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A On the Convexity of the PL
Negative Log-Likelihood

The Hessian of Eq. (3), given by Eq. (48), is not in
general positive semidefinite (PSD) (Hunter, 2004). A
simple counterexample is as follows: consider n = 2
samples and a single observation, i.e., M = 1. The
Hessian in this case is negative-definite for all π1, π2 > 0.
Thus, Problem (4) with objective (3) is in general
non-convex in (β, b) ∈ Rp+1. On the other hand, (3)
under parametrization πi = eθi , i ∈ N is convex as
a consequence of the convexity of the log of the sum
of exponentials, which is well known (see (Boyd and
Vandenberghe, 2004)). The convexity of Problem (5)
w.r.t. β follows by this observation and also the fact
that the composition of convex and affine is convex.

B Proof of Theorem 3.1 (Maystre and
Grossglauser, 2015)

We start by showing that ∂L(D |π)
∂πi

= 0, i ∈ N is the
optimality condition to minimize Eq. (3). Consider the
reparametrization πi = eθi , i ∈ N. Eq. (3) under this
reparametrization is given by:

L(D |θ) =

M∑
`=1

log
∑
j∈A`

eθj − θ`

 , (21)

which is convex w.r.t. θ = [θi]i∈N, i.e., even though
Eq. (3) is not convex w.r.t. π, it is convex under the
reparametrization πi = eθi , i ∈ N. This implies that
∂L(D | θ)
∂θi

= 0, i ∈ N is the optimality condition to
minimize Eq. (21) w.r.t. θ. By the chain rule, this
condition can be written in terms of πi = eθi , i ∈ N as:

∂L(D |θ)

∂θi
=
∂L(D |π)

∂πi
eθi = 0 ∀i ∈ N. (22)

Note that eθi > 0, i ∈ N. Then, ∂L(D | θ)∂θi
= 0 is equiv-

alent to ∂L(D |π)
∂πi

= 0, i ∈ N, i.e., πi = eθi , i ∈ N

satisfies Eq.(22) if and only if θi, i ∈ N is the mini-
mizer of Eq. (21). Hence, the stationarity condition
∂L(D |π)

∂πi
= 0, i ∈ N is also the optimality condition for

problem (6).

The optimality condition is given explicitly by:

∂L
∂πi

=
∑
`∈Wi

(
1∑

t∈A` πt
− 1

πi

)

+
∑
`∈Li

1∑
t∈A` πt

= 0 ∀i ∈ N,

(23)

whereWi = {` |i ∈ A`, c` = i} is the set of observations
where sample i ∈ N is chosen and Li = {` |i ∈ A`, c` 6=

i} is the set of observations where sample i ∈ N is not
chosen. Multiplying both sides of Eq. (23) with πi,
i ∈ N, we have:

∑
`∈Li

(
πi∑
t∈A` πt

)
−
∑
`∈Wi

(∑
j 6=i∈A` πj∑
t∈A` πt

)
= 0, (24)

for all i ∈ N. Note that
∑
`∈Wi

∑
j 6=i∈A` · =∑

j 6=i
∑
`∈Wi∩Lj · and

∑
`∈Li · =

∑
j 6=i
∑
`∈Wj∩Li ·.

Accordingly, we rewrite Eq. (24) as:

∑
j 6=i

∑
`∈Wj∩Li

(
πi∑
t∈A` πt

)

=
∑
j 6=i

∑
`∈Wi∩Lj

(
πj∑
t∈A` πt

)
∀i ∈ N.

(25)

Then, an optimal solution π ∈ Rn+ to Eq. (6) satisfies:∑
j 6=i

πjλji(π) =
∑
j 6=i

πiλij(π) ∀i ∈ N, (26)

where λji(π), i, j ∈ N, i 6= j are given by Eq. (8).

C Alternating Directions Method of
Multipliers

We employ Alternating Directions Method of Multipli-
ers (ADMM) to solve the problem in Eq.(11) (Boyd
et al., 2011). ADMM is a primal-dual algorithm de-
signed for problems with decoupled objectives, i.e.,
objectives that can be written as a sum of functions
where each function depends on only one of the opti-
mized variables. In our case, we solve Eq.(11) for β̃
and π, and the objective L(D |π) is a function of π
only.

ADMM solves a constrained optimization problem by
minimizing the augmented Lagrangian, rather than the
standard Lagrangian. The difference of augmented
Lagrangian from the standard Lagrangian is the ad-
ditional quadratic penalty on the equality constraint.
This additional penalty is shown to greatly improve
convergence properties of the algorithm (Boyd et al.,
2011). The augmented Lagrangian of Eq. (11) is:

Lρ(β̃,π,y) = L(D |π)

+ yT (X̃β̃ − π) +
ρ

2
‖X̃β̃ − π‖22,

(27)

where ρ > 0 is the penalty parameter, y ∈ Rn is the
dual variable, β̃ = (β, b) ∈ Rp+1 and X̃ = [X|1] ∈
Rn×(p+1), so that π = X̃β̃.

