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Abstract

Mean-field variational inference (MFVI) has
been widely applied in large scale Bayesian
inference. However, MFVI assumes inde-
pendent distribution on the latent variables,
which often leads to objective functions with
many local optima, making optimization al-
gorithms sensitive to initialization. In this
paper, we study the advantage of structured
variational inference in the context of a sim-
ple two-class Stochastic Blockmodel. To fa-
cilitate theoretical analysis, the variational
distribution is constructed to have a simple
pairwise dependency structure on the nodes
of the network. We prove that, in a broad
density regime and for general random ini-
tializations, unlike MFVI, the estimated class
labels by structured VI converge to the ground
truth with high probability, when the model
parameters are known, estimated within a rea-
sonable range or jointly optimized with the
variational parameters. In addition, empiri-
cally we demonstrate structured VI is more
robust compared with MFVI when the graph
is sparse and the signal to noise ratio is low.
The paper takes a first step towards quantify-
ing the role of added dependency structure in
variational inference for community detection.

1 Introduction

Variational inference (VI) is a widely used technique for
approximating complex likelihood functions in Bayesian
learning (Jordan et al., 1999, Blei et al., 2003, Jaakkola
and Jordon, 1999), and is known for its computational
scalability. VI reduces an intractable posterior inference
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problem to an optimization framework by imposing sim-
pler dependence structure and is considered a popular
alternative to Markov chain Monte Carlo (MCMC)
methods. Similar to the Expectation Maximization
(EM) algorithm (Dempster et al., 1977), VI works by
the basic principle of constructing a tractable lower
bound on the complete log-likelihood of a probabilistic
model. One of the simplest forms of approximation
is mean-field variational inference (MFVI), where the
variational lower bound, also known as ELBO, is com-
puted using the expectation with respect to a product
distribution over the latent variables(Blei et al., 2003,
2006, Hoffman et al., 2013). Though VI has achieved
great empirical success in probabilistic models, theo-
retical understanding of its convergence properties is
still an open area of research.

Theoretical studies of variational methods (and similar
algorithms that involve iteratively maximizing a lower
bound) have drawn significant attention recently (see
(Balakrishnan et al., 2017, Xu et al., 2016, Yan et al.,
2017, Yi et al., 2014, Kwon and Caramanis, 2018) for
convergence properties of EM). For VI, the global op-
timizer of the variational lower bound is shown to be
asymptotically consistent for a number of models in-
cluding Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) and Gaussian mixture models (Pati et al., 2017).
In (Westling and McCormick, 2015) the connection
between VI estimates and profile M-estimation is ex-
plored and asymptotic consistency is established. In
practice, however, it is well known the algorithm is
not guaranteed to reach the global optimum and the
performance of VI often suffers from local optima (Blei
et al., 2017). While in some models, convergence to
the global optimum can be achieved with appropriate
initialization (Wang et al., 2006, Awasthi and Risteski,
2015), understanding convergence with general initial-
ization and the influence of local optima is less studied
with a few exceptions (Xu et al., 2016, Ghorbani et al.,
2018, Mukherjee et al., 2018).

In general, despite being computationally scalable,
MFVI suffers from many stability issues including
symmetry-breaking, multiple local optima, and sen-
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sitivity to initialization, which are consequences of the
non-convexity of typical mean-field problems (Wain-
wright et al., 2008, Jaakkola, 2001). The independence
assumption on latent variables also leads to the under-
estimation of posterior uncertainty (Blei et al., 2017,
Yin and Zhou, 2018). To address these problems, many
studies suggest that modeling the latent dependency
structure can expand the variational family under con-
sideration and lead to larger ELBO and more stable
convergence (Xing et al., 2002, Hoffman and Blei, 2015,
Giordano et al., 2015, Tran et al., 2015, Ranganath
et al., 2016, Yin and Zhou, 2018, Rezende and Mo-
hamed, 2015, Tran et al., 2017). However, rigorous
theoretical analysis with convergence guarantees in
this setting remains largely underexplored.

In this paper, we aim to study the effect of added
dependency structure in a MFVI framework. Since
the behavior of MFVI is well understood for the very
simple two class, equal sized Stochastic Blockmodel
(SBM) (Mukherjee et al., 2018, Zhang and Zhou, 2017),
we propose to add a simple pairwise link structure to
MFVI in the context of inference for SBMs. We study
how added dependency structure can improve MFVI.
In particular, we focus on how random initialization
behave for VI with added structure.

