (2019) for the cardi-
nality constraint. The differential inequality which we
develop for Greedy+Max turns out to be robust to
various sources of error introduced through threshold-
ing and sampling. As we show, it continues to hold with
functions and derivatives replaced with their (1 + ε)-
approximations, which results in (1/2−ε)-approximation
guarantees for both algorithms.

2 Algorithms and analysis

2.1 Offline algorithm Greedy+Max

We introduce the main ideas by first describing our
offline algorithm Greedy+Max which is then adapted
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to the streaming and distributed settings. As this
algorithm is a modification of the standard Greedy
algorithm we describe Greedy first. Greedy starts
with an empty set G and in each iteration selects an
item e with the highest marginal density ρ (e |G) that
still fits into the knapsack. We refer to the resulting
solution as the greedy solution and denote it as G.
Greedy+Max is based on augmenting each partial
solution constructed by Greedy with the item of the
largest marginal value (as opposed to density) and
taking the best among such augmentations. Recall that
Gi is the set of the first i items in the greedy solution.
Greedy+Max finds for each i an augmenting item si
which maximizes f(si ∪ Gi) among all items that still
fit, i.e. c(si ∪ Gi) ≤ K. The final output is the best
among all such augmented solutions. Implementation
is given as Algorithm 1. In the rest of this section

Algorithm 1: Offline algorithm Greedy+Max
Input: Set of elements E = e1, . . . , en, knapsack
capacity K, cost function c(·), non-negative
monotone submodular function f ;
Output: 1

2 -approximation for submodular
maximization under knapsack constraint;
G← ∅, S ← ∅;
while E 6= ∅ do

s← argmaxe∈E f (e |G);
if f(S) < f(G ∪ s) then

S ← G ∪ s;
a← argmaxe∈E ρ (e |G);
G← G ∪ a;
K ← K − c(a);
Remove all elements e ∈ E with c(e) > K;

return S

we show that Greedy+Max gives 1/2-approximation.
This analysis is tight as illustrated by the following
example:

Example 2.1 Let e1, e2, e3 be three items such that
f(e1) = f(e2) = 1

2 and f(e3) = 1
2 + ε for any ε > 0.

Let c(e1) = c(e2) = 1
2 and c(e3) = 1+ε

2 . Let f be a
linear function, i.e. f(S) =

∑
e∈S f(e). Then OPT =

{e1, e2} has value 1 while Greedy+Max outputs {e3}
of value 1

2 + ε.

As discussed in Section 1.3, our analysis is based on a
number of differential inequalities for functions tracking
the performance of our algorithm. We assume that
these functions are continuous and piecewise smooth,
and by ξ′(x) we denote the right-hand derivative of
ξ at point x. All these inequalities are of the form
ξ(x) + αξ′(x) ≥ β for some function ξ, applied in a
certain range [u, v] and have some initial condition ξ(u).
We frequently need to integrate these inequalities to
get a lower bound on ξ(v) which can be done as follows:

Our proof proceeds by case analysis on whether o1,
the item of the largest cost in OPT, is included in the
greedy solution G or not. We first show that if o1 ∈ G,
then f(G) is at least a 1/2-approximation.

Let OPT be the optimal solution, i.e. the maximizer of
f(OPT) under c(OPT) ≤ K. Let o1 be the element of
the largest cost in OPT. W.l.o.g. and only for the sake
of analysis of approximation we rescale the function
values and costs so that f(OPT) = 1 and c(OPT) =
K = 14. We first define a greedy performance function
g(x) which allows us to track the performance of the
greedy solution in a continuous fashion. Let G be
the greedy solution computed by Algorithm 1 and let
g1, g2, . . . , gm be the elements in G in the order they
were added and recall that Gi = {g1, . . . , gi}. For a
fixed x, let its greedy index i be the smallest index such
that c(Gi) > x.

Definition 2.2 (Greedy performance function)
For x ∈ [0, 1] we define g(x) as:

g(x) = f(Gi−1) + (x− c(Gi−1))ρ (gi | Gi−1) .

Note that g is a continuous and monotone piecewise-
linear function such that g(0) = 0. Since an important
role in the analysis is played by the derivative of this
function we further define g′ to be the right derivative
for g so that g′ is defined everywhere on the interval
[0, c(G)) and is always non-negative.

We now define a function g+(x) which tracks the per-
formance of Greedy+Max when the greedy solution
collects a set of cost x. Note that the cost of the last
item which Greedy+Max uses to augment the solu-
tion does not count in the argument of this function.

Definition 2.3 (Greedy+Max perfor-
mance function) For any fixed x, let i be
the smallest index such that c(Gi) > x. We
define g+(x) = g(x) + f (v | Gi−1), where
v = argmaxe∈E\Gi−1:c(e∪Gi−1)≤K f (e | Gi−1) is the
element with the largest marginal gain with respect to
the current partial greedy solution Gi−1.

For technical reasons which we describe below instead
of working directly with g+ it is easier to work with a
lower bound on it g1 which has some nicer properties.
For g1 we only consider adding o1, the largest item
from OPT, to the current partial greedy solution. Note
that hence g1 is only defined while this item still fits.
Consider the last item added by the greedy solution
before the cost of this solution exceeds 1− c(o1). We
define c∗ so that 1− c(o1)− c∗ is the cost of the greedy
solution before this item is taken.

4Note that if c(OPT) < K then we can set K = c(OPT)
first as this does not affect f(OPT ).
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Definition 2.4 (Greedy+Max performance
lower bound) For x ∈ [0, 1 − c (o1) − c∗] we define
g1(x) = g(x) + f (o1 | Gi−1) so that g1(x) ≤ g+(x).

