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Abstract

Mean-field variational inference (MFVT) has
been widely applied in large scale Bayesian
inference. However, MFVI assumes inde-
pendent distribution on the latent variables,
which often leads to objective functions with
many local optima, making optimization al-
gorithms sensitive to initialization. In this
paper, we study the advantage of structured
variational inference in the context of a sim-
ple two-class Stochastic Blockmodel. To fa-
cilitate theoretical analysis, the variational
distribution is constructed to have a simple
pairwise dependency structure on the nodes
of the network. We prove that, in a broad
density regime and for general random ini-
tializations, unlike MFVI, the estimated class
labels by structured VI converge to the ground
truth with high probability, when the model
parameters are known, estimated within a rea-
sonable range or jointly optimized with the
variational parameters. In addition, empiri-
cally we demonstrate structured VI is more
robust compared with MFVI when the graph
is sparse and the signal to noise ratio is low.
The paper takes a first step towards quantify-
ing the role of added dependency structure in
variational inference for community detection.

1 Introduction

Variational inference (V1) is a widely used technique for
approximating complex likelihood functions in Bayesian
learning (Jordan et al. {1999, Blei et al., |2003], [Jaakkola,
and Jordon, 1999), and is known for its computational
scalability. VI reduces an intractable posterior inference
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problem to an optimization framework by imposing sim-
pler dependence structure and is considered a popular
alternative to Markov chain Monte Carlo (MCMC)
methods. Similar to the Expectation Maximization
(EM) algorithm (Dempster et al., [1977)), VI works by
the basic principle of constructing a tractable lower
bound on the complete log-likelihood of a probabilistic
model. One of the simplest forms of approximation
is mean-field variational inference (MFVI), where the
variational lower bound, also known as ELBO, is com-
puted using the expectation with respect to a product
distribution over the latent variables(Blei et al., |2003|
2006, [Hoffman et al., |2013). Though VI has achieved
great empirical success in probabilistic models, theo-
retical understanding of its convergence properties is
still an open area of research.

Theoretical studies of variational methods (and similar
algorithms that involve iteratively maximizing a lower
bound) have drawn significant attention recently (see
(Balakrishnan et al.l 2017, Xu et all 2016, |[Yan et al.,
2017, Y1 et al. 2014, Kwon and Caramanis, 2018) for
convergence properties of EM). For VI, the global op-
timizer of the variational lower bound is shown to be
asymptotically consistent for a number of models in-
cluding Latent Dirichlet Allocation (LDA) (Blei et al.l
2003) and Gaussian mixture models (Pati et al., [2017)).
In (Westling and McCormick, [2015) the connection
between VI estimates and profile M-estimation is ex-
plored and asymptotic consistency is established. In
practice, however, it is well known the algorithm is
not guaranteed to reach the global optimum and the
performance of VI often suffers from local optima (Blei
et al., 2017). While in some models, convergence to
the global optimum can be achieved with appropriate
initialization (Wang et al., 2006} [Awasthi and Risteskil
2015)), understanding convergence with general initial-
ization and the influence of local optima is less studied
with a few exceptions (Xu et all 2016} (Ghorbani et al.|
2018|, Mukherjee et al., [2018).

In general, despite being computationally scalable,
MFVI suffers from many stability issues including
symmetry-breaking, multiple local optima, and sen-
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sitivity to initialization, which are consequences of the
non-convexity of typical mean- eld problems (Wain-
wright et al., 2008, |[Jaakkolg, 2001). The independence
assumption on latent variables also leads to the under-
estimation of posterior uncertainty (Blei et al., 2017,
Yin and Zhoul [2018). To address these problems, many
studies suggest that modeling the latent dependency
structure can expand the variational family under con-
sideration and lead to larger ELBO and more stable
convergence|(Xing et al.| 2002, Ho man and Blei, 2015,
Giordano et all, [2015,/ Tran et all,[2015/ Ranganath
et al., 2016, Yin and Zhou, 2018, Rezende and Mo-
hamed,|2015, Tran et al.,| 2017). However, rigorous
theoretical analysis with convergence guarantees in
this setting remains largely underexplored.

In this paper, we aim to study the e ect of added
dependency structure in a MFVI framework. Since
the behavior of MFVI is well understood for the very
simple two class, equal sized Stochastic Blockmodel
(SBM) (Mukherjee et al.| 2018,/ Zhang and Zhou| 2017),
we propose to add a simple pairwise link structure to
MFVI in the context of inference for SBMs. We study
how added dependency structure can improve MFVI.
In particular, we focus on how random initialization
behave for VI with added structure.