The stochastic blockmodel (SBM) (Holland et al., 1983)
is a widely used network model for community detec-
tion in networks. There are a plethora of algorithms
with theoretical guarantees for estimation for SBMs
like Spectral methods (Rohe et al., 2011, Coja-Oghlan,
2010), semidefinite relaxation based methods (Guédon
and Vershynin, 2016, Perry and Wein, 2017, Amini
et al., 2018), likelihood-based methods (Amini et al.,
2013), modularity based methods (Snijders and Now-
icki, 1997, Newman and Girvan, 2004, Bickel and Chen,
2009). Among these, likelihood-based methods remain
important and relevant due to their flexibility in in-
corporating additional model structures. Examples
include mixed membership SBM (Airoldi et al., 2008),
networks with node covariates (Razaee et al., 2019), and
dynamic networks (Matias and Miele, 2017). Among
likelihood based methods, VI provides a tractable ap-
proximation to the log-likelihood and is a scalable al-
ternative to more expensive methods like Profile Likeli-
hood (Bickel and Chen, 2009), or MCMC based meth-
ods (Snijders and Nowicki, 1997, Newman and Girvan,
2004). Computationally, VI was also shown to scale up
well to very large graphs (Gopalan and Blei, 2013).

On the theoretical front, (Bickel et al., 2013) proved
that the global optimum of MFVI behaves optimally
in the dense degree regime. In terms of algorithm con-
vergence, (Zhang and Zhou, 2017) showed the batch
coordinate ascent algorithm (BCAVI) for optimizing
the mean-field objective has guaranteed convergence

if the initialization is sufficiently close to the ground
truth. (Mukherjee et al., 2018) fully characterized
the optimization landscape and convergence regions
of BCAVI for a simple two-class SBM with random
initializations. It is shown that uninformative initializa-
tions can indeed converge to suboptimal local optima,
demonstrating the limitations of the MFVI objective
function.

Coming back to structured variational inference, it
is important to note that, if one added dependencies
between the posterior of each node, the natural approx-
imate inference method is the belief propagation (BP)
algorithm (Pearl, 1982, 2014, Wilinski et al., 2019).
Based on empirical evidence, it has been conjectured
in (Decelle et al., 2011a) that BP is asymptotically op-
timal for a simple two-class SBM. In the sparse setting
where phase transition occurs, (Mossel et al., 2016)
analyzed a local variant of BP and showed it is opti-
mal given a specific initialization. In other parameter
regions, rigorous theoretical understanding of BP, in
particular, how adding dependence structure can im-
prove convergence with general initializations is still
an open problem.

Motivated by the above observations, we present a theo-
retical case study of structured variational inference for
SBM. We emphasize here that our primary contribution
does not lie in proposing a new estimation algorithm
that outperforms state-of-the-art methods; rather we
use this algorithm as an example to understand the
interplay between a non-convex objective function and
an iterative optimization algorithm with respect to ran-
dom initializations, and compare it with MFVI. We
consider a two-class SBM with equal class size, an as-
sumption commonly used in theoretical work (Mossel
et al., 2016, Mukherjee et al., 2018) where the analysis
for the simplest case is nontrivial.

We study structured VI by introducing a simple pair-
wise dependence structure between randomly paired
nodes. By carefully bounding the variational param-
eters in each iteration using a combination of concen-
tration and Littlewood-Offord type anti-concentration
arguments (Erdös, 1945), we prove that in a broad
density regime and under a fairly general random ini-
tialization scheme, the Variational Inference algorithm
with Pairwise Structure (VIPS) can converge to the
ground truth with probability tending to one, when the
parameters are known, estimated within a reasonable
range, or updated appropriately (Section 3). This is
in contrast to MFVI, where convergence only happens
for a narrower range of initializations. In addition,
VIPS can escape from certain local optima that exist
in the MFVI objective. These results highlight the the-
oretical advantage of the added dependence structure.
Empirically, we demonstrate that VIPS is more robust
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compared to MFVI when the graph is sparse and the
signal to noise ratio is low (Section 4). We observe
similar trends hold in more general models with unbal-
anced class sizes and more than two classes. We hope
that our analysis for the simple blockmodel setting can
shed light on theoretical analysis of algorithms with
more general dependence structure such as BP.

The paper is organized as follows. Section 2 contains
the model definition and introduces VIPS. We present
our theoretical results in Section 3. Finally in Section 4,
we demonstrate the empirical performance of VIPS in
contrast to MFVI and other algorithms. We conclude
with a discussion on possible generalizations, accompa-
nied by promising empirical results in Section 5.

2 Preliminaries and Proposed Work

2.1 Preliminaries

The stochastic block model (SBM) is a generative
network model with community structure. A K-
community SBM for n nodes is generated as follows:
each node is assigned to one of the communities in
{1, . . . ,K}. These memberships are represented by
U ∈ {0, 1}n×K , where each row follows an independent
Multinomial (1;π) distribution with parameter π. We
have Uik = 1 if node i belongs to community k and∑K
k=1 Uik = 1. Given the community memberships,

links between pairs of nodes are generated according
to the entries in a K ×K connectivity matrix B. That
is, if A denotes the n× n binary symmetric adjacency
matrix, then, for i 6= j,

P (Aij = 1|Uik = 1, Uj` = 1) = Bk`. (1)

We consider undirected networks, where both B and
A are symmetric. Given an observed A, the goal is to
infer the latent community labels U and the model pa-
rameters (π,B). Since the data likelihood P (A;B, π)
requires summing over Kn possible labels, approxi-
mations such as MFVI are often needed to produce
computationally tractable algorithms.

