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A Basic lemmas and claims

The convolution theorem shows that the Fourier trans-
form of the convolution of two functions is simply the
product of the individual Fourier transforms:

Claim 13 (Convolution Theorem). Given functions
f : R

d → C and g : R
d → C whose convolution is

h = f ∗ g, we have

ĥ(ξ) = f̂(ξ) · ĝ(ξ)

for all ξ ∈ R
d.

It is not hard to see that the Fourier transform of a δd
is the constant function which is 1 everywhere:

(Fδd)(ξ) =

∫

Rd

e−2πit⊤ξ · δd(t) dt = e−2πi·0⊤·ξ = 1

for all ξ. Similarly, the Fourier transform of a shifted
delta function is as follows:

(Fδ(· − a))(ξ) =

∫

Rd

e−2πit⊤ξ · δd(t− a) dt

= e−2πia⊤ξ.

Thus, by the convolution theorem, we obtain the fol-
lowing identity:

Claim 14. Given a function f : Rd → C, we have

(Ff(· − a))(ξ) = (F(f ∗ δd(· − a)))(ξ)

= f̂(ξ) · e−2πia⊤ξ.

Similarly,

Claim 15. Given a function f : Rd → C, we have

(F(f(x) · e2πia⊤x))(ξ) = f̂(ξ − a).

Finally, we introduce a useful function known as the
Dirac comb function:

Definition 16. For any T ∈ R
d
+ the d-dimensional

Dirac comb function with period T is defined as f
satisfying

f(x) =
∑

j∈Zd

δ(x− jT),

where jT = (j1T1, j2T2, · · · jdTd)
⊤.

Claim 17. For any function g : Rd → R, and any
w ∈ R

d
+ the following holds,

F
[
g(

·
w
)
]
(ξ) =

(
d∏

l=1

wl

)
ĝ(wξ).

It is a standard fact that the Fourier transform of a
Dirac comb function is another Dirac comb function
which is scaled and has the inverse period:

Claim 18. Let

f(x) =
∑

j∈Zd

δ(x− jT)

be the d-dimensional Dirac comb function with period
T. Then,

(Ff)(ξ) =
d∏

l=1

1

Tl
·
∑

j∈Zd

δ

(
ξ − j

T

)
,

where j

T
= (j1/T1, j2/T2, . . . , jd/Td)

⊤.

We use the Dirac comb function in our lower bound
constructions.

Claim 19 (Nyquist-Shannon). Given a function f :
R

d → C, we have:

F


f(·)

∑

j∈Zd

δd(· −w · j)


 (ξ)

=

(
d∏

i=1

w−1
i

)
∑

j∈Zd

F(f)(ξ − j/w).

B Omitted claims and proofs from

Section 3.1

We use the following basic claim about Fourier trans-
form of Nyquist-Shannon sampling of functions.

Claim 20. For any w ∈ R
d
+, every sequences

{cj}j∈Zd and {bj}j∈Zd such that
∑

j∈Zd |cj|2 < ∞ and∑
j∈Zd |bj|2 < ∞, if g(·) =

∑
j∈Zd cjδ(· − jw) and

h(·) =
∑

j∈Zd bjδ(·− jw), then the following conditions
hold.

(1) ĝ(ξ) =
∑

j∈Zd cj exp(−2πiξ⊤(jw)) for every ξ ∈
R

d.

(2) cj =
(∏d

l=1 wl

) ∫
[0,1/w]

ĝ(ξ) exp(2πi(jw)⊤ξ) dξ

for every j ∈ Z
d.

(3)
∑

j∈Zd c∗j bj =
(∏d

l=1 wl

) ∫
[0,1/w]

ĝ(ξ)∗ĥ(ξ) dξ.

Proof. We have

ĝ(ξ) =

∫

Rd


∑

j∈Zd

cjδ(x− jw)


 exp(−2πiξ⊤x) dx

=
∑

j∈Zd

cj

∫

Rd

δ(x− jw) exp(−2πiξ⊤x) dx

=
∑

j∈Zd

cj exp(−2πiξ⊤(wj)),
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which gives the first claim. The second claim can be
verified directly:

∫

[0,1/w]

ĝ(ξ) exp(2πi(wj)⊤ξ) dξ

=

∫

[0,1/w]

∑

l∈Zd

cle
2πi(wj)⊤ξ−2πiξ⊤(wl) dξ

=
∑

l∈Zd

cl

∫

[0,1/w]d
e2πi(wj)⊤ξ−2πiξ⊤(wl) dξ

=

(
d∏

i=1

1

wi

)
cj,

proving the second claim.