ADMM alternates between optimizing the primal vari-
ables β̃ and π, and the dual variable y. Applying
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ADMM on problem (11) yields the following iterative
algorithm:

β̃k+1 = arg min
β̃∈Rp+1

yk
T

(X̃β̃ − πk) + ρ
2 ‖X̃β̃ − π

k ‖22

= (X̃T X̃)
−1
X̃T (πk − 1

ρ
yk), (28a)

πk+1 = arg min
π∈Rn+

(
L(D |π) + yk

T
(X̃β̃k+1 − π)

+
ρ

2
‖X̃β̃k+1 − π‖22

)
, (28b)

yk+1 = yk + ρ(X̃β̃k+1 − πk+1). (28c)

For convenience in calculations, the augmented La-
grangian in (27) can be written in a different form, by
introducing a scaled dual variable u = 1

ρy and com-
bining the linear and quadratic terms. By doing so,
Eq. (27) is equivalent to the final form of the augmented
Lagrangian:

Lρ(β̃,π,u) = L(D |π)

+
ρ

2
‖X̃β̃ − π + u‖22 −

ρ

2
‖u‖22 .

(29)

Having formed the final augmented Lagrangian in
Eq. (29), applying ADMM on problem (11) yields the
iterative steps:

β̃k+1 = arg min
β̃∈Rp+1

‖X̃β̃ − πk + uk ‖22

= (X̃T X̃)
−1
X̃T (πk − uk), (30a)

πk+1 = arg min
π∈Rn+

(
L(D |π) + ρ

2 ‖X̃β̃
k+1 − π + uk ‖22

)
,

(30b)

uk+1 = uk + X̃β̃k+1 − πk+1. (30c)

For convex problems, there are well-established conver-
gence properties for ADMM. If the objective is closed,
proper, and convex, and the standard Lagrangian of the
problem has a saddle point, then the ADMM iterations
are guaranteed to converge to a point where (a) the
equality constraint is satisfied, and (b) objective and
dual variable attain optimal values. Moreover, in many
applications, ADMM has been shown to converge to
a modest accuracy in a few tens of iterations (Boyd
et al., 2011). For nonconvex problems, there are few
convergence analyses for ADMM, which focus on a re-
stricted class of problems (Guo et al., 2017). In general,
ADMM is not guaranteed to converge for non-convex
problems, and even if it does, it may not converge to the
optimal point of the problem. Nevertheless, ADMM
is extensively used to also solve nonconvex problems
similar to the one we study (Chartrand and Wohlberg,
2013; Guo et al., 2017; Hong, 2018; Wang et al., 2019).

D Proofs

D.1 Proof of Lemma 4.1

At the k-th iteration of ADMM, gradient of the aug-
mented Lagrangian in (29) w.r.t. π is:

∇πLρ(β̃k+1,π,uk)=∇πL+ρ(π−X̃β̃k+1−uk). (31)

To simplify the rest of the calculations, we introduce
σ = ρ(π − X̃β̃k+1 − uk) ∈ Rn. Then, the stationarity
condition ∂Lρ(β̃

k+1,π,uk)
∂πi

= 0, i ∈ N, is equivalent to:

∂Lρ(β̃
k+1,π,uk)

∂πi
=
∂L
∂πi

+ σi = 0 ∀i ∈ N. (32)

Setting ∂L
∂πi

from Eq. (23) to Eq. (32), we have:

∂Lρ(β̃
k+1,π,uk)

∂πi
=
∑
`∈Wi

(
− 1

πi
+

1∑
t∈A` πt

)

+
∑
`∈Li

1∑
t∈A` πt

+ σi = 0,

(33)

for all i ∈ N. Multiplying both sides of Eq. (33) with
−πi, i ∈ N, we have:

∑
`∈Wi

(∑
j 6=i∈A` πj∑
t∈A` πt

)

−
∑
`∈Li

(
πi∑
t∈A` πt

)
− πiσi = 0 ∀i ∈ N.

(34)

Note that
∑
`∈Wi

∑
j 6=i∈A` · =

∑
j 6=i
∑
`∈Wi∩Lj · and∑

`∈Li · =
∑
j 6=i
∑
`∈Wj∩Li ·. Accordingly, we rewrite

Eq. (34) as:

∑
j 6=i

∑
`∈Wi∩Lj

(
πj∑
t∈A` πt

)

−
∑
j 6=i

∑
`∈Wj∩Li

(
πi∑
t∈A` πt

)
− πiσi = 0 ∀i ∈ N.