Throughout the rest of the paper, we will use 1n to
denote the all-one vector of length n. When it is clear
from the context, we will drop the subscript n. Let I be
the identity matrix and J = 11T . 1C denotes a vector
where the i-th element is 1 if i ∈ C and 0 otherwise,
where C is some index set. Similar to (Mukherjee et al.,
2018), we consider a two-class SBM with equal class
size, where K = 2, π = 1/2, and B takes the form
B11 = B22 = p, B12 = B21 = q, with p > q. We
denote the two true underlying communities by G1 and
G2, where G1, G2 form a partition of {1, 2, . . . , n} and
|G1| = |G2|. (For convenience, we assume n is even.)
As will become clear, the full analysis of structured VI

in this simple case is highly nontrivial.

2.2 Variational inference with pairwise
structure (VIPS)

The well-known MFVI approximates the likelihood
by assuming a product distribution over the latent
variables. In other words, the posterior label distri-
bution of the nodes is assumed to be independent in
the variational distribution. To investigate how in-
troducing dependence structure can help with the in-
ference, we focus on a simple setting of linked pairs
which are independent of each other. To be con-
crete, we randomly partition the n nodes into two sets:
P1 = {z1, · · · , zm}, P2 = {y1, · · · , ym}, with m = n/2.
Here zk, yk ∈ {1, . . . , n} are the node indices. In our
structured variational distribution, we label pairs of
nodes (zk, yk) using index k ∈ {1, . . . ,m} and assume
there is dependence within each pair. The correspond-
ing membership matrices for P1 and P2 are denoted by
Z and Y respectively, which are bothm×2 sub-matrices
of the full membership matrix U . More explicitly, the
kth row of matrix Z encodes the membership of node
zk in P1, and similarly for Y . For convenience, we
permute both the rows and columns of A based on the
node ordering in P1 followed by that in P2 to create

a partitioned matrix: A =

[
Azz Azy

Ayz Ayy

]
, where each

block is anm×m matrix. Given the latent membership
variable (Z, Y ), by Eq. (1) the likelihood of A is given
by

P (Azzij |Z,B) =
∏
a,b[B

Azz
ij

ab (1−Bab)1−A
zz
ij ]ZiaZjb

P (Azyij |Y,Z,B) =
∏
a,b[B

Azy
ij

ab (1−Bab)1−A
zy
ij ]ZiaYjb

P (Ayyij |Y,B) =
∏
a,b[B

Ayy
ij

ab (1−Bab)1−A
yy
ij ]YiaYjb (2)

where a, b ∈ {1, 2} and Azy = (Ayz)T .

A simple illustration of the partition and how ordered
pairs of nodes are linked to incorporate dependence
is given in Figure 1, where the the true underlying
communities G1 and G2 are shaded differently. After
the partition, we have m pairs of linked nodes indexed
from 1 to m. For convenience of analysis, we define
the following sets for these pairs of linked nodes, as
illustrated in Figure 1.

Define C1, (C ′1) as the set of indices i of pairs (zi, yi)
with zi ∈ G1, (yi ∈ G1). Similarly, C2, (C ′2) is the
set of indices of pairs (zi, yi) with zi ∈ G2, (yi ∈ G2).
We will also make use of the sets Cab := Ca ∩ C ′b,
where a, b ∈ {1, 2}. In Figure 1, these sets correspond
to different combinations of shading, i.e. community
memberships, of the linked pairs, e.g. C12 is the index
set of pairs (zi, yi) with zi ∈ G1, yi ∈ G2.
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We define the variational distribution for the latent
membership matrix (Z, Y ) as Q(Z, Y ), which we as-
sume takes the form

Q(Z, Y ) =

m∏
i=1

Q(Zi, Yi), (3)

where Zi denotes the ith row of Z, and Q(Zi, Yi) is a
general categorical distribution with variational param-
eters defined as follows.