For the third claim we have
∫

[0,1/w]

ĝ(ξ)∗ĥ(ξ) dξ

=

∫

[0,1/w]

∑

j∈Zd

∑

l∈Zd

c∗j bl exp(−2πiξ⊤(w(l− j))) dξ

=
∑

j∈Zd

∑

l∈Zd

c∗j bl

∫

[0,1/w]

exp(−2πiξ⊤(w(l− j))) dξ

=

(
d∏

i=1

1

wi

)
∑

j∈Zd

c∗j bj,

as required.

The properties of the WLSH estimator are best under-
stood using the means of Fourier transform. There-
fore, we express the WLSH estimator in the Fourier
domain. The following lemma expresses the WLSH
estimator in the spectral domain.

Lemma 21 (Spectral Representation of WLSH Es-
timator). For any w ∈ R

d
+, any z ∈ [0,w], any

x,y ∈ R
d, if the WLSH estimator k̃f,p(x,y) is defined

as in (5), then the following holds,

k̃f,p(x,y) =

(
d∏

l=1

wl

)∫

[0,1/w]

ĝ(ξ)∗ĥ(ξ) dξ, (6)

where ĝ(ξ) =
∑

j∈Zd e−2πi(x−z)⊤(ξ− j

w
) · f̂⊗d(wξ − j)

and ĥ(ξ) =
∑

j∈Zd e−2πi(y−z)⊤(ξ− j

w
) · f̂⊗d(wξ − j).

Proof. By (5) and part (3) of Claim 20 we have,

k̃f,p(x,y) =
∑

j∈Zd

f⊗d(j+
z− x

w
) · f⊗d(j+

z− y

w
)

=

(
d∏

l=1

wl

)∫

[0,1/w]

ĝ(ξ)∗ĥ(ξ) dξ, (7)

where g(t) = (δd(·−x+z)∗f⊗d( ·
w
)) ·
∑

j∈Zd δ(t− jw)

and h(t) = (δd(· − y+ z) ∗ f⊗d( ·
w
)) ·
∑

j∈Zd δ(t− jw).
We now apply Claim 19 to g(·) and h(·), obtaining the
following for every ξ ∈ R

d,

ĝ(ξ) =
d∏

l=1

1

wl

∑

j∈Zd

F
[
f⊗d

( · − x+ z

w

)]
(ξ − j/w).

(8)

Similarly,

ĥ(ξ) =

d∏

l=1

1

wl

∑

j∈Zd

F
[
f⊗d

( · − y + z

w

)]
(ξ − j/w).

Now by Claim 13 and Claim 17,

F
[
f⊗d(

· − x+ z

w
)

]
(ξ)

=
d∏

l=1

wl · e−2πi(x−z)⊤ξf̂⊗d(wξ).

And similarly F [f⊗d
(
·−y+z

w

)
](ξ) =

∏d
l=1 wl ·

e−2πi(y−z)⊤ξf̂⊗d(wξ). Substituting these into (7), we
get

k̃w,z(x,y) =

(
d∏

l=1

wl

)∫

[0,1/w]

ĝ(ξ)∗ĥ(ξ) dξ,

where

ĝ(ξ) =
∑

j∈Zd

e−2πi(x−z)⊤(ξ− j

w
) · f̂⊗d(wξ − j)

and

ĥ(ξ) =
∑

j∈Zd

e−2πi(y−z)⊤(ξ− j

w
) · f̂⊗d(wξ − j).