The stochastic blockmodel (SBM) (Holland et al.,| 1983)
is a widely used network model for community detec-
tion in networks. There are a plethora of algorithms
with theoretical guarantees for estimation for SBMs
like Spectral methods (Rohe et al.| 2011, Coja-Oghlan,
2010), semide nite relaxation based methods (Guédon
and Vershynin, 2016, Perry and Wein, 2017, Amini
et al., 2018), likelihood-based methods (Amini et al.,
2013), modularity based methods (Snijders and Now-
icki, 1997, Newman and Girvan, 2004, Bickel and Chen,
2009). Among these, likelihood-based methods remain
important and relevant due to their exibility in in-
corporating additional model structures. Examples
include mixed membership SBM (Airoldi et al., 2008),
networks with node covariates (Razaee et al., 2019), and
dynamic networks (Matias and Miele, 2017). Among
likelihood based methods, VI provides a tractable ap-
proximation to the log-likelihood and is a scalable al-
ternative to more expensive methods like Pro le Likeli-
hood (Bickel and Chen, 2009), or MCMC based meth-
ods (Snijders and Nowicki, 1997, Newman and Girvan,
2004). Computationally, VI was also shown to scale up
well to very large graphs (Gopalan and Blei, 2013).

On the theoretical front, (Bickel et al., 2013) proved
that the global optimum of MFVI behaves optimally
in the dense degree regime. In terms of algorithm con-
vergence, (Zhang and Zhou, 2017) showed the batch
coordinate ascent algorithm (BCAVI) for optimizing
the mean- eld objective has guaranteed convergence

if the initialization is su ciently close to the ground
truth. (Mukherjee et al., 2018) fully characterized
the optimization landscape and convergence regions
of BCAVI for a simple two-class SBM with random
initializations. It is shown that uninformative initializa-
tions can indeed converge to suboptimal local optima,
demonstrating the limitations of the MFVI objective
function.

Coming back to structured variational inference, it
is important to note that, if one added dependencies
between the posterior of each node, the natural approx-
imate inference method is the belief propagation (BP)
algorithm (Pearl, 1982, 2014, Wilinski et al., 2019).
Based on empirical evidence, it has been conjectured
in (Decelle et al., 2011a) that BP is asymptotically op-
timal for a simple two-class SBM. In the sparse setting
where phase transition occurs, (Mossel et al., 2016)
analyzed a local variant of BP and showed it is opti-
mal given a speci c initialization. In other parameter
regions, rigorous theoretical understanding of BP, in
particular, how adding dependence structure can im-
prove convergence with general initializations is still
an open problem.

Motivated by the above observations, we present a theo-
retical case study of structured variational inference for
SBM. We emphasize here that our primary contribution
does notlie in proposing a new estimation algorithm
that outperforms state-of-the-art methods; rather we
use this algorithm as an example to understand the
interplay between a non-convex objective function and
an iterative optimization algorithm with respect to ran-
dom initializations, and compare it with MFVI. We
consider a two-class SBM with equal class size, an as-
sumption commonly used in theoretical work (Mossel
et al., 2016, Mukherjee et al., 2018) where the analysis
for the simplest case is nontrivial.

We study structured VI by introducing a simple pair-
wise dependence structure between randomly paired
nodes. By carefully bounding the variational param-
eters in each iteration using a combination of concen-
tration and Littlewood-O ord type anti-concentration
arguments (Erdds, 1945), we prove that in a broad
density regime and under a fairly general random ini-
tialization scheme, the Variational Inference algorithm
with Pairwise Structure (VIPS) can converge to the
ground truth with probability tending to one, when the
parameters are known, estimated within a reasonable
range, or updated appropriately (Section 3). This is
in contrast to MFVI, where convergence only happens
for a narrower range of initializations. In addition,
VIPS can escape from certain local optima that exist
in the MFVI objective. These results highlight the the-
oretical advantage of the added dependence structure.
Empirically, we demonstrate that VIPS is more robust
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compared to MFVI when the graph is sparse and the
signal to noise ratio is low (Section 4). We observe
similar trends hold in more general models with unbal-

anced class sizes and more than two classes. We hope

that our analysis for the simple blockmodel setting can
shed light on theoretical analysis of algorithms with
more general dependence structure such as BP.