Lemma 2.5 (Greedy+Max inequality) Let g′
denote the right derivative of g. Then for all x ∈
[0, 1− c (o1)− c∗], the following differential inequality
holds:

g1(x) + (1− c (o1))g′(x) ≥ 1

Proof : Similarly to the proof of the standard greedy
inequality, it suffices to show the statement only for
points where x = c(Gi−1) for some i ≥ 1. Hence, we
have g1(x) = g(c(Gi−1)) + f (o1 | Gi−1) = f(Gi−1 ∪ o1).
Since we normalized f(OPT) = 1, then by monotonicity,
1 = f(OPT) ≤ f(Gi−1 ∪ OPT). Hence:

1 ≤ f(Gi−1 ∪ OPT)

= f(Gi−1 ∪ o1) + f (OPT \ (o1 ∪ Gi−1) | Gi−1 ∪ o1)

≤ g1(x) +
∑

e∈OPT\(o1∪Gi−1)

f (e | Gi−1 ∪ o1)

= g1(x) +
∑

e∈OPT\(o1∪Gi−1)

c(e)ρ (e | Gi−1 ∪ o1) ,

where the second inequality is by submodularity and
the definition of g1 and the last equality is by the
definition of marginal density. Since x ≤ 1− c (o1)− c∗,
then all items in OPT \ (o1 ∪ Gi−1) still fit, as o1 is the
largest item in OPT. Since the greedy algorithm always
selects the item with the largest marginal density, then
maxe∈OPT\(o1∪Gi−1) ρ (e | Gi−1 ∪ o1) ≤ g′(x). Hence:

1 ≤ g1(x) +
∑

e∈OPT\(o1∪Gi−1)

c(e)ρ (e | Gi−1 ∪ o1)

≤ g1(x) +
∑

e∈OPT\(o1∪Gi−1)

c(e)ρ (e | Gi−1)

≤ g1(x) +
∑

e∈OPT\(o1∪Gi−1)

c(e)g′(x)

= g1(x) + g′(x)
∑

e∈OPT\(o1∪Gi−1)

c(e)

= g1(x) + g′(x)c(OPT \ (o1 ∪ Gi−1))

≤ g1(x) + g′(x)(1− c (o1)),

where the last inequality follows from the normalization
of c(OPT) ≤ 1 and the fact that o1 ∈ OPT. 2

Theorem 2.6 Recall that K̃ = min(n,K) is an upper
bound on the number of elements in feasible solutions.
Then Greedy+Max gives a 1/2-approximation to the
submodular maximization problem under a knapsack
constraint and runs in O

(
K̃n
)
time.

Proof : By applying Lemma 2.5 at the point x =
1− c (o1)− c∗, we have:

g1(1− c (o1)− c∗) + (1− c (o1))g′(1− c (o1)− c∗) ≥ 1

If g1(1−c(o1)−c∗) ≥ 1
2 , then we have 1

2 -approximation,
because g1(1−c(o1)−c∗) is a lower bound on the value
of the augmented solution when the cost of the greedy
part is 1− c(o1)− c∗. Otherwise:

g′(1− c (o1)− c∗) ≥ 1− g1(1− c (o1)− c∗)
1− c (o1)

>
1

2(1− c (o1))
.

Note that since g(0) = 0 and g′ is non-increasing by
the definition of Greedy, for any x ∈ [0, 1] we have
g(x) ≥ g′(x) · x:

g(x) ≥
∫ x

χ=0

g′(χ)dχ ≥
∫ x

χ=0

g′(x)dχ = g′(x) · x,

Therefore, applying this inequality at x = 1−c (o1)−c∗:

g(1− c (o1)− c∗) ≥ (1− c (o1)− c∗)g′(1− c (o1)− c∗)

≥ 1− c (o1)− c∗

2(1− c (o1))
.

Recall that 1 − c (o1) − c∗ was the last cost of the
greedy solution when we could still augment it with o1;
therefore, the next element e that the greedy solution
selects has the cost at least (1− c (o1))− (1− c (o1)−
c∗) = c∗. Thus, the function value after taking e is at
least

g(1− c (o1)− c∗) + c∗g′(1− c (o1)− c∗)

≥ 1− c (o1)− c∗

2(1− c (o1))
+

c∗

2(1− c (o1))
=

1

2

Hence, Algorithm 1 gives a 1
2 -approximation to the

submodular maximization problem under a knapsack
constraint. It remains to analyze the running time and
query complexity of Algorithm 1. Since K̃ is the maxi-
mum size of a feasible set, Algorithm 1 makes at most
K̃ iterations. In each iteration, it makes O (n) oracle
queries, so the total number of queries and runtime is
O
(
K̃n
)
. 2

2.2 Streaming algorithm Sieve+Max

Our multi-pass streaming algorithm is given as Algo-
rithm 2. To simplify the presentation, we first give
the algorithm under the assumption that it is given a
parameter λ, which is a constant-factor approximation
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of f(OPT). We then show how to remove this assump-
tion using standard techniques in Theorem B.3. As dis-
cussed in the description of our techniques Sieve+Max
uses O (1/ε) passes over the data to simulate the exe-
cution of Greedy+Max approximately.

Algorithm 2: Multi-pass streaming algorithm
Sieve+Max
Input: Stream e1, . . . , en, knapsack capacity K,
cost function c(·), non-negative monotone
submodular function f , λ which is an
α-approximation of f(OPT) for some fixed
constant α>0, ε > 0;
Output: (1/2− ε)-approx. for submodular
maximization under a knapsack constraint;
T ← ∅, τ ← λ

αK ;
while τ > λ

2K do // Thresholding stage
Take a new pass over the stream;
for each read item e do

if ρ (e |T ) ≥ τ and c(e ∪ T ) ≤ K then
T ← T ∪ {e};

τ ← τ/(1 + ε);
For each i, let Gi be the first i items selected in
the construction of T above and initialize si = ∅
for the best augmenting item for Gi;

Take a pass over the stream;
for each read item e do // Augmentation stage

if e /∈ T then
j = max{i|c(Gi) + c(e) ≤ K};
if f(Gj ∪ sj) < f(Gj ∪ e) then

sj ← {e};
return argmax f(Gi ∪ si)

In the analysis, which gives the proof of Theorem 1.2,
we define functions t and t1 analogous to g and g1

respectively, based on Ti, the first i items collected by
the thresholding algorithm. We show that t and t1
satisfy the same differential inequalities as g and g1

respectively, up to (1 + ε) factors, and similar to before,
our analysis then proceeds by casework on whether o1,
the largest item in OPT, is included in the thresholding
solution T or not.