Proof of Claim 7:

We first take the expectation of the WLSH estimator
k̃(x,y) with respect to z ∼ Unif([0,w]). By (6) we
have,

Ez∼Unif([0,w])

[
k̃(x,y)

]

= Ez

[
d∏

l=1

wl

∫

[0,1/w]

ĝ(ξ)∗ĥ(ξ) dξ

]

=
d∏

l=1

wl

∫

[0,1/w]

∑

j,j′∈Zd

Ez

[
e+2πiz⊤( j−j′

w
)
]

· e2πix⊤(ξ− j

w
)f̂⊗d(wξ − j)

· e−2πiy⊤(ξ− j′

w
) · f̂⊗d(wξ − j) dξ.
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Now if you take the expectation with respect to z ∼
Unif([0,w]), by orthogonality, the only non-zero terms
in the sum will correspond to the case when j = j′.
Hence,

Ez

[
k̃(x,y)

]

=
d∏

l=1

wl

∫

[0,1/w]

∑

j∈Zd

e+2πix⊤(ξ− j

w
)f̂⊗d(wξ − j)

· e−2πiy⊤(ξ− j

w
)f̂⊗d(wξ − j)dξ

=
d∏

l=1

wl

∫

Rd

e2πi(x−y)⊤ξ
∣∣∣f̂⊗d(wξ − j)

∣∣∣
2

dξ.

Claim 22 (WLSH is Unbiased). For any PDF p(·)
with non-negative support and any even function f :
R → R with support [−1/2, 1/2] and ‖f‖2 = 1 if H
is the LSH family as per Definition 5 and k(·) is the
WLSH kernel as in Definition 8 then for any x,y ∈
R

d the following holds for the expectation of WLSH
estimator (see Definition 6),

Ehw,z∼H

[
k̃(x,y)

]
= k(x− y).

Proof. The proof follows from Claim 7 and Defini-
tion 8.

C Omitted claims and proofs from

Section 3.2

The following lemma follows from Theorem 5 of Ghosal
et al. (2006).

Lemma 23. For any shift-invariant kernel k(·), which
has bounded mixed partial derivatives of up to fourth
order, if η : R → R is a sample path from the Gaus-
sian process GP(0, k(x− y)), then for any j ∈ [d], the
derivative process Djη(x) is a Gaussian process with
zero mean, i.e., E[Djη(x)] = 0 for every x ∈ R

d, and
the covariance E[Djη(x) ·Djη(y)] = −D2

jk(x− y) for

every x,y ∈ R
d.

The above lemma can be applied multiple times and
extend to higher order derivative of GP.

Corollary 24. For any positive integer q, any shift-
invariant kernel k(·) which has bounded mixed partial
derivatives of order up to 2q + 2, if η : R → R is
a sample path from the Gaussian process GP(0, k(x−
y)), then for any j ∈ [d] the qth order partial derivative
process Dq

jη(x) is a Gaussian process with zero mean

and covariance E[Dq
jη(x) ·D

q
jη(y)] = (−1)qD2q

j k(x −
y).

The following lemma gives the derivatives of our
WLSH kernel from Definition 8.

Lemma 25. For any positive integer q, any i ∈ [d],
any function f : R → R with support [−1/2, 1/2] and
norm ‖f‖2 = 1 which is ⌈q/2⌉ times differentiable and
any probability density function p(·) with non-negative
support, if k(·) is the WLSH kernel as in Definition 8,
then for any i ∈ [d] the following holds,

Dq
i k(x) (9)

=

∫

R
d
+

p⊗d(w)

wq
i

(
D

⌈q/2⌉
i f⊗d ∗D⌊q/2⌋

i f⊗d
)
(
x

w
)dw,

where Dj
i f

⊗d(x) =
∏

l∈[d]
l 6=i

f(xl) · f (j)(xi) for any inte-

ger j ≤ ⌈q/2⌉ and p⊗d(w) =
∏d

l=1 p(wl).

Therefore if the function f(·) is ⌈q/2⌉ times differen-
tiable then k(·) will be q times partially differentiable
with respect to any coordinate. Hence, the LSH-able
kernel k(·) inherits certain smoothness properties from
the band-limited function f(·).
Now we use the result of Corollary 24 to show that
a GP(0, k(x − y)) with WLSH covariance kernel k(·)
defined as in Definition 8 inherits its smoothness from
the band-limited function f(·).
Lemma 26. For any positive integer q, any even func-
tion f : R → R with support [−1/2, 1/2] which has
bounded derivatives of order up to q+1, if η : Rd → R

is a sample path from a GP(0, k(x − y)), where k(·)
is the WLSH kernel as in Definition 8, then for any
j ∈ [d], Dq

jη(x) is a Gaussian process with zero mean
and covariance

E[Dq
jη(x) ·D

q
jη(y)]

= (−1)q
∫

R
d
+

p⊗d(w)

w2q
j

(
Dq

jf
⊗d ∗Dq

jf
⊗d
)(x− y

w

)
dw

where Dq
jf

⊗d(x) =
∏

l∈[d]
l 6=j

f(xl) · f (q)(xj).