The paper is organized as follows. Section 2 contains
the model de nition and introduces VIPS. We present
our theoretical results in Section 3. Finally in Section 4,
we demonstrate the empirical performance of VIPS in
contrast to MFVI and other algorithms. We conclude
with a discussion on possible generalizations, accompa-
nied by promising empirical results in Section 5.

2 Preliminaries and Proposed Work

2.1 Preliminaries

The stochastic block model (SBM) is a generative
network model with community structure. A K-
community SBM for n nodes is generated as follows:
each node is assigned to one of the communities in
;K g. These memberships are represented by
U 2 f O, 1g" X, where each row follows an independent
Multinomial (1; ) distribution with parameter . We
|3ave Uk =1 if nodei belongs to community k and

k=1 Uik = 1. Given the community memberships,
links between pairs of nodes are generated according
to the entries ina K K connectivity matrix B. That
is, if A denotes then n binary symmetric adjacency
matrix, then, for i 6 j,

P(Aj =1jUx =1;U; =1)= By: (1)

We consider undirected networks, where bothB and
A are symmetric. Given an observedA, the goal is to
infer the latent community labels U and the model pa-
rameters ( ;B ). Since the data likelihoodP (A;B; )
requires summing overK" possible labels, approxi-
mations such as MFVI are often needed to produce
computationally tractable algorithms.

Throughout the rest of the paper, we will usel, to
denote the all-one vector of lengthn. When it is clear
from the context, we will drop the subscript n. Let | be
the identity matrix and J = 117. 1c denotes a vector
where thei-th elementis1if i 2 C and 0 otherwise,
where C is some index set. Similar to (Mukherjee et al.,
2018), we consider a two-class SBM with equal class
size, whereK =2, = 1=2, and B takes the form
Bit = B = p, Bip = By = g, with p>qg. We
denote the two true underlying communities by G; and
G2, where G;; G, form a partition of f1;2;:::;ng and
jG1j = jG2j. (For convenience, we assume is even.)
As will become clear, the full analysis of structured VI

in this simple case is highly nontrivial.

2.2 Variational inference with pairwise
structure (VIPS)

The well-known MFVI approximates the likelihood
by assuming a product distribution over the latent
variables. In other words, the posterior label distri-
bution of the nodes is assumed to be independent in
the variational distribution. To investigate how in-
troducing dependence structure can help with the in-
ference, we focus on a simple setting of linked pairs
which are independent of each other. To be con-
crete, we randomly partition the n nodes into two sets:
Py = fzy; 1Zm@, P2 = fys; ;Ymg, with m = n=2.
Here z.;yx 2 f 1;:::;ng are the node indices. In our
structured varlatlonal distribution, we label pairs of
nodes(zx;yx) using indexk 2 f 1;:::; mg and assume
there is dependence within each pa|r. The correspond-
ing membership matrices forP; and P, are denoted by
Z andY respectively, which are bothm 2 sub-matrices
of the full membership matrix U. More explicitly, the
k™ row of matrix Z encodes the membership of node
Zx in Py, and similarly for Y. For convenience, we
permute both the rows and columns ofA based on the
node ordering in P, followed by that in P, to create
AZZ | ATY
AYZ | AWY
block isanm m matrix. Given the latent membership
variable (Z;Y), by Eqg. (1) the likelihood of A is given
by

a partitioned matrix: A = , where each

P(AﬁZJZ’B) = Qab[B (1 B b)l AU ]Zia Zjp
P(AJ}Y;Z;B) = Qa-b[B U (1 Bap)t AV %R YR
P(A?],yJY, B) = Q ab[B (1 B )1 AIJ ]Y,a Yib (2)

wherea;b2f 1;2g and A% = (AY?)T.

A simple illustration of the partition and how ordered
pairs of nodes are linked to incorporate dependence
is given in Figure 1, where the the true underlying
communities G; and G, are shaded di erently. After
the partition, we have m pairs of linked nodes indexed
from 1 to m. For convenience of analysis, we de ne
the following sets for these pairs of linked nodes, as
illustrated in Figure 1.