ψcdi := Q(Zi,c+1 = 1, Yi,d+1 = 1),

for i ∈ {1, . . . ,m}, c, d ∈ {0, 1}. This allows one to en-
code more dependence structure between the posteriors
at different nodes than vanilla MFVI, since we allow for
dependence within each linked pair of nodes while keep-
ing independence between different pairs. We define
the marginal probabilities as:

φi := Q(Zi1 = 1) = ψ10
i + ψ11

i

ξi := Q(Yi1 = 1) = ψ01
i + ψ11

i . (4)

Next we derive the ELBO on the data log-likelihood

Figure 1: An illustration of a partition for n = 10. The
shaded nodes belong to community G1 and unshaded
nodes belong to community G2. The nodes are ran-
domly partitioned into two sets P1 and P2, and pairs of
nodes are linked from index 1 to m. Dependence struc-
ture within each linked pair is incorporated into the
variational distribution Q(Z, Y ). For this partition and
pair linking, C1 = {4, 5}, C2 = {1, 2, 3}, C ′1 = {1, 2, 4},
C ′2 = {3, 5}; C11 = {4}, C12 = {5}, C21 = {1, 2},
C22 = {3}.

logP (A) using Q(Z, Y ). For pairwise structured varia-
tional inference (VIPS), ELBO takes the form

L(Q;π,B) = EZ,Y∼Q(Z,Y ) logP (A|Z, Y )−KL(Q||P ),

where P (Z, Y ) is the probability of community labels
from SBM and follows independent Bernoulli (π) dis-
tribution, KL(·||·) denotes the usual Kullback–Leibler
divergence between two distributions. Using the likeli-
hood in Eq. (2), the ELBO becomes

L(Q;π,B) =
1

2
EQ

 ∑
i 6=j,a,b

[ZiaZjb(A
zz
ij αab + f(αab))

+
1

2
YiaYjb(A

yy
ij αab + f(αab)) + ZiaYjb(A

zy
ij αab + f(αab))]

+
∑
i,a,b

ZiaYib(A
zy
ii αab + f(αab))


−

m∑
i=1

KL(Q(zi, yi)||P (zi)P (yi)), (5)

where αab = log(Bab/(1−Bab)) and f(α) = − log(1 +
eα). The KL regularization term can be computed as

KL(Q(zi, yi)||P (zi)P (yi))

=
∑

0≤c,d≤1 ψ
cd
i log(ψcdi )/(πcπd(1− π)1−c(1− π)1−d).

Our goal is to maximize L(Q;π,B) with respect to
the variational parameters ψcdi for 1 ≤ i ≤ m. Since∑
c,d ψ

cd
i = 1 for each i, it suffices to consider ψ10

i , ψ
01
i

and ψ11
i . By taking derivatives, we can derive a

batch coordinate ascent algorithm for updating ψcd =
(ψcd1 , . . . , ψ

cd
m ). Detailed calculation of the derivatives

can be found in Section A of the Appendix. Recall that
π = 1

2 . Also, define

t :=
1

2
log

p/(1− p)
q/(1− q)

λ :=
1

2t
log

1− q
1− p

, (6)

θcd := log
ψcd

1− ψ01 − ψ10 − ψ11
, (7)

where θcd are logits, c, d ∈ {0, 1} and all the operations
are defined element-wise.

Given the model parameters p, q, the current values of
ψcd and the marginals φ = ψ10 + ψ11, ξ = ψ01 + ψ11

as defined in Eq. (4), the updates for θcd are given by:

θ10 =4t[Azz − λ(J − I)](φ− 1
21m)

+ 4t[Azy − λ(J − I)− diag(Azy)](ξ − 1

2
1m)

− 2t(diag(Azy)− λI)1m, (8)

θ01 =4t[Ayy − λ(J − I)](ξ − 1
21m)

+ 4t[Ayz − λ(J − I)− diag(Ayz)](φ− 1

2
1m)

− 2t(diag(Ayz)− λI)1m, (9)

θ11 =4t[Azz − λ(J − I)](φ− 1
21m)

+ 4t[Azy − λ(J − I)− diag(Azy)](ξ − 1

2
1m)

+ 4t[Ayz − λ(J − I)− diag(Ayz)](φ− 1

2
1m)

+ 4t[Ayy − λ(J − I)](ξ − 1

2
1m). (10)

Given θcd, we can update the current values of ψcd and
the corresponding marginal probabilities φ, ξ using
element-wise operations as follows:

ψcd =
eθ

cd

1 + eθ01 + eθ11 + eθ10
, u := (φ, ξ)
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φ =
eθ

10

+ eθ
11

1 + eθ10 + eθ01 + eθ11
, ξ =

eθ
01

+ eθ
11

1 + eθ10 + eθ01 + eθ11
(11)

where (c, d) = (1, 0), (0, 1), (1, 1). The marginal proba-
bilities are concatenated as u = (φ, ξ) ∈ [0, 1]n. Thus
u can be interpreted as the estimated posterior mem-
bership probability of all the nodes.