We first show that if o1 ∈ T , then f(T ) is at least a(
1
2 − ε

)
-approximation.

Let T be the set of items constructed Sieve+Max (as
in Algorithm 2) and let t1, t2, . . . be the order that they
are collected. We refer to the part of the algorithm
which constructs T as “thresholding” and the rest as
“augmentation” below. We use Ti to denote the set
containing the i items {t1, t2, . . . , ti}. We again use o1

to denote the item with highest cost in OPT. Similar
to the above, we define two functions representing the
values of our thresholding algorithm, and augmented
solutions given the utilized proportion of the knapsack.

Definition 2.7 (Thresholding performance
function) For any x ∈ [0, 1], let i be the
smallest index such that c(Ti) > x. We define
t(x) = f(Ti−1) + (x− c(Ti−i))ρ (ti | Ti−1) and t′(x) to
be the right derivative of t.

We define a function t1(x) that lower bounds the perfor-
mance of Sieve+Max when the thresholding solution
collects a set of cost x:

Definition 2.8 (Sieve+Max performance func-
tion and lower bound) For any fixed x, let i
be the smallest index such that c(Ti) > x. Then
we define t1(x) = t(x) + f (o1 | Ti−1), where o1 =
argmaxe∈OPT c(e).

In order to analyze the output of the algorithm, we
prove a differential inequality for t1. If c(T ) ≥ 1− c(o1)
then let c∗ ≥ 0 be defined so that 1− c(o1)− c∗ is the
cost of the thresholding solution before the algorithm
takes the item which makes the cost exceed 1− c(o1).

Lemma 2.9 (Sieve+Max Inequality) If c(T ) ≥
1− c(o1) then for all x ∈ [0, 1− c (o1)− c∗], then t and
t1 satisfy the following differential inequality:

t1(x) + (1 + ε)(1− c (o1))t′(x) ≥ 1.

Proof : First, note that for x ∈ [0, p] where p
is the total cost of items taken in the first pass the
inequality holds trivially since t′(x) ≥ 1 (as in the proof
of the standard thresholding inequality). Hence assume
that x ∈ [p, 1 − c(o1) − c∗] is fixed and consider any
pass after the first one. Similarly to other proofs it
suffices to only consider left endpoints of the intervals
of the form [c(Ti−1), c(Ti)) so let x = c(Ti−1). Since
we normalized f(OPT) = 1, then by monotonicity,
1 = f(OPT) ≤ f(Ti−1 ∪ OPT). Hence:

1 ≤ f(Ti−1 ∪ OPT)

= f((Ti−1 ∪ o1) ∪ (OPT \ o1))

= f(Ti−1 ∪ o1) + f (OPT \ (o1 ∪ Ti−1) | Ti−1 ∪ o1)

≤ t1(x) +
∑

e∈OPT\(o1∪Ti−1)

f (e | Ti−1 ∪ o1)

= t1(x) +
∑

e∈OPT\(o1∪Ti−1)

c(e)ρ (e | Ti−1 ∪ o1) ,

where the second inequality is by submodularity and
the last line is by the definition of marginal density.
Since o1 has the maximum cost in OPT. x ≤ 1− c (o1),
all items in OPT\ (o1∪Ti−1) still fit into the remaining
knapsack capacity. In all passes after the first one,
the thresholding algorithm always selects an element
which gives 1

1+ε -approximation of the highest possible
marginal density:

(1 + ε)t(x) ≥ max
e∈OPT\(o1∪Ti−1)

ρ (e | o1 ∪ Ti−1) .
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Combining with the inequality above:

1 ≤ t1(x) +
∑

e∈OPT\(o1∪Ti−1)

c(e)ρ (e | Ti−1 ∪ o1)

≤ t1(x) + (1 + ε)t′(x)
∑

e∈OPT\(o1∪Ti−1)

c(e)

= t1(x) + (1 + ε)t′(x)c(OPT \ (o1 ∪ Ti−1))

≤ t1(x) + (1 + ε)t′(x)(1− c (o1)),

where the last equality is by the normalization of
c(OPT) = 1 and the fact that o1 ∈ OPT.

2

Theorem 2.10 There exists an algorithm that uses
O
(
K̃
)
space and O (1/ε) passes over the stream, makes

O
(
n/ε + n log K̃

)
queries, and outputs a (1/2− ε)-

approximation to the submodular maximization problem
under a knapsack constraint.

Proof : We can use existing algorithm from Theo-
rem B.3 to obtain a constant factor approximation λ to
f(OPT). We thus analyze the correctness of Algorithm
2 given an input λ that is a constant factor approx-
imation to f(OPT). The proof is similar to proof of
Theorem 2.6.

By applying Lemma 2.9 at the point x = 1−c (o1)−c∗,
we have:

t1(1−c (o1)−c∗)+(1+ε)(1−c (o1))t′(1−c (o1)−c∗) ≥ 1

If t1(1−c (o1)−c∗) ≥ 1
2 , then we have 1

2 -approximation,
because t1(1 − c(o1) − c∗) is a lower bound on the
value of the augmented solution when the cost of the
thresholding solution is 1− c(o1)− c∗. Otherwise:

t′(1− c (o1)− c∗) ≥ 1− g1(1− c (o1)− c∗)
(1− c (o1))(1 + ε)

>
1

2(1− c (o1))(1 + ε)

Note that since t(0) = 0, for any x ∈ [0, 1] we have
t(x) ≥ t′(x)·x

1+ε :

t(x) ≥
∫ x

χ=0

t′(χ)dχ ≥
∫ x

χ=0

t′(x)

1 + ε
dχ =

t′(x) · x
1 + ε

,

where we used the fact that t′ is a 1
1+ε approximation of

the maximum marginal density, which does not increase.
Therefore, applying this at x = 1− c (o1)− c∗:

t(1− c (o1)− c∗) ≥ (1− c (o1)− c∗)t′(1− c (o1)− c∗)

≥ 1− c (o1)− c∗

2(1− c (o1))(1 + ε)
.