De ne C4, (CY) as the set of indicesi of pairs (z; ;)
with z 2 Gy, (yi 2 G1). Similarly, C, (C) is the
set of indices of pairs(z;;yi) with z 2 Gg, (vi 2 G2).
We will also make use of the setsC,, = C, \ CP,
wherea; b2 f 1;2g. In Figure 1, these sets correspond
to di erent combinations of shading, i.e. community
memberships, of the linked pairs, e.g.Cs; is the index
set of pairs(z;y;) with z 2 Gy;y; 2 Ga.
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We de ne the variational distribution for the latent 1 v (aw Y zy
membership matrix (Z;Y) as Q(Z;Y ), which we as- ¥ 5V (A7 a* TC )+ ZiaYio (AT av + T an))]
sume takes the form X =

¥ + ZiaYin (A7 an+ T ( an)).

Q(Z;Y)=  Q(Zi;Yi); 3) aib ’

i=1 xn
where Z; denotes thei row of Z, and Q(Z;; V) is a . KL(Q(zi;yi)iiP(z)P (yi)); ()
general categorical distribution with variational param- =1
eters de ned as follows. where a, = log(Bap=(1 Bap)) andf( )= log(1+

e ). The KL regularization term can be computed as
EL (Q(z; y)iiP(zi)P (i)

code more dependence structure between the posteriors = o ca 1 o 109( f)=( ¢ 41 )t e@ )t 9:
at di erent nodes than vanilla MFVI, since we allow for ) o )
dependence within each linked pair of nodes while keep- Our goal is to maximize L (Q; ;B ) with respect to

iCd = Q(Zi;c+1 =1;Yidg+1 = 1);

ing independence between di erent pairs. We de ne e variational parameters @ for 1 i m. Since
the marginal probabilities as: ca (@ =1 for eachi, it su ces to consider 1,
= Qg =1)= 04 1 and 1. By taking derivatives, we can derive a
b i ' ! batch coordinate ascent algorithm for updating ¢ =
= Q(Yi=1= M+ M (4) ¢d;:::; ¢, Detailed calculation of the derivatives

can be found in Section A of the Appendix. Recall that

Next we derive the ELBO on the data log-likelihood 1
= 3. Also, de ne

1 pH1 p 1, 1 q
t= 2Iog =1 0 = o log 1 p (6)
q cd
C — .
= log 1 01 10 11’ (7)

where @ are logits, ¢;d 2 f 0; 1g and all the operations
are de ned element-wise.

Given the model parametersp; g, the current values of
¢d and the marginals = 10+ 11 = 014 1

d din Eqg. (4), th dates for °d i by:
Figure 1: An illustration of a partition for n =10. The as dened in Eq. (4), the updates for are given by

shaded nodes belong to communityG; and unshaded O=4tAzz 3 DI 31m)
nodes belong to communityG,. The nodes are ran- 2y ) 2y 1
domly partitioned into two sets P; and P,, and pairs of +4tA (3 1) diag(A®)I( Elm)
nodes are linked from index 1 tom. Dependence struc- 2t(diag(A?) | )1m; 8)
ture within each linked pair is incorporated into the ol — vy 1

variational distribution Q(Z;Y). For this partition and =41A ORIt 71m)

pair linking, C; = f4;5g, C, = f1;2;3g, C? = f1;2;4g, +41[AY? (3 1) diag(AY)|( }1m)
C9 = £3;59; C11 = f4g, Cip = f5g, Co1 = f1;2g, 2
Cy = f3g. 2t(diag(A¥*) 1 )1m; ©)

. o . Y=atA o 3 DI 3im)
logP (A) using Q(Z;Y ). For pairwise structured varia-

tional inference (VIPS), ELBO takes the form +4t[A% (3 1) diag(A?))( %Ln)
where P(Z;Y) is the probability of community labels 1 2
from SBM and follows independent Bernoulli ( ) dis- +4t[AYY J DK Z1m): (10)
tribution, KL (jj ) denotes the usual Kullback Leibler 2
divergence between two distributions. Using the likeli-  Given ¢, we can update the current values of @ and
hood in Eq. (2), the ELBO becomes the corresponding marginal probabilities , using
g N element-wise operations as follows:
L(QiB)= 5E0.  [ZaZp(AF w+f( w) L e S
" i6jab _l+e<31+e11+e101 U.—(, )
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10 11 01
e +e ) e

1+e®

1
+e

+ e()l + ell (11)

1+e10+eol+ell’

where (c; d) = (1;0); (0;1); (1; 1). The marginal proba-
bilities are concatenated asu = ( ; ) 2 [0;1]". Thus
u can be interpreted as the estimated posterior mem-
bership probability of all the nodes.