Proof. The proof follows from Corollary 24 and
Lemma 25.

One can use Cauchy-Schwarz inequality to bound the
covariance of Dqη(x) by the following,

∣∣E[Dq
jη(x) ·D

q
jη(y)]

∣∣ ≤
∥∥Dq

jf
⊗d
∥∥2
2
·
∫

R+

p(w)

w2q
dw.

In particular, the derivative Gaussian process Dq
jη(x)

has the following variance, as long as the band-limited
filter f is a normalized function (‖f‖2 = 1),

E
[
|Dq

jη(x)|2
]
=
∥∥∥f (q)

∥∥∥
2

2
·
∫ ∞

0

p(w)

w2q
dw.
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Now we are ready to prove Lemma 9

Proof of Lemma 9: It follows from multiple applica-
tion of Lemma 26 that the derivative process Dη(x) is
a Gaussian process with zero mean and the covariance
of Dη(x) is the following,

E[Dη(x) ·Dη(y)]

= (−1)q
∫

R
d
+

d∏

l=1

p(wl)

w2ql
l

(
Df⊗d ∗Df⊗d

)
(
x− y

w
) dw

= (−1)q
d∏

l=1

∫

R+

p(wl)

w2ql
l

(Dql
l f ∗Dql

l f) (
xl − yl
wl

) dwl

In order to show that the supremum of the Gaus-
sian process Dη(x) has sub-Gaussian tail bound we
use Proposition A.2.7 of Van Der Vaart and Wellner
(1996). Let ‖ · ‖ρ denote the intrinsic semi-metric of
the process Dη(x) which is defined as follows:

‖x− y‖2ρ = E

[
|Dη(x)−Dη(y)|2

]

= 2

d∏

l=1

(∥∥∥f (ql)
∥∥∥
2

2

∫

R+

p(wl)

w2ql
l

dwl

)

− 2(−1)q
d∏

l=1

∫

R+

p(wl)

w2ql
l

(Dql
l f ∗Dql

l f) (
xl − yl
wl

) dwl.

Since f is an even function with bounded derivatives
of order up to q + 1, we have that

Dj‖x‖2ρ|x=0 = 0,

for every j ∈ [d] and also

DjDk‖x‖2ρ|x=0 = 0

for every j 6= k ∈ [d]. Therefore, by Taylor’s theorem
we have the following,

‖x− y‖2ρ ≤ sup
z∈[0,1]d

j∈[d]

∣∣D2
j‖z‖2ρ

∣∣ · ‖x− y‖22

= 2 sup
j∈[d]

∣∣∣∣∣∣∣∣

∏

l∈[d]
l 6=j

∥∥∥f (q′l+δl,j)
∥∥∥
2

2

∫

R+

p(wl)

w
2(ql+δl,j)
l

∣∣∣∣∣∣∣∣
‖x− y‖22,

where δl,j = 1 iff l = j, and δl,j = 0 otherwise. There-
fore, the covering number of [0, 1]d with respect to ρ
is bounded as follows:

N
(
ǫ, [0, 1]d, ρ

)
≤
(
C

ǫ

)d

,

where

C = 2
√
d · sup

j∈[d]

∣∣∣∣∣∣∣∣

∏

l∈[d]
l 6=j

∥∥∥f (q′l)
∥∥∥
2

2

∫

R+

p(wl)

w
2q′

l

l

dwl

∣∣∣∣∣∣∣∣
.