Recall that 1 − c (o1) − c∗ was the last cost of the
thresholding solution when we could still augment
it with o1; therefore, the next element e that the
thresholding solution selects has the cost at least
(1− c (o1))− (1− c (o1)− c∗) = c∗. Thus, the function
value after taking e is at least

g(1− c (o1)− c∗) + c∗g′(1− c (o1)− c∗)

≥ 1− c (o1)− c∗

2(1− c (o1))(1 + ε)
+

c∗

2(1− c (o1))(1 + ε)

=
1

2(1 + ε)
=

1

2
− ε

2(1 + ε)
≥ 1

2
− ε.

Hence, Algorithm 2 gives a
(

1
2 − ε

)
-approximation to

the submodular maximization problem under knapsack
constraints, given a constant factor approximation to
f(OPT). Note that it suffices to consider only thresh-
olds up to τ

2K since t′(x) < 1
2 implies that t(x) > 1

2 by
Lemma A.3.

Using existing algorithms to obtain a constant factor
approximation λ (e.g., by setting ε = 1

6 in Theorem B.3)

that use additional O
(
n log K̃

)
queries, then correct-

ness of Algorithm 2 follows. It remains to analyze the
space and query complexity of Algorithm 2. Since each
item has cost at least 1, at most K items are stored
by the thresholding algorithm, and at most K items
are stored by the augmented solution S. Hence, the
space complexity of Algorithm 2 is O

(
K̃
)
. If τ is an

α-approximation to f(OPT) for some constant α, then
the algorithm makes log1+ε

1
2α = O

(
1
ε

)
passes over the

input stream. Each pass makes at most n queries, so
the number of queries is at most O

(
n
ε

)
. 2

2.3 Distributed algorithm Distributed
Sieve+Max

In this section, we assume that there are m =
√
n/K̃

machines M1, . . . ,Mm, each with O
(
n
m

)
= O(

√
nK̃)

amount of local memory. Our distributed algorithm
(Algorithm 3) follows a similar thresholding approach as
our streaming algorithm: at each round, machines col-
lect items whose marginal densities exceed the thresh-
old corresponding to the round. Our algorithm and
proof are based on Liu and Vondrák (2019).

We require the following form of Azuma’s inequality
for submartingales.

Theorem 2.11 (Azuma’s Inequality) Suppose
X0, X1, . . . , Xn is a submartingale and |Xi−Xi+1| ≤ ci.
Then

Pr [Xn −X0 ≤ −t] ≤ exp
(
−t2

2
∑
i c

2
i

)
.
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Algorithm 3: Distributed Sieve+Max: A
O (1/ε)-round MapReduce algorithm for sub-
modular maximization under knapsack constraints.
Input: Set of elements E = e1, . . . , en, knapsack
capacity K, cost function c(·), non-negative
monotone submodular function f , τ that is
α-approximation of f(OPT) for some constant
α > 0;
Output: A set S that is a ( 1

2 − ε)-approximation
for submodular maximization with a knapsack
constraint;
T ← ∅, t← τ

αK , K̃ ← min(n,K);
while t > τ

2K do
On the central machine C:
Form Γ by sampling each e ∈ E with

probability 4
√
K̃/n;

for each item e ∈ Γ do
if ρ(e|T ) > t and c(e ∪ T ) ≤ K then

T ← T ∪ {e};
if c(T ) ≥ K then

break

Partition E randomly into sets V1, V2, . . . Vm;
Send T and Vi to machine Mi for all i;
On each machine Mi:
Xi ← T ;
for each item e ∈ Vi do

if ρ(e|Xi) > t and c(e ∪Xi) ≤ K then
Xi ← Xi ∪ {e};

Xi ← Xi \ T ;
Send Xi to C;

On the central machine C:
for each item e ∈ ∪Xi do

if ρ(e|T ) > t and c(e ∪ T ) ≤ K then
T ← T ∪ {e};

t← t
1+ε

Send T to all machines;

On each machine Mi:
For each i, let Gi denote the first i items that a
greedy algorithm would select from T and
initialize si ← ∅;
for each item e ∈ Vi \ T do

j ← max {i | c(e) + c(Gi) ≤ K};
if f(Gj ∪ sj) < f(Gj ∪ e) then

sj ← e;
Send argmax {f(Gi ∪ si)} to C;
return argmax of solutions received in C

We first bound the total number of elements sent to
the central machine.

Lemma 2.12 In Algorithm 3, with probability 1 −
e−Ω(K̃), the total number of elements sent to the central
machine is

√
nK̃.

Proof : Since each element is sampled with prob-
ability 4

√
K̃/n, the expected number of elements in Γ

is 4
√
nK̃ for any round i. Hence |Γ| ≥ 3

√
nK̃ with

probability at least 1− e−Ω(K̃) by a standard Chernoff
bound. Let N denote the total number of elements
with marginal density at least f(OPT)

(1+ε)iK̃
with respect to

T , so that the number of elements sent to the central
unit in one round is N + |Γ|.

For the sake of analysis, suppose that Γ is randomly
partitioned into at least 3K̃ chunks of size

√
n/K̃ ele-

ments, with the chunks being processed sequentially. If
there are fewer than

√
nK̃ remaining elements whose

marginal density with respect to Ti−1 exceeds f(OPT)

(1+ε)iK̃
,

then at most
√
nK̃ elements are sent to the central

machine.