Since θcd determines ψcd in the categorical distribu-
tion and u represents the corresponding marginals, one
can think of θcd and u as the local and global parame-
ters respectively. It has been empirically shown that
the structured variational methods can achieve better
convergence property by iteratively updating the lo-
cal and global parameters (Blei et al., 2003, Hoffman
et al., 2013, Hoffman and Blei, 2015). In the same
spirit, we update the parameters θcd and u iteratively
by (8)–(11), following the order

θ10 → u→ θ01 → u→ θ11 → u→ θ10 · · · . (12)

We call a full update of all the parameters
θ10, θ01, θ11, u in (12) as one meta iteration which con-
sists of three inner iterations of u updates. We use u(k)j

(j = 1, 2, 3) to denote the update in the j-th iteration
of the k-th meta iteration, and u(0) to denote the ini-
tialization. Algorithm 1 gives the full algorithm when
the model parameters are known.

Algorithm 1 Variational Inference with Pairwise
Structure (VIPS)
input : Adjacency matrix A ∈ {0, 1}n×n, model parame-

ter p, q, π = 1/2.
output :The estimated node membership vector u.
Initialize the elements of u i.i.d. from an arbitrary dis-
tribution fµ defined on [0, 1] with mean µ. Initialize
θ10 = θ01 = θ11 = 0;

Randomly select n/2 nodes as P1 and the other n/2 nodes
as P2;

while not converged do
Update θ10 by (8); update u = (φ, ξ) by (11).
Update θ01 by (9); update u = (φ, ξ) by (11).
Update θ11 by (10); update u = (φ, ξ) by (11).

end

Remark 1. So far we have derived the updates and
described the optimization algorithm when the true pa-
rameters p, q are known. When they are unknown, they
can be updated jointly with the variational parameters
after each meta iteration as

p =

(1n − u)TA(1n − u) + uTAu

+ 2(1m − ψ10 − ψ01)T diag(Azy)1m
(1n − u)T (J − I)(1n − u)

+ uT (J − I)u+ 2(1m − ψ10 − ψ01)T1m

q =
(1n − u)TAu+ (ψ10 + ψ01)T diag(Azy)1m

(1n − u)T (J − I)un + (ψ10 + ψ01)T1m
(13)

Although it is typical to update p, q and u jointly, as
shown in (Mukherjee et al., 2018), analyzing MFVI
updates with known parameters can shed light on the
convergence behavior of the algorithm. Initializing u
randomly while jointly updating p, q always leads MFVI
to an uninformative local optima. For this reason, in
what follows we will analyze Algorithm 1 in the context
of both fixed and updating parameters p, q.

3 Main results

In this section, we present theoretical analysis of the
algorithm in three settings: (i) When the parameters
are set to the true model parameters p, q; (ii) When the
parameters are not too far from the true values, and
are held fixed throughout the updates; (iii) Starting
from some reasonable guesses of the parameters, they
are jointly updated with latent membership estimates.

In the following analysis, we will frequently use the
eigen-decomposition of the expected adjacency matrix
P = E[A|U ] = p+q

2 1n1
T
n + p−q

2 v2v
T
2 − pI where v2 =

(v21, v22)T = (1C1 − 1C2 ,1C′
1
− 1C′

2
)T is the second

eigenvector. Since the second eigenvector is just a
shifted and scaled version of the membership vector,
the projection |〈u, v2〉| is equivalent to the `1 error from
true label z∗ (up-to label permutation) by ‖u− z∗‖1 =
m − |〈u, v2〉|. We consider the parametrization p �
q � ρn, where the density ρn → 0 at some rate and
p− q = Ω(ρn).

When the true parameters p, q are known, without de-
pendency structure, MFVI with random initializations
converges to the stationary points with non-negligible
probability (Sarkar et al., 2019). When the variational
distribution has a simple pairwise dependency structure
as VIPS, we show a stronger result. To be concrete,
in this setting, we establish that convergence happens
with probability approaching 1. In addition, unlike
MFVI, the convergence holds for general random ini-
tializations. We will first consider the situation when
u(0) is initialized from a distribution centered at µ = 1

2
and show the results for µ 6= 1

2 in Corollary 1.
Theorem 1 (Sample behavior for known parameters).
Assume θ10, θ01, θ11 are initialized as 0 and the ele-
ments of u(0) = (φ(0), ξ(0)) are initialized i.i.d. from
Bernoulli( 1

2 ). When p � q � ρn, p − q = Ω(ρn), and√
nρn = Ω(log(n)), Algorithm 1 converges to the true

labels asymptotically after the second meta iteration, in
the sense that

‖u(2)3 − z∗‖1 = n exp(−ΩP (nρn)))

z∗ are the true labels with z∗ = 1G1 or 1G2 . The same
convergence holds for all the later iterations.
Remark 2. It is important to note that there are many
algorithms (see (Abbe, 2017) for a survey) which re-



A Theoretical Case Study of Structured Variational Inference for Community Detection

cover the memberships exactly in this regime. We do
not compare our theoretical results with those or to well
known thresholds for exact recovery (Abbe et al., 2015),
because our goal is not to design a new algorithm with
an improved theoretical guarantees. Rather, we show
that by introducing the simplest possible pairwise de-
pendence structure, variational inference for a simple
setting of a SBM improves over MFVI which has no
such structure. The density regime simply makes the
analysis somewhat easier.