Now using Proposition A.2.7 of Van Der Vaart and
Wellner (1996), we have that

Pr

[
sup

x∈[0,1]d
|Dη(x)| > M

]
≤
(
LM

σ2

)d

e−
M2

σ2 ,

where σ2 =
∏d

l=1

(∥∥f (ql)
∥∥2
2

∫
R+

p(wl)

w
2ql
l

dwl

)
and L =

O

(
supj∈[d]

∣∣∣∣
∏

l∈[d]
l 6=j

∥∥f (ql+δl,j)
∥∥2
2

∫
R+

p(wl)

w
2(ql+δl,j)

l

dwl

∣∣∣∣
)
.

D Omitted lemmas and proofs from

Section 4.1

Lemma 27 (Running time and Memory of WLSH
Kernel Matrix). For any positive integers n, d and any
dataset x1,x2, . . . ,xn ∈ R

d, if kf,p(·) is the WLSH

estimator as in Definition 6 and K̃ ∈ R
n×n is its

corresponding kernel matrix then there exists an algo-
rithm which using O(dn) pre-processing time forms a
data structure which can be stored using O(n) memory
words such that using this data structure, the product
K̃β can be computed in time O(n) for an arbitrary
vector β ∈ R

n.

Proof of Claim 10: First note that for any β ∈ R
n,

we can write the quadratic form as,

β⊤K̃β =
∑

j∈Zd

(
n∑

i=1

βi · f⊗d

(
j+

z− xi

w

))2

≥ 0

Also by Cauchy-Schwarz inequality we have,

β⊤K̃β =
∑

j∈Zd

(
n∑

i=1

βi · f⊗d

(
j+

z− xi

w

))2

≤ ‖f⊗d‖2∞
∑

j∈Zd


 ∑

i:hw,z(xi)=j

|βi|




2

≤ ‖f⊗d‖2∞‖β‖21
≤ n‖f⊗d‖2∞‖β‖22.

Lemma 28. (Matrix Chernoff, Tropp (2012)) Let
Ai ∈ R

n×n be independent random positive semi-
definite matrices satisfying E[

∑
i Ai] = I and for all i,

‖Ai‖op ≤ α with probability 1. Then for any 0 < ǫ < 1,

Pr
[
‖
∑

i Ai − I‖
op

≤ ǫ
]
≥ 1− 2n · exp

(
− ǫ2

3α

)
.

Lemma 29 (Slud’s Inequality Slud (1977)). Let
X1, X2, · · ·Xn be iid Bernoulli random variables with
Pr[Xi = 1] = p. If p ≤ 1/4 and np ≤ r ≤ n or
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np ≤ r ≤ (1− p)n then the following holds,

Pr


∑

i∈[n]

Xi ≥ r


 ≥ Pr

[
Z ≥ r − np√

np(1− p)

]
,

where Z is a normal random variable with zero mean
and variance one.

Therefore it follows from the above that, if p ≤ 1/4
and t ≥ 0 or p ≤ 1/2 and 0 ≤ t ≤ n(1− 2p) then,

Pr


∑

i∈[n]

Xi − µ ≥ t


 ≥ Pr

[
Z ≥ t√

np(1− p)

]
,

where µ = E[
∑

i∈[n] Xi]. This probability can be fur-
ther lower bounded as follows:

Pr


∑

i∈[n]

Xi − µ ≥ t


 ≥ 1

4
e−2t2/µ.

Proof of Theorem 12: Let the points {xi}ni=1 ⊆ R
d

be positioned as x1 = · · · = xn/2 = (−λ/n, 0, 0, · · · 0)⊤
and xn/2+1 = · · · = xn = (λ/n, 0, 0, · · · 0)⊤. Let
the vector β ∈ C

n be defined as, β1 = β2 = · · · =
βn/2 = −1 and βn/2+1 = · · · = βn = 1. The proof
proceeds by showing that in order to preserve the
quadratic form corresponding to this β, one needs to
set m = Ω

(
1
ǫ2 · n

λ · log n
)
and hence the lower bound

follows for achieving an OSE. Let us compute the ex-
pectation of the quadratic form,

Ehw,z∼H[β⊤K̃sβ] = β⊤Kβ

= n2 (1− exp(−2λ/n)) /2.

Now we compute the second moment of the quadratic
form as follows:

Ehw,z∼H

[
(β⊤K̃sβ)2

]

= Ew,z





∑

j∈Zd

(
n∑

i=1

βi rect
⊗d

(
jw − xi + z

w

))2



2



= Ew,z

[
n4

4
· 1{|z|>w

2 − λ
n

or w≤ 2λ
n }
]

= Ew

[
n4

4
·min

(
1,

2λ

nw

)]
=

n4

4
·
(
1− e−2λ/n

)
.