Since ¢ determines ° in the categorical distribu-
tion and u represents the corresponding marginals, one
can think of ° and u as the local and global parame-
ters respectively. It has been empirically shown that
the structured variational methods can achieve better
convergence property by iteratively updating the lo-
cal and global parameters (Blei et al., 2003, Ho man
et al.,, 2013, Ho man and Blei, 2015). In the same
spirit, we update the parameters ° and u iteratively
by (8) (11), following the order

10 | 01 114

u! u! ut 12
We call a full update of all the parameters
10. 01- 11-y in (12) as onemeta iteration which con-
sists of three inner iterations ofu updates. We useuj(k)
(j =1;2;3) to denote the update in the j -th iteration
of the k-th meta iteration, and u© to denote the ini-
tialization. Algorithm 1 gives the full algorithm when

the model parameters are known.

Algorithm 1 Variational Inference with Pairwise
Structure (VIPS)
input Adjacency matrix A 2f 0;1g" ", model parame-

ter p;q; =1=2.
output: The estimated node membership vector u.
Initialize the elements of u i.i.d. from an arbitrary dis-
tribution f dened on [0;1] with mean Initialize
10 — 01 _ 11 _ 0:
Randomly select n=2 nodes asP; and the other n=2 nodes
as Py;
while not converged do

Update *° by (8); update u=( ; ) by (11).
Update ° by (9); update u=( ; ) by (11).
Update ™ by (10); update u=( ; ) by (11).
end
Remark 1. So far we have derived the updates and

described the optimization algorithm when the true pa-
rameters p; g are known. When they are unknown, they
can be updated jointly with the variational parameters
after each meta iteration as

(1 wTA(1,
+2(1y 10 9)Tdiag(A%)1n
(1n w'@ (1, u
+uT(d Du+2(1y 10 T,
_(1n uwTAu+( 1+ “Tdiag(A¥)1nm

17 (In wWT@ NDuy+( 0+ oHT1 13)

u)+ u'Au

Although it is typical to update p;q and u jointly, as
shown in (Mukherjee et al., 2018), analyzing MFVI
updates with known parameters can shed light on the
convergence behavior of the algorithm. Initializingu
randomly while jointly updating p; g always leads MFVI
to an uninformative local optima. For this reason, in
what follows we will analyze Algorithm 1 in the context
of both xed and updating parametersp; g

3 Main results

In this section, we present theoretical analysis of the
algorithm in three settings: (i) When the parameters
are set to the true model parametersp; g; (i) When the
parameters are not too far from the true values, and
are held xed throughout the updates; (iii) Starting
from some reasonable guesses of the parameters, they
are jointly updated with latent membership estimates.

In the following analysis, we will frequently use the
eigen-decomposition of the expected adjacency matrix
P = E[AjU] = B91,17 + B9v,v]  pl wherev, =
(Va1;Vv22)T = (1lc,  1c,ilce  1cg)T is the second
eigenvector. Since the second eigenvector is just a
shifted and scaled version of the membership vector,
the projection jhu; v»ij is equivalent to the “; error from
true label z (up-to label permutation) by ku z k; =
m jh u;v,ij. We consider the parametrization p

q n, Where the density , ! 0 at some rate and
P ad=( n)

When the true parameters p; q are known, without de-
pendency structure, MFVI with random initializations
converges to the stationary points with non-negligible
probability (Sarkar et al., 2019). When the variational
distribution has a simple pairwise dependency structure
as VIPS, we show a stronger result. To be concrete,
in this setting, we establish that convergence happens
with probability approaching 1. In addition, unlike
MFVI, the convergence holds for general random ini-
tializations. We will rst consider the situation when
u© is initialized from a distribution centered at =
and show the results for 6 % in Corollary 1.

Theorem 1 (Sample behavior for known parameters)
Assume 10; 01, 11 gre initialized as 0 and the ele-
ments of u@ = ( ©; ©) are initialized i.i.d. from
Bernoulli(%). Whenp q ., p q=( n), and

n = ( log(n)), Algorithm 1 converges to the true
labels asymptotically after the second meta iteration, in
the sense that

@
kuj

N[

z kg = nexp(

p(N 1))
z are the true labels withz = 1g, or 1g,. The same
convergence holds for all the later iterations.