Proof. We provide a proof sketch here and defer the
details to Section B of the Appendix. We assume for
the first six iterations, we randomly partition A into
six A(i), i = 0, . . . , 5 by assigning each edge to one
of the six subgraphs with equal probability. For the
later iterations, we can use the whole graph A. Then
A(i)’s are independent with population matrix P/6.
Although not used in Algorithm 1, the graph splitting
is a widely used technique for theoretical convenience
(McSherry, 2001, Chaudhuri et al., 2012) and allows
us to bound the noise in each iteration more easily.
The main arguments involve lower bounding the size of
the projection |〈u, v2〉| in each iteration as it increases
towards n/2, at which point the algorithm achieves
strong consistency. For ease of exposition, we will
scale everything by 6 so that p, q, λ correspond to the
parameters for the full un-split matrix P . This does
not affect the analysis in any way.

In each iteration, we decompose the intermediate
θ10, θ01, θ11 into blockwise constant signal and random
noise using the spectral property of the population ma-
trix P . As an illustration, in the first meta iteration,
we write the update in (8)–(10) as signal plus noise,

θ10i = 4t(s11C1 + s21C2 + r
(0)
i )

θ01i = 4t(x11C′
1

+ x21C′
2

+ r
(1)
i )

θ11i = 4t(y11C1
+ y21C2

+ y11C′
1

+ y21C′
2

+ r
(2)
i )

where t is a constant and the noise has the form

r(i) = R(i)(u
(k)
j −

1

2
1) (14)

for appropriate j, k, where R(i) arises from the sample
noise in the adjacency matrix. We handle the noise from
the first iteration r(0) with a Berry-Esseen bound condi-
tional on u(0), and the later r(i) with a uniform bound.
The blockwise constant signals s1, x1, y1 are updated as
(p+q2 −λ)(〈u,1n〉−m) + (p−q2 )〈u, v2〉 and s2, x2, y2 are
updated as (p+q2 − λ)(〈u,1n〉 −m)− (p−q2 )〈u, v2〉. As
〈u, v2〉 increases throughout the iterations, the signals
become increasingly separated for the two communities.
Using Littlewood-Offord type anti-concentration, we
show in the first meta iteration,

〈u(1)1 , v2〉 = ΩP (n
√
ρn), 〈u(1)1 ,1〉 −m = 0

〈u(1)2 , v2〉 ≥
n

8
− oP (n), 〈u(1)2 ,1〉 −m = 0

〈u(1)3 , v2〉 ≥
1

4
n+ oP (n),

− n

8
− oP (n) ≤ 〈u(1)3 ,1〉 −m ≤ n

4
+ oP (n) (15)

After the second meta iteration we have

s
(2)
1 , x

(2)
1 , y

(2)
1 = ΩP (nρn), s

(2)
2 , x

(2)
2 , y

(2)
2 = −ΩP (nρn);

2y
(2)
1 − s

(2)
1 = ΩP (nρn), 2y

(2)
1 − x

(2)
1 = ΩP (nρn);

s
(2)
1 − (y

(2)
1 + y

(2)
2 ) = ΩP (nρn), x

(2)
1 − (y

(2)
1 + y

(2)
2 ) = ΩP (nρn).

Plugging equations above to (11), we have the desired
convergence after the second meta iteration.

The next corollary shows the same convergence holds
when we use a general random initialization not cen-
tered at 1/2. In contrast, MFVI converges to stationary
points 0n or 1n with such initializations.

Corollary 1. Assume the elements of u(0) are i.i.d.
sampled from a distribution with mean µ 6= 0.5. Under
the conditions in Theorem 1, applying Algorithm 1 with
known p, q, we have ‖u(3)1 − z∗‖1 = n exp(−ΩP (nρn))).
The same order holds for all the later iterations.

The proof relies on showing after the first iteration,
u
(1)
1 behaves like nearly independent Bernoulli( 12 ), the

details of which can be found in Appendix B.

The next proposition focuses on the behavior of special
points in the optimization space for u. In particular, we
show that Algorithm 1 enables us to move away from
the stationary points 0n and 1n, whereas in MFVI, the
optimization algorithm gets trapped in these stationary
points (Mukherjee et al., 2018).

Proposition 1 (Escaping from stationary points).

(i) (ψ00, ψ01, ψ10, ψ11) = (1,0,0,0), (0,0,0,1)
(these vectors are m-dimensional) are the sta-
tionary points of the pairwise structured ELBO
when p, q are known, which maps to u = 0n and
1n respectively.

(ii) With the updates in Algorithm 1, when u(0) =
0n, 1n, VIPS converges to the true labels with
‖u(3)1 − z∗‖1 = n exp(−ΩP (nρn))).