(35)

Then, the stationarity condition ∂Lρ(β̃
k+1,π,uk)
∂πi

= 0,
i ∈ N is equivalent to:∑

j 6=i

πjλji(π)−
∑
j 6=i

πiλij(π) = πiσi ∀i ∈ N, (36)

where λji(π), i, j ∈ N, i 6= j are given by Eq. (8).

D.2 Proof of Theorem 4.2

Summing Eq. (15) for i ∈ N, we get:∑
i

∑
j

(πjλji(π)−πiλij(π))1j 6=i=
∑
i

πiσi = 0. (37)
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Since the Plackett-Luce scores are non-negative, i.e.
πi ≥ 0 , i ∈ N, Eq. (37) implies that σ ≡ [σi]i∈N
contains both positive and negative elements. Let
(N+,N−) be a partition of N such that σi ≥ 0 for all
i ∈ N+ and σi < 0 for all i ∈ N−. Then, for i ∈ N+ in
Eq. (15), we have:

∑
j 6=i

πjλji(π) = πi

∑
j 6=i

λij(π) + σi

, ∀i ∈ N+, (38)

where λij(π) + σi ≥ 0, i ∈ N+ and j ∈ N. Eq. (38)
shows that from each state i ∈ N+ into the states in
N−, there exists a total of σi ”additional outgoing rate”,
compared to Eq. (7). At the same time, for i ∈ N− in
Eq. (15), we have:∑

j∈N+

πjλji(π) +
∑

j∈N−|j 6=i

πjλji(π)

= πi
∑
j 6=i

λij(π) + πiσi, ∀i ∈ N−.
(39)

Since πiσi < 0, for i ∈ N−, we distribute these terms
into the first sum on the left hand side. Then, Eq. (39)
is equivalent to:∑
j∈N+

πj

(
λji(π)− πiσicj

πj

)
+

∑
j∈N−|j 6=i

πjλji(π)

= πi
∑
j 6=i

λij(π), ∀i ∈ N−,
(40)

where
∑
j∈N+

cj = 1.

To determine the {cj}j∈N+ , recall from Eq. (38)
that from each state j ∈ N+ into the states i ∈
N−, there exists a total of σj additional outgoing
rate. Then, Eq. (40) implies that

∑
i∈N− −

πiσicj
πj

=

σj , i.e., cj =
−πjσj∑
i∈N−

πiσi
, j ∈ N+. Using

−
∑
i∈N− πiσi =

∑
i∈N+

πiσi from Eq. (37), we con-

firm that
∑
j∈N+

cj =
−

∑
j∈N+

πjσj∑
i∈N−

πiσi
= 1, and rewrite

{cj}j∈N+
as:

cj =
−2πjσj∑

i∈N− πiσi −
∑
i∈N+

πiσi
, ∀j ∈ N+. (41)

Finally, setting {cj}j∈N+
into Eq. (40), we have:

∑
j∈N+

πj

(
λji(π)+

2πiσiσj∑
t∈N−πtσt −

∑
t∈N+

πtσt

)
+

∑
j∈N−|j 6=i

πjλji(π) = πi
∑
j 6=i

λij(π), ∀i ∈ N−,

(42)

where λji(π)+
2πiσiσj∑

t∈N−
πtσt−

∑
t∈N+

πtσt
≥ 0, j ∈ N+ and

i ∈ N−.

Eq. (15), partitioned as Eq. (38) and Eq. (42), is the
balance equations of a continuous-time MC with tran-
sition rates given by:

µji(π) =


λji(π) +

2πiσiσj∑
t∈N−

πtσt−
∑
t∈N+

πtσt

if j ∈ N+ and i ∈ N−

λji(π) otherwise.

(43)

Hence, π is the stationary distribution of this MC
(Gallager, 2013).

D.3 Proof of Theorem 4.3

We use the following definition.
Definition D.1 (Diagonal dominance). A matrix H
is diagonally dominant if |Hii| ≥

∑
j 6=i |Hij |, i ∈ N,

i.e., for every row, magnitude of the diagonal element
is larger than the sum of magnitudes of all off-diagonal
elements (Horn and Johnson, 2012).