Remark 2. It is important to note that there are many
algorithms (see (Abbe, 2017) for a survey) which re-
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cover the memberships exactly in this regime. We do
not compare our theoretical results with those or to well

known thresholds for exact recovery (Abbe et al., 2015),
because our goal is not to design a new algorithm with
an improved theoretical guarantees. Rather, we show
that by introducing the simplest possible pairwise de-
pendence structure, variational inference for a simple

setting of a SBM improves over MFVI which has no

such structure. The density regime simply makes the
analysis somewhat easier.

Proof. We provide a proof sketch here and defer the
details to Section B of the Appendix. We assume for
the rst six iterations, we randomly partition A into

of the six subgraphs with equal probability. For the
later iterations, we can use the whole graphA. Then
A()'s are independent with population matrix P=6.
Although not used in Algorithm 1, the graph splitting

is a widely used technique for theoretical convenience
(McSherry, 2001, Chaudhuri et al., 2012) and allows
us to bound the noise in each iteration more easily.
The main arguments involve lower bounding the size of
the projection jhu;v,ij in each iteration as it increases
towards n=2, at which point the algorithm achieves
strong consistency. For ease of exposition, we will
scale everything by6 so that p;q; correspond to the
parameters for the full un-split matrix P. This does
not a ect the analysis in any way.

In each iteration, we decompose the intermediate
10, 01- 11 into blockwise constant signal and random
noise using the spectral property of the population ma-
trix P. As an illustration, in the rst meta iteration,
we write the update in (8) (10) as signal plus noise,

ilO = 41:(311(:1 + 321C2 + ri(o))

1
O = 4t(x11lco + Xalcg + 1Y)

= 4t(yilc, + Yolc, + Yalco + Yalcg + 1Y)

wheret is a constant and the noise has the form

r® = RO u® %1) (14)
for appropriate j; k , where R() arises from the sample
noise in the adjacency matrix. We handle the noise from
the rstiteration r(© with a Berry-Esseen bound condi-
tional on u©@ , and the later r() with a uniform bound.
The blockwise constant signalss; ; x1;y; are updated as
(""Tq J(hu; 1 m)+( %)m;vzi and sp; X2; Y2 are
updated as(25%  )(hu;1i m)  (B)hu;vei. As
hu; v,i increases throughout the iterations, the signals
become increasingly separated for the two communities.
Using Littlewood-O ord type anti-concentration, we
show in the rst meta iteration,

D vi = pP ) ;1

m=0

.n .
h.l(zl) TVol 3 op (n); h.l(zl) i m=0
o1
vl Zn+ op(n);
4
n ) n
3 op(n) h u(31);1| m 1 +op(n) (15
After the second meta iteration we have
2).,2..,2 _ 2,00 _ .
s$P:x@ .y = o) PP WP = s )
2 2 2 2
P P = pna)y? xP = e(na)
s P +y) = e x@ P +yP)= e(n )

Plugging equations above to(11), we have the desired
convergence after the second meta iteration. O

The next corollary shows the same convergence holds
when we use a general random initialization not cen-
tered at 1=2. In contrast, MFVI converges to stationary
points 0, or 1, with such initializations.

Corollary 1. Assume the elements ofi©® are i.i.d.
sampled from a distribution with mean 6 0:5. Under
the conditions in Theorem 1, applying Algorithm 1 with
known p; g, we haveku(f) zki=nexp( p(n ).

The same order holds for all the later iterations.

The proof relies on showing after the rst iteration,
u(ll) behaves like nearly independenBernouIIi(%), the
details of which can be found in Appendix B.

The next proposition focuses on the behavior of special
points in the optimization space for u. In particular, we
show that Algorithm 1 enables us to move away from
the stationary points 0, and 1,, whereas in MFVI, the
optimization algorithm gets trapped in these stationary
points (Mukherjee et al., 2018).

Proposition 1 (Escaping from stationary points).

(i) ( %, ©or, 10, 1y = (1;0;0;0), (0;0;0;1)
(these vectors arem-dimensional) are the sta-
tionary points of the pairwise structured ELBO
when p; q are known, which maps tou = 0, and
1, respectively.

With the updates in Algorithm 1, whenu© =
On, 1,, VIPS converges to the true labels with

ku?  zki=nexp( p(n ).

(i)

The above results requires knowing the truep and g.
The next corollary shows that, even if we do not have
access to the true parameters, as long as some reason-
able estimates can be obtained, the same convergence
as in Theorem 1 holds thus demonstrating robustness
to misspeci ed parameters. Here we hold the parame-
ters xed and only update u as in Algorithm 1. When
P;§ n,weneedp @G= ( ) andp;q§nottoo far
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from the true values to achieve convergence. The proof
is deferred to the Appendix.