Hence, we have the following for the ratio of second
moment to the square of the first moment,

E

[
(β⊤K̃sβ)2

]

E

[
β⊤K̃sβ

]2 =
1

1− e−2λ/n
≥ n

2λ
.

Note that the LSH estimator β⊤K̃sβ for this particu-
lar dataset x1, · · · , xn and vector β take in two possible

values, zero and n2

2 . Therefore,

β⊤K̃sβ =

{
n2

2 with probability p ≤ 2λ
n

0 with probability 1− p
.

Note that (1 + ǫ)β⊤Kβ + ǫλ‖β‖22 ≤ (1 + 3ǫ)β⊤Kβ.
Since p ≤ 1/4, by using Slud’s inequality,
Lemma 29, the probability of guaranteeing that
1
m

∑m
s=1 β

⊤K̃sβ ≤ (1 + ǫ)β⊤Kβ + ǫλ‖β‖22 is bounded
as follows:

Pr

[
1

m

m∑

s=1

β⊤K̃sβ > (1 + ǫ)β⊤Kβ + ǫλ‖β‖22

]

≥ Pr

[
1

m

m∑

s=1

β⊤K̃sβ > (1 + 3ǫ)β⊤Kβ

]

= Pr

[
1

m

m∑

s=1

β⊤K̃sβ > (1 + 3ǫ) · E
[
β⊤K̃β

]]

≥ 1

4
e−

2(3ǫpm)2

pm =
1

4
e−18ǫ2pm ≥ 1

4
e−36ǫ2 λ

n
m.

Therefore, in order to have Pr[ 1m
∑m

s=1 β
⊤K̃sβ > (1+

ǫ)β⊤Kβ + ǫλ‖β‖22] < 1
n , we need to average at least

m = Ω(nλ · log n/ǫ2) independent instances of WLSH
estimator.

E Risk bound of approximate KRR

via LSH-Estimator

We use risk bounds to analyze the quality our approx-
imate KRR estimator. It is common to bound the
expected in-sample predication error of the KRR esti-
mator as an empirical estimate of the statistical risk
Avron et al. (2017b); Bach (2013); Alaoui and Ma-
honey (2015); Musco and Musco (2017). Formally, the
empirical risk of an estimator η is defined as,

R(η) = E{ǫi}

[
1

n

n∑

i=1

(
η(xi)− η∗(xi)

)2
]
.

Suppose η(·) is the exact KRR estimator using kernel
function k(·). Also suppose that η̃(·) is the regressor
obtained by solving the approximate KRR problem
using the approximate kernel function k̃(·). The fol-
lowing Lemma bounds the excess risk of approximate
KRR estimator η̃(·).
Lemma 30 (Approximate KRR Empirical Risk
Bound). Let η(·) be the exact KRR estimator using
the WLSH kernel function k(·) (Definition 8). Sup-

pose k̃s(·) are independent instances of WLSH esti-
mator for all s ∈ [m]. Let η̃ be the approximate
KRR estimator obtained by using the approximate
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kernel function k̃(·) := 1
m

∑m
s=1 k̃

s(·) and let K̃ be

the corresponding kernel matrix to k̃(·). If m =

Ω
(

‖f⊗d‖2
∞

ǫ2 · (n/λ) · log n
)
then the following holds4,

Pr

[
R(η̃) ≤ R(η)

1− ǫ
+

ǫσ2
ǫ · rank(K̃)

(1 + ǫ)n

]
≥ 1− 1

poly(n)
.

Proof. First note that Theorem 11 implied that with
probability 1− 1

poly(n) the approximate kernel matrix

satisfies following spectral guarantee,

(1− ǫ)(K + λIn) � K̃ + λIn � (1 + ǫ)(K + λIn).

Therefore the lemma follows directly from invoking
Lemma 2 of Avron et al. (2017b).

4When we hash n points using LSH, we expect the num-
ber of non-empty buckets to grow at a lower rate than n.

Therefore, we expect to have
rank(K̃)

n
→ 0 as n grows.