Eq. (33) is equivalent to:

∂Lρ(β̃
k+1,π,uk)

∂πi
=
∑
`∈Wi

− 1

πi
+
∑
`|i∈A`

1∑
t∈A` πt

+ ρ(π − X̃β̃k+1 − uk)i ,

(44)

for all i ∈ N. At the k-th iteration of (13), let
∇2Lρ(β̃

k+1,π,uk) be the Hessian of the augmented
Lagrangian w.r.t. π. Differentiating Eq. (44) w.r.t. πj ,
∇2Lρ(β̃

k+1,π,uk) has the following form:

∇2
ijLρ(β̃

k+1,π,uk)

=


∑
`∈Wi

1
π2
i
−
∑
`|i∈A`

1
(
∑
t∈A`

πt)
2 +ρ, i = j

−
∑
`|i,j∈A`

1
(
∑
t∈A`

πt)
2 , i 6= j.

(45)

Consider ρ ≥ 2
ε2 maxi

∑
`|i∈A`

1
|A`|2 . By Assumption

4.1, we have:

ρ ≥ 2

ε2

∑
`|i∈A`

1

|A`|2
∀i ∈ N,

⇔ ρ ≥
∑
`|i∈A`

2

(
∑
t∈A` πt)

2 ∀i ∈ N,

⇔ ρ+
∑
`∈Wi

1

π2
i

>
∑
`|i∈A`

2

(
∑
t∈A` πt)

2 ∀i ∈ N, (46a)

⇔ ρ+
∑
`∈Wi

1

π2
i

>
∑
`|i∈A`

1

(
∑
t∈A` πt)

2

+
∑
j 6=i

∑
`|i,j∈A`

1

(
∑
t∈A` πt)

2 ∀i ∈ N. (46b)

Eq. (46a) implies that all diagonal elements of
∇2Lρ(β̃

k+1,π,uk) are positive. Also, by Eq. (46b),
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∇2Lρ(β̃
k+1,π,uk) is diagonally dominant (c.f. Defini-

tion D.1). Thus, ∇2Lρ(β̃
k+1,π,uk) is positive definite

(Horn and Johnson, 2012), i.e., Lρ(β̃k+1,π,uk) is con-
vex w.r.t. π. As a result, under Assumption 4.1, for
ρ ≥ 2

ε2 maxi
∑
`|i∈A`

1
|A`|2 , a stationary π > 0 satisfy-

ing condition (14) is also a minimizer of step (13b).

D.4 Proof of Theorem 4.4

We make use of the following lemmas.

Lemma D.1 (Zeng et al. (2018)). Logarithm and
polynomials are Kurdyka–Łojasiewicz (KL) functions.
Moreover, sums, products, compositions, and quotients
(with denominator bounded away from 0) of KL func-
tions are also KL.

Lemma D.2 (Guo et al. (2017)). Consider the opti-
mization problem:

minimize
β̃,π

g(π)

subject to X̃β̃ = π,
(47)

and solve Eq. (47) via Alternating Direction Method
of Multipliers (ADMM) (Boyd et al., 2011). Let
{(πk,uk, β̃k)}k∈N be the sequence generated by the
ADMM algorithm, and ρ be the penalty parameter of
ADMM. Suppose that there exists κ > 0 such that
X̃T X̃ � κ I, and the sequence {(πk,uk, β̃k)}k∈N is
bounded.

If there exist solutions for the minimization steps of
ADMM w.r.t. both π and β̃, g(π) is a continuous
differentiable function with an L-Lipschitz continuous
gradient at πk, k ∈ N where L > 0, and the augmented
Lagrangian of Eq. (47) is a KL function, then, for
ρ > 2L, {(πk,uk, β̃k)}k∈N converges to a point that
satisfies the Karush-Kuhn-Tucker (KKT) conditions of
Eq. (47).

To begin with, there exist solutions for the minimization
steps in (13): β̃ update has the closed form solution
given by Eq. (13a) and π update admits a minimizer
for large enough ρ by Lemma 4.3.

By Assumption 4.1, ∇πL given by Eq. (23) exists, i.e.
L is continuous differentiable at πk, k ∈ N generated by
(13b). Let ∇2(L) be the Hessian of L. Differentiating
Eq. (23) w.r.t. πj , ∇2(L) has the following form:

∇2
ij(L)

=


∑
`∈Wi

1
π2
i
−
∑
`|i∈A`

1
(
∑
t∈A`

πt)
2 , i = j

−
∑
`|i,j∈A`

1
(
∑
t∈A`

πt)
2 , i 6= j.