Otherwise, there are at least
√
nK̃ remaining ele-

ments whose marginal density with respect to T ex-
ceeds f(OPT)

(1+ε)iK̃
. Then for each block, with probability

at least 1 −
(

1−
√
K̃/n
)√n/K̃

> 1/2, an additional
element is added to Ni. To use a martingale argu-
ment to bound the number of elements selected in Γi,
we let Xi be the indicator random variable for the
event that at least one element is selected from the ith
block so that we have E[Xi | X1, . . . , Xi−1] ≥ 1

2 . Let
Yi =

∑i
j=1(Xi − 1/2) so that the sequence Y1, Y2, . . .

is a submartingale, i.e., E[Yi | Y1, . . . , Yi−1] ≥ Yi−1

and |Yi − Yi−1| ≤ 1. By Azuma’s inequality (The-
orem 2.11), Pr[Y3K̃ < − 1

2K̃] < e−Ω(K̃), so that∑3K̃
j=1Xj = YK + 3

2K̃ ≥ K̃ with probability at least
1− e−Ω(K̃), in which case no elements are sent to the
central machine. 2

We now analyze the approximation guarantee and per-
formance of Algorithm 3.

Theorem 2.13 There exists an algorithm Dis-
tributed Sieve+Max which uses O (1/ε) rounds of
communication between

√
n/K̃ machines, each with

O
(√

nK̃
)
memory. With high probability, the total

number of elements sent to the central machine is
√
nK̃

and the algorithm outputs a (1/2− ε)-approximation to
the submodular maximization problem with a knapsack
constraint.
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Proof : Correctness follows from the observation
that the algorithm performs thresholding in the same
manner as Algorithm 2. The space bounds follow from
Lemma 2.12. 2

2.4 Query lower bound

We show a simple query lower bound under the stan-
dard assumption Norouzi-Fard et al. (2018); Kazemi
et al. (2019) that the algorithm only queries f on feasi-
ble sets.

Theorem 2.14 For α > 1/2, any α-approximation al-
gorithm for maximizing a function f under a knapsack
constraint that succeeds with constant probability and
only queries values of the function f on feasible sets
(i.e. sets of cost at most K) must make at least Ω(n2)
queries if f is either: 1) non-monotone submodular,
2) monotone and submodular on the feasible sets, 3)
monotone subadditive.

Proof : Let e1, . . . , en be the set of elements and set
c(ei) = K/2 for all i. By Yao’s principle it suffices to
consider two hard distributions D1/2 and D1 such that
the optimum for every instance in the support of these
distributions is 1/2 and 1 respectively and then show
that no algorithm making o(n2) deterministic queries
can distinguish the two distributions with constant
probability. The distributions D1/2 and D1 are as
follows:

• D1/2 has f(S) = 1/2 for all S 6= ∅.

• D1 is constructed by picking two items ei 6= ej
uniformly at random and assigning f(S) = 1 for
S = {ei, ej}. Otherwise, set f(S) = 1/2 for all
S 6= ∅ and S 6= {ei, ej}.

Fix the set of deterministic queriesQ that the algorithm
makes. Since the algorithm is only allowed to make
queries to sets of cost at most K, all sets in Q have size
at most two. Furthermore, note that f(ei) = 1/2 for all
i under both D1/2 and D1. Thus, only queries to sets
of size exactly two can help the algorithm distinguish
the two distributions. All such queries give value 1/2
under both distributions except for a single query (i, j)
under D1 which gives value 1. Since (i, j) is chosen
uniformly at random under D1 the probability that a
fixed set Q contains it is given as |Q|/

(
n
2

)
. Hence if the

algorithm succeeds with a constant probability then it
must be the case that |Q| = Ω(n2).

Note that the construction of f results in a non-
monotone submodular function but f is monotone
when restricted to feasible sets of size at most two
items. By changing D1 so that the functions in this

distribution take value 1 on all sets of size more than
2 one can ensure monotonicity of f . However, f is
still submodular on the feasible sets and subadditive
everywhere (recall that a subadditive function satisfies
f(S) + f(T ) ≥ f(S ∪ T ) for all S, T ⊆ U). 2

3 Experimental results

We compare our offline algorithm Greedy+Max and
our streaming algorithm Sieve+Max with baselines,
answering the following questions: (1) What are the
approximation factors we are getting on real data? (2)
How do the objective values compare? (3) How do
the runtimes compare? (4) How do the numbers of
queries compare? We compare Greedy+Max to the
following baselines:

(1) PartialEnum+Greedy Sviridenko (2004).
Given an input parameter d, this algorithm cre-
ates a separate knapsack for each combination of
d items, and then runs the Greedy algorithm on
each of the knapsacks. At the end, the algorithm
outputs the best solution among all knapsacks,
so that the total runtime is Ω(Knd+1). In fact,
PartialEnum+Greedy is only feasible for d = 1
and our smallest dataset.

(2) Greedy. This algorithm starts with an empty
knapsack and repeatedly adds the item with the
highest marginal density with respect to the col-
lected items in the knapsack, until no more item
can be added to the knapsack.

(3) GreedyOrMax Khuller et al. (1999). This
algorithm compares the value of the best item with
the value of the output of the Greedy algorithm
and outputs the better of the two.

In streaming we compare Sieve+Max to
Sieve Badanidiyuru et al. (2014) and Sieve-
OrMax Huang et al. (2017), which are similar
thresholding-based algorithms. Sieve starts with an
empty knapsack and collects all items whose marginal
density with respect to the items in the knapsack
exceed a given threshold (which is initially equal to
1
2 ), while SieveOrMax uses a similar approach, but
compares the items collected by the thresholding
algorithm to the best single item, and outputs the
better of the two solutions. We also implemented a
single-pass BranchingMRT by Huang et al. (2017)
that uses thresholding along with multiple branches
and gives a 4/11 ≈ 0.36-approximation. We did not
implement Huang and Kakimura (2019) as their
algorithms are orders of magnitude slower than
BranchingMRT which is already several orders of
magnitude slower than other algorithms.