The above results requires knowing the true p and q.
The next corollary shows that, even if we do not have
access to the true parameters, as long as some reason-
able estimates can be obtained, the same convergence
as in Theorem 1 holds thus demonstrating robustness
to misspecified parameters. Here we hold the parame-
ters fixed and only update u as in Algorithm 1. When
p̂, q̂ � ρn, we need p̂− q̂ = Ω(ρn) and p̂, q̂ not too far
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from the true values to achieve convergence. The proof
is deferred to the Appendix.
Proposition 2 (Parameter robustness). If we replace
true p, q with some estimation p̂, q̂ in Algorithm 1, the
same conclusion as in Theorem 1 holds if

1. p+q2 > λ̂, 2. λ̂− q = Ω(ρn), 3. t̂ = Ω(1).

where t̂ = 1
2 log

p̂/(1− p̂)
q̂/(1− q̂)

, λ̂ = 1
2t̂

log
1− q̂
1− p̂

.

Finally, we consider updating the parameters jointly
with u (as explained in Remark 1) by first initializing
the algorithm with some reasonable p(0), q(0).
Theorem 2 (Updating parameters and u simultane-
ously). Suppose we initialize with some estimates of
true (p, q) as p̂ = p(0), q̂ = q(0) satisfying the conditions
in Proposition 2 and apply two meta iterations in Algo-
rithm 1 to update u before updating p̂ = p(1), q̂ = q(1).
After this, we alternate between updating u and the
parameters after each meta iteration. Then

p(1) = p+OP (
√
ρn/n), q(1) = q +OP (

√
ρn/n),

‖u(2)3 − z∗‖1 = n exp(−Ω(nρn)),

and the same holds for all the later iterations.

4 Experiments

In this section, we present some numerical results. In
Figures 2 to 4 we show the effectiveness of VIPS in
our theoretical setting of two equal sized communities.
In Figures 5 (a) and (b) we show that empirically the
advantage of VIPS holds even for unbalanced commu-
nity sizes and K > 2. Our goal is two-fold: (i) we
demonstrate that the empirical convergence behavior
of VIPS coincides well with our theoretical analysis
in Section 3; (ii) in practice VIPS has superior perfor-
mance over MFVI in both the simple setting we have
analyzed and more general settings, thus confirming
the advantage of the added dependence structure. For
the sake of completeness, we also include comparisons
with other popular algorithms, even though it is not
our goal to show VIPS outperforms these methods.

In Figure 2, we compare the convergence property of
VIPS with MFVI for initialization from independent
Bernoulli’s with means µ = 0.1, 0.5, and 0.9. We ran-
domly generate a graph with n = 3000 nodes with pa-
rameters p0 = 0.2, q0 = 0.01 and show results from 20
random trials. We plot min(‖u−z∗‖1, ‖u− (1−z∗)‖1),
or the `1 distance of the estimated label u to the ground
truth z∗ on the Y axis versus the iteration number on
the X axis. In this experiments, both VIPS and MFVI
were run with the true p0, q0 values. As shown in Fig-
ure 2, when µ = 1

2 , VIPS converges to z∗ after two

meta iterations (6 iterations) for all the random ini-
tializations. In contrast, for MFVI, a fraction of the
random initializations converge to 0n and 1n. When
µ 6= 1

2 , VIPS converges to the ground truth after three
meta iterations, whereas MFVI stays at the stationary
points 0n and 1n. This is consistent with our theoret-
ical results in Theorem 1 and Corollary 1, and those
in (Mukherjee et al., 2018).

Figure 2: `1 distance from ground truth (Y axis) vs.
number of iterations (X axis). The line is the mean
of 20 random trials and the shaded area shows the
standard deviation. u is initialized from i.i.d. Bernoulli
with mean µ = 0.1, 0.5, 0.9 from the left to right.

In Figure 3, we show when the true p, q are unknown,
the dependence structure makes the algorithm more
robust to estimation errors in p̂, q̂. The heatmap repre-
sents the normalized mutual information (NMI) (Ro-
mano et al., 2014) between u and z∗, with p̂ on the
X axis and q̂ on the Y axis. We only examine pairs
with p̂ > q̂. Both VIPS and MFVI were run with p̂
and q̂, which were held fixed and differ from the true
values to varying extent. The dashed line represents
the true p, q used to generate the graph. For each p̂, q̂
pair, the mean NMI for 20 random initializations from
i.i.d Bernoulli(12 ) is shown. VIPS recovers the ground
truth in a wider range of p̂, q̂ values than MFVI. We
show in Section D of the Appendix that similar results
also hold for K = 2 with unbalanced community sizes.

(a) MFVI (b) VIPS

Figure 3: NMI averaged over 20 random initializations
for each p̂, q̂ (p̂ > q̂). The true parameters are (p0, q0) =
(0.2, 0.1), π = 0.5 and n = 2000. The dashed lines
indicate the true parameter values.