(48)

Consider L = maxi |Wi|
ε2 , where Wi is the set of obser-

vations where sample i ∈ N is chosen. By Assumption

4.1, we have:

L =
maxi |Wi|

ε2
≥
∑
`∈Wi

1

π2
i

∀i ∈ N,

⇔ L−
∑
`∈Wi

1

π2
i

+
∑
`|i∈A`

1

(
∑
t∈A` πt)

2

≥
∑
`|i∈A`

1

(
∑
t∈A` πt)

2 ∀i ∈ N,

⇔ L−
∑
`∈Wi

1

π2
i

+
∑
`|i∈A`

1

(
∑
t∈A` πt)

2

≥
∑
j 6=i

∑
`|i,j∈A`

1

(
∑
t∈A` πt)

2 ∀i ∈ N. (49)

Now, consider the matrix LIn×n−∇2(L). By Eq. (49),
LIn×n −∇2(L) is diagonally dominant (c.f. Definition
D.1) and all of its diagonal elements are positive, i.e.,
∇2(L) is upper bounded by LIn×n. Thus, the objective
function of Eq. (11), i.e. L, has an L-Lipschitz contin-
uous gradient at πk, k ∈ N, where L = maxi |Wi|

ε2 > 0.

Moreover, the augmented Lagrangian given by Eq.
(29) is a sum of three functions: logarithm of the
ratio of two polynomials where the denominator is
bounded away from 0 for all πk, k ∈ N by Assump-
tion 4.1, and two other polynomial functions. By
Lemma D.1, these three functions and their sum is
KL on the set {πk |πki > ε , i ∈ N, k ∈ N}. As a re-
sult, the augmented Lagrangian of Eq. (11) is a KL
function. Putting it all together, by Lemma D.2, for
ρ > 2maxi |Wi|

ε2 , the sequence {(πk,uk, β̃k+1)}k∈N gen-
erated by (13) converges to a point that satisfies the
KKT conditions (Nocedal and Wright, 2006) of Prob-
lem (11).

E Extension to the Logistic Case

We describe here how to apply our approach to regress
model parameters in the logistic case. Recall that
Problem (5) is, in this case, convex, and can thus be
solved by Newton’s method. Nevertheless, we would
like to accelerate its computation via a spectral method
akin to ILSR. Following the steps we took in the affine
case, we re-write (5) as:

Minimize L(D |π) (50a)
subject to: logπ = Xβ, π ≥ 0, (50b)

where logπ = [log πi]i∈N is the Rn vector generated
by applying log to π element-wise. The augmented
Lagrangian corresponding to Eq. (50) is:

Lρ(β,π,u) = L(D |π)

+
ρ

2
‖Xβ−logπ+u‖22−

ρ

2
‖u‖22,

(51)
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Algorithm 2 PLADMM-log
1: procedure ADMM(X, D = {(c`, A`) | ` ∈M}, ρ)
2: Initialize β via Eq. (55); π ← [ex

T
i β]i∈N; u← 0

3: repeat
4: π ← ILSRX(ρ,π,X,β,u)
5: u← u+Xβ − logπ

6: β ← (XTX)
−1
XT (logπ − u)

7: until convergence
8: return β, π
9: end procedure
1: procedure ILSRX(ρ,π,X,β,u)
2: repeat

3: σi ← ρ
(log πi−x

T
i β−ui)

πi
, i ∈ N

4: Calculate M(π) = [µji(π)]i,j∈N via Eq. (16)
5: π ← ssd (M(π))
6: until convergence
7: return π
8: end procedure
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Figure 2: Convergence time (Conv. Time) and top-1 test accuracy
(Top-1 Acc.) of PLADMM, PLADMM-log, ILSR, and Newton on β
evaluated on synthetic datasets vs. the number of observations M ∈
{10, 100, 1000, 10000, 100000}. Observations are partitioned w.r.t. obser-
vation CV (c.f. Sec. 5), where number of samples is n = 1000, number of
features is p = 100, and query size is |A`| = 2.

and applying ADMM on problem (50) yields:

βk+1 = arg min
β∈Rp

Lρ(β,π
k,uk)

= (XTX)
−1
XT (logπk − uk), (52a)

πk+1 = arg min
π∈Rn+

L(D |π)

+
ρ

2
‖Xβk+1 − logπ + uk ‖22, (52b)

uk+1 = uk +Xβk+1 − logπk+1. (52c)

Mutatis mutandis, following the same manipulations in
Lemma 4.1, a stationary point of the objective in each
step (52b) can be cast as the stationary distribution of
the continuous-time MC with transition rates µji(π),
i, j ∈ N, given by Eq. (16), the only difference being
that vector σ = [σi]i∈N is now given by:

σi = ρ
(log πi − xTi β − ui)

πi
, i ∈ N. (53)

Having adjusted the transition matrix M(π) thusly, π
can again be obtained by repeated iterations of (18).

The resulting algorithm, which we refer to as Plackett-
Luce ADMM-log (PLADMM-log), is summarized in
Algorithm 2; the algorithm is almost identical to Algo-
rithm 1, using logπ instead of π, defining σ via (53),
and having a different initialization. We discuss the
latter below.