Our code is available at https://github.com/

https://github.com/aistats20submodular/aistats20submodular
https://github.com/aistats20submodular/aistats20submodular
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aistats20submodular/aistats20submodular.

3.1 Objectives and Datasets

Graph coverage. For a graph G(V,E) and Z ⊂ V ,
the objective is to maximize the neighborhood ver-
tex coverage function f(Z) := |Z ∪N(Z)|/|V |, where
N(Z) is the set of neighbors of Z. The cost of
each node is roughly proportional to the value of the
node. Specifically, the cost of each node v ∈ V is
c(v) = β

|V | (|N(v)| − α), where α = 1
20 and β is a nor-

malizing factor so that c(v) ≥ 1, so that the cost of each
node is roughly proportional to the value of the node.
We ran experiments on two graphs from SNAP Leskovec
and Krevl (2014): 1) ego-Facebook(4K vertices, 81K
edges), 2) com-DBLP (317K vertices, 1M edges).

Movie ratings. We also analyze a dataset of movies
to model the scenario of movie recommendation. The
objective function, defined as in Avdiukhin et al. (2019),
is maximized for a set of movies that is similar to
a user’s interests and the cost of a movie is set to
be roughly proportional to its value. Each movie is
assigned a rating in the range [1, 5] by users. Let
rx,u be the rating assigned by user u to movie x and
ravg be the average rating across all movies. For each
movie x, we normalize the ratings to produce a vector
vx by setting vx,u = 0 if user u did not rate movie
x and vx,u = rx,u − ravg otherwise. We then define
the similarity between two movies x1 and x2 as the
dot product 〈vx1

, vx2
〉 of their vectors. Given a set

X of movies, to quantify how representative a subset
of movies Z is, we consider a parameterized objective
function fX(Z) =

∑
x∈X maxz∈Z〈vz, vx〉. Hence, the

maximizer of fX(Z) corresponds to a set of movies that
is similar to the user’s interests. We analyze the ml-20
MovieLens dataset GroupLens (2015), which contains
approximately 27K movies and 20M ratings.

3.2 Results

We first give instance-specific approximation factors for
different values of K for offline (Fig. 2) and streaming
(Fig. 3) algorithms. These approximations are com-
puted using upper bounds on f(OPT) which can be ob-
tained using the analysis of Greedy. Greedy+Max
and Sieve+Max typically perform at least 20% bet-
ter than their 1/2 worst-case guarantees. In fact, our
results show that the output value can be improved
by up to 50%, both by Greedy+Max upon Greedy
(Figure 4) and by Sieve+Max upon Sieve (Figure 5).

Running time. We point out that the runtimes of
Greedy+Max and GreedyOrMax algorithms are
similar, being at most 20% greater than the runtime

of Greedy, as shown in Figure 6. On the other hand,
even though PartialEnum+Greedy does not out-
perform Greedy+Max, it is only feasible for d = 1
and the ego-Facebook dataset and uses on average
almost 500 times as much runtime for K = 10 across
ten iterations of each algorithm, as shown in Figure 6.
The runtimes of Sieve+Max, SieveOrMax, and
Sieve are generally similar; however in the case of the
com-dbpl dataset, the runtime of Sieve+Max grows
with K. This can be explained by the fact that or-
acle calls on larger sets typically require more time,
and augmented sets typically contain more elements
than sets encountered during execution of Sieve. On
the other hand, the runtime of BranchingMRT was
substantially slower, and we did not include its run-
time for scaling purposes, as for K = 5, the runtime
of BranchingMRT was already a factor 80K more
than Sieve. Error bars for the standard deviations of
the runtimes of the streaming algorithms are given in
Figure 8.

Oracle calls. We also compare the number of oracle
calls performed by the algorithms. Greedy+Max,
GreedyOrMax and Greedy require the same
amount of oracle calls, since computing marginal gains
and finding the best element for augmentation com-
pute the objective on the same set. On the other hand,
PartialEnum+Greedy requires 544x more calls than
Greedy for K = 8. For the streaming algorithms, the
number of oracle calls made by Sieve, Sieve+Max,
and Sieve, never differed by more than a factor of two,
while BranchingMRT requires a factor 125K more
oracle calls than Sieve for K = 8. We illustrate the
number of oracle calls made by these algorithms in
Figure 9.

https://github.com/aistats20submodular/aistats20submodular
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Fig. 2: Instance-specific approximations for different K. Greedy+Max performs substantially better than its
worst-case 1/2-approximation guarantee and typically beats even the (1− 1/e) ≈ 0.63 bound. Despite much higher
runtime, PartialEnum+Greedy does not beat Greedy+Max even on the only dataset where its runtime is
feasible (ego-Facebook).
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Fig. 3: Instance-specific approximations for different K. Sieve+Max performs substantially better than its
worst-case (1/2− ε)-approximation guarantee and robustly dominates all other approaches. It can improve by up
to 40% upon Sieve. Despite much higher runtime, BranchingMRT does not beat Sieve+Max (some data
points not shown for BranchingMRT as it did not terminate under a 200-second time limit).
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Fig. 4: Ratio of the objective of offline algorithms to the objective of Greedy for different values of K.
Greedy+Max can improve by almost 50% upon Greedy, but by definition, Greedy+Max and GreedyOrMax
cannot perform worse than Greedy. Despite its runtime, PartialEnum+Greedy does not outperform
Greedy+Max on the ego-Facebook dataset.
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Fig. 5: Ratio of the objective of streaming algorithms to the objective of Sieve for different values of K.
Sieve+Max can improve by almost 40% upon Sieve, but by definition, Sieve+Max and SieveOrMax cannot
perform worse than Sieve. Despite its runtime, BranchingMRT does not outperform Sieve+Max.
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Fig. 6: Ratio of runtime of offline algorithms to the runtime of Greedy, for different values of K. Observe that
Greedy+Max and GreedyOrMax show similar running time, which is at most 20% greater than Greedy
running time. The ratio of PartialEnum+Greedy runtime is not displayed, due to it being several orders of
magnitude larger, e.g., 1000 times larger for K = 15.
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Fig. 7: Ratio of average runtime of streaming algorithms to the average runtime of Sieve for different values of K,
across ten iterations. The larger ratios can be explained from the oracle calls made on larger sets by Sieve+Max
being more expensive than the average oracle call made by Sieve. The ratio of BranchingMRT runtime is not
displayed, due to being several orders of magnitude larger, e.g., 80K times larger for K = 5.
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Fig. 8: Ratio of average runtime of streaming algorithms compared to the average runtime of Sieve, with error
bars representing one standard deviation for each algorithm on the corresponding knapsack constraint across ten
iterations.
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Fig. 9: Smoothed ratio of average number of oracle calls made by streaming algorithms compared to the average
number of oracles calls made by Sieve, across ten iterations.
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A Standard greedy and thresholding
inequalities