Proposition 2 (Parameter robustness) If we replace
true p; q with some estimationp; ¢ in Algorithm 1, the
same conclusion as in Theorem 1 holds if

122> " 2% g=( 4), 3.f=Q) .
_ P=1 P A~ _ 1 ¢
wheref' = %Iogm, = ziplogﬁj.

Finally, we consider updating the parameters jointly
with u (as explained in Remark 1) by rst initializing
the algorithm with some reasonablep© ; @ .

Theorem 2 (Updating parameters and u simultane-
ously). Suppose we initialize with some estimates of
true (p;q) asp= p@, = q© satisfying the conditions
in Proposition 2 and apply two meta iterations in Algo-
rithm 1 to update u before updatingp = p® ;4= q®.
After this, we alternate between updatingu and the
parameters after each meta iteration. Then

o = p+ 0p (P 7=n); @ = g+ 0p (P =n);

ki  zki=nexp( (nn);

and the same holds for all the later iterations.

4 Experiments

In this section, we present some numerical results. In
Figures 2 to 4 we show the e ectiveness of VIPS in
our theoretical setting of two equal sized communities.
In Figures 5 (a) and (b) we show that empirically the
advantage of VIPS holds even for unbalanced commu-
nity sizes and K > 2. Our goal is two-fold: (i) we
demonstrate that the empirical convergence behavior
of VIPS coincides well with our theoretical analysis
in Section 3; (ii) in practice VIPS has superior perfor-
mance over MFVI in both the simple setting we have
analyzed and more general settings, thus con rming
the advantage of the added dependence structure. For
the sake of completeness, we also include comparisons
with other popular algorithms, even though it is not
our goal to show VIPS outperforms these methods.

In Figure 2, we compare the convergence property of
VIPS with MFVI for initialization from independent
Bernoulli's with means =0:1;0:5, and 0:9. We ran-
domly generate a graph withn = 3000 nodes with pa-
rameterspp = 0:2; g = 0:01 and show results from 20
random trials. We plot min(ku z kg;ku (1 z )ky),
or the "1 distance of the estimated labelu to the ground
truth z on the Y axis versus the iteration number on
the X axis. In this experiments, both VIPS and MFVI
were run with the true po; gy values. As shown in Fig-
ure 2, when % VIPS converges toz after two

meta iterations (6 iterations) for all the random ini-
tializations. In contrast, for MFVI, a fraction of the
random initializations converge to 0, and 1,. When

6 % VIPS converges to the ground truth after three
meta iterations, whereas MFVI stays at the stationary
points 0, and 1,. This is consistent with our theoret-
ical results in Theorem 1 and Corollary 1, and those
in (Mukherjee et al., 2018).

Figure 2: *; distance from ground truth (Y axis) vs.
number of iterations (X axis). The line is the mean
of 20 random trials and the shaded area shows the
standard deviation. u is initialized from i.i.d. Bernoulli
with mean = 0:1;0:5;0:9 from the left to right.

In Figure 3, we show when the truep; q are unknown,
the dependence structure makes the algorithm more
robust to estimation errors in P; §. The heatmap repre-
sents the normalized mutual information (NMI) (Ro-
mano et al., 2014) betweenu and z , with p on the
X axis and ¢ on the Y axis. We only examine pairs
with p > ¢ Both VIPS and MFVI were run with p
and ¢, which were held xed and di er from the true
values to varying extent. The dashed line represents
the true p; qused to generate the graph. For eaclp; g
pair, the mean NMI for 20 random initializations from
i.i.d Bernoulli( %) is shown. VIPS recovers the ground
truth in a wider range of p;§ values than MFVI. We
show in Section D of the Appendix that similar results
also hold for K =2 with unbalanced community sizes.

(a) MFVI (b) VIPS

Figure 3: NMI averaged over 20 random initializations
for eachp, ¢ (P > ). The true parameters are(po; Go) =
(0:2;0:1), = 0:5and n = 2000. The dashed lines
indicate the true parameter values.

In Figure 4, we compare VIPS with MFVI under di er-

ent network sparsities and signal-to-noise ratios (SNR)
as de ned by ro = pp=@p. For the sake of completeness,
we also include two other popular algorithms, Belief
Propagation (BP) (Decelle et al., 2011b) and Spectral
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