Initialization. Similar to the initialization of
PLADMM (c.f. Eq. (20)), we initialize β so that the
initial scores obey the Plackett-Luce model, mirroring
the approach by Saha and Rajkumar (2018). Defin-
ing Pij , i, j ∈ N the same way, and using the logistic
parametrization in Sec.3, we have that:

Pij
Pji

=
πi
πj

= eβ
T (xi−xj). (54)

Accordingly, we initialize β as:

β0 =arg min
β∈Rp

∑
(i,j)∈D

(
βT (xi − xj)− log

( P̂ij
P̂ji

))2

, (55)

where P̂ij , i, j ∈ N, are again empirical estimates ob-
tained from dataset D. Given β0, we generate the
initial Plackett-Luce scores via the logistic parametriza-
tion π0 = [ex

T
i β

0

]i∈N. Finally, we initialize the dual
variable as u0 = 0.

F Experiments

F.1 Datasets

Synthetic Datasets. We generate the feature vectors
xi ∈ Rp, i ∈ N from N (0, σ2

xIp×p) and a common
parameter vector β ∈ Rp from N (0, σ2

βIp×p). Then,
we generate the Plackett-Luce scores via the logistic
parametrization π = [ex

T
i β]i∈N. We normalize the

resulting scores, so that 1>π = 1. We set σ2
x = σ2

β =
0.8 in all experiments. Given π, we generate each
observation in D as follows: we first select |A`| = 2
samples out of n samples uniformly at random. Then,
we generate the choice cl, l ∈M from the Plackett-Luce
model given by Eq. (1).

Filter Aesthetic Comparison (FAC). The Filter
Aesthetic Comparison (FAC) dataset (Sun et al., 2017)
contains 1280 unfiltered images pertaining to 8 differ-
ent categories. Twenty-two different image filters are
applied to each image. Labelers are provided with two
filtered images and are asked to identify which image
has better quality. We select n = 1000 images within
one category, as only the filtered image pairs that are
within the same category are compared. The result-
ing dataset contains M = 728 pairwise comparisons.
Moreover, for each image, we extract features via a
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state-of-the-art convolutional neural network architec-
ture, namely GoogLeNet (Szegedy et al., 2015), with
weights pre-trained on the ImageNet dataset (Deng
et al., 2009). We select p = 50 of these features by
Principal Component Analysis (Jolliffe, 1986).

Retinopathy of Prematurity (ROP). The
Retinopathy of Prematurity (ROP) dataset contains
n = 100 retina images with p = 143 features (Ataer-
Cansızoğlu, 2015). Experts are provided with two
images and are asked to choose the image with higher
severity of the ROP disease. Five experts indepen-
dently label 5941 image pairs; the resulting dataset
contains M = 29705 pairwise comparisons. Note that
some pairs are labelled more than once by different
experts.

SUSHI. The SUSHI Preference dataset (Kamishima
et al., 2009) contains n = 100 sushi ingredients with p =
18 features. Each of the 5000 customers independently
ranks 10 ingredients according to her preferences. We
select the rankings provided by 10 customers, where
an ingredient is ranked higher if it precedes the other
ingredients in a customer’s ranked list. We generate two
datasets: triplet Sushi containing M = 1200 rankings
of |A`| = 3 ingredients, and pairwise Sushi containing
M = 450 pairwise comparisons.

F.2 Algorithms

We implement four algorithms that regress Plackett-
Luce scores from features, which we call as feature
methods.

PLADMM. PLADMM solves the problem in Eq. (11)
and is summarized in Algorithm 1. We compute the
stationary distribution at each iteration of ILSRX
(c.f. Eq. (18)) using the power method (Lei et al., 2016).
As the stopping criterion, we use ‖πk−πk−1‖2< rtol ‖
πk‖2 and ‖X̃β̃k − X̃β̃k−1‖2< rtol ‖X̃β̃k‖2. We set
the relative tolerance rtol = 10−4 for all experiments.
We use the same relative tolerance for the stopping
criterion of the power method. We set ρ = 1 in our
experiments, which is a standard choice in the ADMM
literature (Boyd et al., 2011). In our experiments, we
consistently observe that Eq.(37) is satisfied. That is
why, we use cj =

−πjσj∑
i∈N−

πiσi
, j ∈ N+ instead of Eq.(41)

to calculate the transition rates (16).

PLADMM-log. PLADMM-log solves the problem
in Eq. (50) and is summarized in Algorithm 2. As
the stopping criterion, we use ‖πk − πk−1‖2< rtol ‖
πk‖2 and ‖eXβk − eXβk−1‖2< rtol ‖eXβ

k‖2, where
exponentiation is applied elementwise.