In this section we prove the standard greedy inequality
g(x) ≥ 1− e−x, where x is the cost of a partial greedy
solution. To prove it, we first show that a differential
inequality g(x) + g′(x) ≥ 1 holds, and then integrate it
using Proposition A.1. For the thresholding algorithm
a similar approximate inequality holds.

Proposition A.1 Let ξ be a continuous and piecewise
smooth function [u, v]→ R+. If for some α, β > 0 we
have ξ(x) + αξ′(x) ≥ β for u ≤ x ≤ v, then ξ(v) ≥
β + (ξ(u)− β)e

u−v
α .

Proof : First, consider the case when ξ is smooth.
ξ(x) + αξ′(x) ≥ β implies that ξ(x)e

x
α + αξ′(x)e

x
α ≥

βe
x
α through multiplication by e

x
α . Observe that

ξ(x)e
x
α +αξ′(x)e

x
α is the derivative of ξ(x)αe

x
α . Hence,

d(ξ(x)αe
x
α )

dx ≥ βe xα implies∫ v

u

d(ξ(x)αe
x
α ) ≥

∫ v

u

βe
x
α dx

(ξ(x)αe
x
α )
∣∣∣v
u
≥ αβe xα

∣∣∣v
u

ξ(v)αe
v
α − ξ(u)αe

u
α ≥ αβe vα − αβe uα .

Dividing both sides by α,

ξ(v)e
v
α − ξ(u)e

u
α ≥ βe vα − βe uα

ξ(v) ≥ β + (ξ(u)− β)e
u−v
α .

For a piecewise smooth ξ, let u = x0 < x1 < · · · <
xt = v, such that ξ is smooth on a segment (xi, xi+1)

for any i. By induction, we prove that the inequality
holds for x0, xi for any i:

ξ(xi) ≥ β + (ξ(x0)− β)e
xi−x0
α .

The statement is true for i = 0. Induction step:

ξ(xi+1) ≥ β + (ξ(xi)− β)e
xi−xi+1

α

≥ β + (ξ(x0)− β)e
x0−xi
α e

xi−xi+1
α

≥ β + (ξ(x0)− β)e
x0−xi+1

α

2

Theorem A.2 (Standard greedy inequality) For
all x ∈ [0, 1− c (o1)], the greedy performance function
g satisfies the following differential inequality:

g(x) + g′(x) ≥ 1,

and hence also its integral version: g(x) ≥ 1− e−x.

Proof : Let x ∈ [0, 1 − c (o1)] and recall that by
definition Gi−1 is the largest set of elements selected
by the greedy solution without exceeding total cost of
x. Note that it suffices to show the inequality only
for the left endpoints of the piecewise linear intervals
of the form [c(Gi−1), c(Gi)) as inside these intervals g′
stays constant while g can only increase and hence the
inequality holds. Hence we can assume that x = c(Gi−1)
in the proof below which implies that g(x) = f(Gi−1).

Since we normalized f(OPT) = 1, by monotonicity:

1 = f(OPT) ≤ f(OPT ∪ Gi−1)

= f(Gi−1) + f (OPT \ Gi−1 | Gi−1) .

Then by submodularity and using the fact that by
definition f(Gi−1) = g(x):

1 ≤ f(Gi−1) + f (OPT \ Gi−1 | Gi−1)

≤ g(x) +
∑

e∈OPT\Gi−1

f (e | Gi−1) .

Since f (e | Gi−1) = c(e)ρ (e | Gi−1):

1 ≤ g(x) +
∑

e∈OPT\Gi−1

f (e | Gi−1)

= g(x) +
∑

e∈OPT\Gi−1

c(e)ρ (e | Gi−1)

≤ g(x) +
∑

e∈OPT\Gi−1

c(e)g′(x),

where the last inequality follows because greedy always
picks the item with the largest marginal density and



“Bring Your Own Greedy”+Max: Near-Optimal 1/2-Approximations for Submodular Knapsack

since x ≤ 1− c(o1) every item in OPT \ Gi−1 can still
fit into the knapsack. Hence,

1 ≤ g(x) + g′(x)
∑

e∈OPT\Gi−1

c(e)

= g(x) + g′(x)c(OPT \ Gi−1).

The desired differential inequality follows from the ob-
servation that c(OPT \ Gi−1) ≤ c(OPT) ≤ 1. Finally,
by integrating from 0 to x using the initial condition
g(0) = 0, it follows that g(x) ≥ 1 − e−x (by Proposi-
tion A.1). 2

Theorem A.3 (Standard thresholding inequal-
ity) For all x ∈ [0, 1 − c(o1)], the thresholding per-
formance function t satisfies the following differential
inequality:

t(x) + (1 + ε)t′(x) ≥ 1.