In Figure 4, we compare VIPS with MFVI under differ-
ent network sparsities and signal-to-noise ratios (SNR)
as defined by r0 = p0/q0. For the sake of completeness,
we also include two other popular algorithms, Belief
Propagation (BP) (Decelle et al., 2011b) and Spectral
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Clustering (Rohe et al., 2011). To meet the conditions
in Theorem 2, we started VIPS with p̂ equal to the
average degree of A, and q̂ = p̂/r0. p̂ and q̂ were up-
dated alternatingly with u according to Eq. (13) after
three meta iterations in Algorithm 1, a setting similar
to that of Theorem 2.

In Figure 4-(a), the average expected degree is fixed
as the SNR p0/q0 increases on the X axis, whereas in
Figure 4-(b), the SNR is fixed and we vary the average
expected degree on the X axis. The results show that
VIPS consistently outperforms MFVI, indicating the
advantage of the added dependence structure. Note
that we plot BP with the model parameters initialized
at true (p0, q0) , since it is sensitive to initialization
setting, and behaves poorly with mis-specified ones.
Despite this, VIPS is largely comparable to BP and
Spectral Clustering. For average degree 20 (Figure 4-
(b)), BP outperforms all other methods, because of the
correct parameter setting. This NMI value becomes
0.4 with high variance, if we provide initial p̂, q̂ values
to match the average degree but p̂/q̂ = 10. In contrast,
VIPS is much more robust to the initial choice of p̂, q̂,
which we show in Section C of the Appendix.

(a) (b)

Figure 4: Comparison of NMI under different SNR
p0/q0 and network degrees. The lines and error bars
are means and standard deviations from 20 random
trials. (a) Vary p0/q0 with degree fixed at 70. (b) Vary
the degree with p0/q0 = 2. In both figures n = 2000.

Additional experiments (Appendix, section D) show
that VIPS with fixed mis-specified parameters (within
reasonable deviation from the truth), fixed true parame-
ters and parameters updated with Eq. (13) converge to
the truth when initialized by independent Bernoulli’s.

5 Discussion and Generalizations

In this paper, we propose a simple Variational Infer-
ence algorithm with Pairwise Structure (VIPS) in a
SBM with two equal sized communities. VI has been
extensively applied in the latent variable models mainly
due to their scalability and flexibility for incorporat-
ing changes in model structure. However, theoretical
understanding of the convergence properties is limited
and mostly restricted to MFVI with fully factorized

variational distributions. Theoretically we prove that
in a SBM with two equal sized communities, VIPS can
converge to the ground truth with probability tending
to one for different random initialization schemes and
a range of graph densities. In contrast, MFVI only con-
verges for a constant fraction of Bernoulli(1/2) random
initializations. We consider settings where the model
parameters are known, estimated or appropriately up-
dated as part of the iterative algorithm.

Though our main results are for K = 2, π = 0.5, we
conclude with a discussion on generalizations to unbal-
anced clusters and SBMs with K > 2 equal commu-
nities. To apply VIPS for general K > 2 clusters, we
will have K2 − 1 categorical distribution parameters
ψcd for c, d ∈ {1, 2, . . . ,K} and marginal likelihood
φ1, . . . , φK−1, ξ1, . . . , ξK−1. The updates are similar to
Eq. (10) and Eq. (11) and are deferred to the Appendix
(section C). Similar to the K = 2 case, we update the
local and global parameters iteratively. As for the un-
balanced case (see Appendix Section C), the updates
involve an additional term which is the logit of π. We
assume that π is known and fixed.

(a) (b)

Figure 5: Comparison of VIPS, MFVI, Spectral and
BP using error-bars from 20 random trials for n =
2000, average degree 50, p0/q0 is changed on X axis.
(a) π = 0.3 (b) K =3, B = (p− q)I + qJ . For BP,
MFVI and VIPS, we use true parameters.

In Figure 5-(a), we show results for unbalanced SBM
with π = 0.3, which is assumed to be known. In Figure
5-(b), similar to the setting in (Mukherjee et al., 2018),
we consider a SBM with three equal-sized communities.
The parameters are set as n = 2000, average degree 50,
p0 and q0 are changed to get different SNR values and
the random initialization is from Dirichlet(1, 1, 1). For
a fair comparison of VIPS, MFVI and BP, we use the
true p0, q0 values in all three algorithms; robustness
to parameter specification of VIPS is included in the
Appendix C. We see that for the unbalanced setting
(Figure 5-(a)) VIPS performs as well as BP and better
than Spectral Clustering. For the K = 3 setting (Fig-
ure 5-(b)) VIPS performs worse than BP and Spectral
for very low SNR values, whereas for higher SNR it
performs comparably to Spectral and BP, and better
than MFVI, which has much higher variance.
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