SLSQP. SLSQP solves the problem in Eq. (4) via
the sequential least-squares quadratic programming

(SLSQP) algorithm (Nocedal and Wright, 2006). We
initialize SLSQP the same as PLADMM (c.f. Algorithm
1). As stopping criterion, we use ‖πk − πk−1 ‖2<
rtol ‖πk ‖2, where πk = Xβk + bk1, k ∈ N. Each
iteration of SLSQP is O

(∑
`∈D

(
|A`|(p+1)

)
+(p+1)2

)
for constructing the gradient of Eq. (3) w.r.t. β̃ and
updating β̃, respectively.

Newton on β. Newton on β solves the convex prob-
lem in Eq. (5) via Newton’s method (Nocedal and
Wright, 2006). We initialize Newton on β the same
as PLADMM-log (c.f. Algorithm 2). As stopping cri-
terion, we use ‖πk − πk−1 ‖2< rtol ‖πk ‖2, where
πk = [ex

T
i β

k

]i∈N, k ∈ N. Each iteration of Newton
on β is O

(∑
`∈D

(
|A`| p2

)
+ p2

)
for constructing the

Hessian of Eq. (3) w.r.t. β and updating β, respectively.

We implement three algorithms that learn the Plackett-
Luce scores from the choice observations alone, which
we call as featureless methods.

ILSR. Iterative Luce Spectral Ranking (ILSR) algo-
rithm solves the problem in Eq. (6) and is described
by the iterations in Eq.(10). We initialize ILSR with
π0 = 1

n1. We compute the stationary distribution at
each iteration of ILSR using the power method. As the
stopping criterion, we use ‖πk − πk−1‖2< rtol ‖πk‖2.
Each iteration of ILSR is O

(∑
`∈D

(
|A`|

)
+ n2

)
for

constructing the transition matrix Λ(π) (c.f. Eq.(9))
and finding the stationary distribution π, respectively.

MM. The Minorization-Maximization (MM) algorithm
(Hunter, 2004) solves the problem in Eq. (6). We
initialize MM with π0 = 1

n1. As the stopping criterion,
we use ‖πk − πk−1‖2< rtol ‖πk‖2. Each iteration of
MM is O

(∑
`∈D

(
|A`|

))
.

Newton on θ. Newton on θ algorithm solves the
problem in Eq. (6) by reparametrizing the scores as
πi = eθi , i ∈ N. It solves the resulting convex problem
by Newton’s method (Nocedal and Wright, 2006). We
initialize Newton on θ with θ0 = [θ0i ]i∈N = 0. As
stopping criterion, we use ‖πk − πk−1‖2< rtol ‖πk‖2,
where πki = eθ

k
i , i ∈ N, k ∈ N. Each iteration of New-

ton on θ is O
(∑

`∈D
(
|A`|2

)
+n2

)
for constructing the

Hessian of Eq. (3) w.r.t. θ and updating θ, respectively.

F.3 Top-1 Accuracy and Kendall-Tau
Correlation

We measure the prediction performance by Top-1 ac-
curacy (Top-1 Acc.) and Kendall-Tau correlation
(KT) on the test set. Let the test set be Dchoice =
{(c`, A`) | ` ∈ {1, ...,Mtest}} for the choice setting and
Drank = {(α`, A`) | ` ∈ {1, ...,Mtest}} for the rank-
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ing setting, where α` = α`1 � α`2 � · · · � α`|A`|
is an ordered sequence of the samples in A`. For
both settings, given A`, we predict the `-th choice as
ĉ` = arg maxi∈A` πi. We calculate the Top-1 accuracy
(Top-1 Acc.) for the choice setting as:

Top-1 Acc. =

∑Mtest

`=1 1(ĉ` = c`)

Mtest

∈ [0, 1], (56)

and for the ranking setting as:

Top-1 Acc. =

∑Mtest

`=1 1(ĉ` = α`1)

Mtest

∈ [0, 1]. (57)

For the ranking setting, given A`, we also predict the
ranking as α̂` = arg sort[πi]i∈A` , i.e. sequence of the
samples in A` ordered w.r.t. their scores. We calculate
Kendall-tau correlation (KT) (Kendall, 1938) as a mea-
sure of the correlation between each true ranking α`
and predicted ranking α̂`, ` ∈ {1, ...,Mtest}. For obser-
vation `, let T` =

∑|A`|
t=1

∑|A`|
s=1 1(α̂`t � α̂`s ∧α`t � α`s) be

the number correctly predicted ranking positions, and
F` =

∑|A`|
t=1

∑|A`|
s=1 1(α̂`t � α̂`s ∧α`s � α`t) be the number

incorrectly predicted ranking positions. Then, KT is
computed by:

KT =

∑Mtest

`=1 (T` − F`)/
(|A`|

2

)
Mtest

∈ [−1, 1], (58)

where
(|A`|

2

)
is the number of sample pairs in a query

of size |A`|.