And hence also its integral version: t(x) ≥ 1− e−
x

1+ε .

Proof : Let p ∈ [0, 1] be the total cost of the
elements collected by the thresholding algorithm in
the first pass. First, note that for the first pass when
x ∈ [0, p] the differential inequality follows trivially
as t′(x) ≥ λ

αK ≥ 1 since λ ≥ αf(OPT) and by our
normalization f(OPT) = K = 1. Fix x ∈ [p, 1− c (o1)]
and recall that by definition Ti−1 is the largest set of
elements selected by the thresholding algorithm without
exceeding total cost of x. Similarly to the previous
proofs it suffices to consider only the left endpoints
of the intervals of the form [c(Ti−1, Ti)) so we assume
x = c(Ti−1). Since we normalized f(OPT) = 1, then
by monotonicity:

1 = f(OPT) ≤ f(OPT ∪ Ti−1)

= f(Ti−1) + f (OPT \ Ti−1 | Ti−1) .

Then by submodularity and using the fact that by
definition t(x) = f(Ti−1):

1 ≤ f(Ti−1) + f (OPT \ Ti−1 | Ti−1)

≤ t(x) +
∑

e∈OPT\Ti−1

f (e | Ti−1) .

Since f (e | Ti−1) = c(e)ρ (e | Ti−1):

1 ≤ t(x) +
∑

e∈OPT\Ti−1

f (e | Ti−1)

= t(x) +
∑

e∈OPT\Ti−1

c(e)ρ (e | Ti−1)

≤ t(x) +
∑

e∈OPT\Ti−1

c(e)t′(x)(1 + ε),

where the last inequality follows because after the first
pass t′(x) ≥ ρ(e | Ti−1)

1+ε for all e ∈ OPT \ Ti−1. Indeed,

note that in all passes except the first one the thresh-
olding algorithm always selects an item whose marginal
density is at least (1 + ε)−1 times the best marginal
density available. Since t′(x) is the density of this item
and all items in OPT\Ti−1 still fit (as x ≤ 1−c(o1)) we
have (1+ε)t′(x) ≥ maxe∈OPT\Ti−1

ρ (e | Ti−1) as desired.
Hence:

1 ≤ t(x) +
∑

e∈OPT\Ti−1

c(e)t′(x)(1 + ε)

= t(x) + (1 + ε)t′(x)c(OPT \ Ti−1).

The desired differential inequality follows from the
observation that c(OPT \ Ti−1) ≤ c(OPT) = 1.

For the integral version we integrate the differential
inequality between 0 and x with the initial condition
t(0) = 0 (formally, apply Proposition A.1 with α =
1 + ε, β = 1, u = 0, v = x) and get t(x) ≥ 1− e−

x
1+ε , as

desired. 2

B Omitted proofs

Fact B.1 For all 0 ≤ x ≤ 1,

(1− x)e2x−1 ≤ 1

2
.

Proof : Let r(x) = (1 − x)e2x−1 and note that
r′(x) = (1− 2x)e2x−1 so that r′(x) > 0 for x ∈

[
0, 1

2

]
and r′(x) ≤ 0 for x ∈

[
1
2 , 1
]
. Hence, it follows that

r
(

1
2

)
= 1

2 is a local maximum and so (1− x)e2x−1 ≤ 1
2

for all 0 ≤ x ≤ 1. 2

Fact B.2 (
1− c (o1)

1 + ε

)
e

2c(o1)−1
1+ε ≤ 1

2
+ ε.

Proof : By Fact B.1,(
1− c (o1)

1 + ε

)
e

2c(o1)−1
1+ε ≤ 1

2
e

ε
1+ε .

Hence it suffices to show that e
ε

1+ε ≤ 1 + 2ε, which
follows from the fact that d

dxe
x

1+x ≤ 2 for 0 ≤ x ≤ 1. 2

We now describe a generalization to a knapsack con-
straint of the algorithm of Kazemi et al. (2019) that
computes a constant factor approximation to maxi-
mum submodular maximization under a cardinality
constraint, using small space and a small number of
queries.

Theorem B.3 There exists a one-pass streaming al-
gorithm that outputs a

(
1
3 − ε

)
-approximation to the

submodular maximization under knapsack constraint
that uses O

(
K
ε

)
space and O

(
n logK

ε

)
total queries.
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Algorithm 4: Space efficient constant factor ap-
proximation
Input: Stream of elements E = e1, . . . , en,
knapsack capacity K, cost function c(·),
non-negative monotone submodular function f ,
and an approximation parameter ε > 0;
Output: A set S that is a

(
1
3 − ε

)
-approximation

for submodular maximization with a knapsack
constraint;
τmin,∆, LB← 0;
for each item ei do

if f(ei) > ∆ then
e← ei,∆← f(ei)

τmin = max(2LB,2∆)
3K ;

Discard all sets with Sτ with τ < τmin;
for τ ∈ {(1 + ε)i|τmin/(1 + ε) ≤ (1 + ε)i ≤ ∆}
do
if τ is a new threshold then

Sτ ← ∅
if c(Sτ ) < K and ρ (e |Sτ ) ≥ τ then

Sτ ← Sτ ∪ {e} and
LB← max{LB, f(Sτ )}

return argmax{f(Sτ ), f(e)}

Proof : Since Algorithm 4 uses the same threshold
as Algorithm 2 in Huang et al. (2017), it outputs a
1
3−ε-approximation. On the other hand, by Theorem 1
in Kazemi et al. (2019), Algorithm 4 uses space O

(
K
ε

)
and query complexity O

(
n logK

ε

)
. 2

Hence, by setting ε = 1
6 , we obtain the following:

Corollary B.4 There exists a one-pass streaming al-
gorithm that outputs a 1

6 -approximation to the submod-
ular maximization under knapsack constraint that uses
O(K) space and O(n logK) total queries.
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