F.4 Impact of Number of Observations

Fig. 2 shows the convergence time (Time) and top-1
test accuracy (Top-1 Acc.) of PLADMM, PLADMM-
log, ILSR, and Newton on β when trained on syn-
thetic datasets with number of observations M ∈
{10, 100, 1000, 10000, 100000}. Observations are par-
titioned w.r.t. observation CV (c.f. Sec. 5), where
number of samples is n = 1000, number of parameters
is p = 100, and size of each query is |A`| = 2. As
n > p, PLADMM benefits from being able to regress
n scores from a smaller number of p parameters and
leads to significantly better Top-1 Acc compared to
ILSR in Fig. 2. Especially when M is not enough to
learn n = 1000 scores, but to learn p = 100 parameters,
PLADMM gains the most performance advantage over
ILSR, up to 13% Top-1 Acc. Moreover, PLADMM and
PLADMM-log are consistently faster than Newton on
β, for all number of observations M > 100. Particu-
larly, for M = 100000, PLADMM and PLADMM-log
converge 4− 60 times faster than Newton on β.
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Dataset Method Training Metrics Performance Metrics on the Test Set

Time (s) ↓ Iter. ↓ Top-1 Acc. ↑ KT ↑

FAC

PLADMM 0.352± 0.044 4± 0 0.68± 0.048 0.35± 0.089

PLADMM-log 0.17± 0.033 4± 0 0.691± 0.054 0.378± 0.11

ILSR (no X) 0.066± 0.012 2± 0 0.591± 0.067 −0.13± 0.164

MM (no X) 10.7± 0.501 500± 0 0.544± 0.046 0.046± 0.087

Newton on θ (no X) 9.152± 1.284 17± 3 0.5± 0.0 0.0± 0.0

Newton on β 1.531± 0.169 6± 1 0.701± 0.04 0.398± 0.08

SLSQP 22.73± 19.151 160± 135 0.689± 0.063 0.375± 0.125

ROP

PLADMM 1.953± 0.217 4± 0 0.896± 0.005 0.791± 0.009

PLADMM-log 0.359± 0.027 1± 0 0.904± 0.005 0.807± 0.01

ILSR (no X) 0.716± 0.058 2± 0 0.891± 0.005 0.781± 0.009

MM (no X) 356.497± 29.11 500± 0 0.905± 0.004 0.81± 0.008

Newton on θ (no X) 85.42± 6.849 9± 0 0.906± 0.004 0.811± 0.008

Newton on β 55.718± 6.293 2± 0 0.904± 0.005 0.808± 0.009

SLSQP 9.595± 7.136 2± 1 0.683± 0.049 0.366± 0.098

Pairwise Sushi

PLADMM 0.061± 0.002 4± 0 0.669± 0.034 0.338± 0.068

PLADMM-log 0.764± 1.192 58± 30 0.634± 0.075 0.267± 0.15

ILSR (no X) 0.027± 0.003 2± 0 0.763± 0.039 0.521± 0.084

MM (no X) 5.191± 0.345 490± 31 0.773± 0.048 0.543± 0.094

Newton on θ (no X) 2.342± 0.689 18± 5 0.735± 0.095 0.465± 0.185

Newton on β 0.176± 0.17 2± 2 0.685± 0.044 0.369± 0.087

SLSQP 16.198± 8.728 245± 134 0.64± 0.06 0.28± 0.119

Triplet Sushi

PLADMM 0.127± 0.007 4± 0 0.569± 0.035 0.218± 0.045

PLADMM-log 0.804± 0.349 36± 18 0.487± 0.034 0.19± 0.072

ILSR (no X) 0.054± 0.003 2± 0 0.678± 0.036 0.454± 0.06

MM (no X) 15.349± 0.617 500± 0 0.715± 0.035 0.522± 0.059

Newton on θ (no X) 5.122± 0.34 14± 1 0.73± 0.036 0.496± 0.089

Newton on β 1.12± 0.659 3± 2 0.605± 0.058 0.285± 0.062

SLSQP 21.738± 39.761 107± 197 0.521± 0.043 0.191± 0.059

Table 4: Evaluations on real datasets partitioned w.r.t. observation CV (c.f. Sec. 5). We report the convergence time in seconds (Time),
number of iterations until convergence (Iter), top-1 accuracy on the test set (Top-1 Acc.), and Kendall-Tau correlation on the test set (KT).
ILSR, MM, and Newton on θ learn the Plackett-Luce scores π from the choice observations alone and do not use the features X. Newton
on β and sequential least squares quadratic programming (SLSQP) regress π from X. (c.f. Sec. F.2).
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