Scaling up Kernel Ridge Regression via Locality Sensitive Hashing

A Basic lemmas and claims

The convolution theorem shows that the Fourier trans-
form of the convolution of two functions is simply the
product of the individual Fourier transforms:

Claim 13 (Convolution Theorem). Given functions
f:RY = C and g : R — C whose convolution is
h = fxg, we have

h(€) = F(€) - 5(€)
for all € € R,

It is not hard to see that the Fourier transform of a d4
is the constant function which is 1 everywhere:

(Fa(©) = [ e mTE ey de =T E
Rd

for all £. Similarly, the Fourier transform of a shifted
delta function is as follows:

(Fo(- — a))(€) = / 2T TE 56— a) db

Rd

_ p2mial€

Thus, by the convolution theorem, we obtain the fol-
lowing identity:
Claim 14. Given a function f : R® — C, we have

(FIC = @)(€) = (F(F * da(- — a)))(&)
= J(§) e e

Similarly,
Claim 15. Given a function f: R — C, we have

(F(f(x) - 22 %)) (&) = f(€ —a).

Finally, we introduce a useful function known as the
Dirac comb function:

Definition 16. For any T € ]Ri the d-dimensional
Dirac comb function with period T is defined as f
satisfying

Fx) =) d(x—jT),

jezd

where jT = (j1 T4, j2To, - jaTa) -
Claim 17. For any function ¢ : R — R, and any
w € R‘fr the following holds,

Flao]©= (f{ wz) GwE).
=1

It is a standard fact that the Fourier transform of a
Dirac comb function is another Dirac comb function
which is scaled and has the inverse period:

Claim 18. Let
fo0) = d(x—JjT)
jeza

be the d-dimensional Dirac comb function with period
T. Then,

where % = (j1/T1,j2/Tos- - ja/Ta)".

We use the Dirac comb function in our lower bound
constructions.

Claim 19 (Nyquist-Shannon). Given a function f :
R?% — C, we have:

FLEO D bal-—w-j) | (&)

d
= (wa) > FE-i/w).

B Omitted claims and proofs from
Section 3.1

We use the following basic claim about Fourier trans-
form of Nyquist-Shannon sampling of functions.

Claim 20. For any w € ]Ri, every sequences
{ci}jeza and {b}jeza such that 3 5z lc|* < oo and

Zjezd |bJ"2 < oo, if g() = ZjeZd (- — jw) and
h(-) = Zjezd b;o(- —jw), then the following conditions
hold.

(1) G(&) = Yjepa ciexp(—2mig " (jw)) for every & €
R,

@) & = (T w) S ) exp(2ri(w)T€) dé
for every j € Z¢.

(3) ez by = (TTioan) Sio 1wy 5(E)TIE) dE-

Proof. We have

g(&) = /]Rd Z ¢0(x — jw) | exp(—2mi¢ "x) dx

jezd
= Z cj/ 8(x — jw) exp(—2mi& " x) dx
jeza IR

= Z ¢jexp(—2mi& " (wj)),

jezd
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which gives the first claim. The second claim can be
verified directly:

[ a@exp(zmitwi)Te) de

(0,1/w]

:/ Z cl€2ﬂi(wj)—r£727ri£—r(wl) d£
[0,1/w] 1€74

= Z C]/ (&
[0,1/w]¢

lez

4
{i2)-
i=1 ¢

proving the second claim.

2mi(wj) T €—2mig " (wl) de

For the third claim we have

/01 G(€)h(e) de
/[01/ SO 3 ibrexp(—2mie” (w(l - §))) dé

jezd ez

= Sen

jezd 1€z 1/w]

= <ﬁ ;,) D <bi

1=1 jGZ‘I

exp(—27i€ " (w(l—j))) dé

as required. O

The properties of the WLSH estimator are best under-
stood using the means of Fourier transform. There-
fore, we express the WLSH estimator in the Fourier
domain. The following lemma expresses the WLSH
estimator in the spectral domain.

Lemma 21 (Spectral Representation of WLSH Es-
timator). For any w € R%, any z € [0,w], any
x,y € R, if the WLSH estimator Ef_,p(x,y) is defined
as in (5), then the following holds,

Frp(x,y) <sz> /[Otl/w] 3€)hE) e, ()

Zjezde—Qﬂi(x—z)T(E_i) f®d(w,§’ )
. T
= Yjega e 20D €0 L fRd(we — ).

where g(€) =
and ?L(é)

Proof. By (5) and part (3) of Claim 20 we have,

kfpxy

Z f®d

jezd

d o~
= w g(&)*h(&) dE, 7
(lHl l> /[Owg(s) ©de, (1)

AR

where g(t) = (6q(- —x+2) * f®d(;)) . Zjezd 5(t—jw)

and h(t) = (Ja(- =y +2) * [2U(5)) - Yjepa 0(t —jw).
We now apply Claim 19 to g(-) and h(-), obtaining the
following for every & € R?,

)| -

SIS [ (5
(8)

)| e-im

Similarly,

e

I= 1 JEZd

Now by Claim 13 and Claim 17,
@d/;  —X+2Z
F |2 @

w; - 6727ri(x7z)-r£f®d(w£) )

I
et

And similarly F[f®? (%ﬂ)](ﬁ) = Hld=1 wy -
e*ZWi(y*Z)Tﬁf@’d(wE). Substituting these into (7), we

Fw,a (%, y) = (Hw)/l

where

Ge) = 3 emritea )

jezd

G(€)"h(¢) de,

- R (we - j)

and

- fR(wE —j).

A(E) _ Z e 2mily—2)" (6— )

jezd

Proof of Claim 7:

We first take the expectation of the WLSH estimator
k(x,y) with respect to z ~ Unif([0,w]). By (6) we
have,

E,~Unif([0,w]) {E(& Y)}

d o~
g(&)"h(&) d&
I /[O’l/w]m )R(E) ]
d
B Ewl /[o,l/w}

e o

T i’ -~ .
re BT e [ (wE — ) de.

:EZ

iz T (38
E, |:e+27rzz (5 ):|
jyezt
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Now if you take the expectation with respect to z ~
Unif([0, w]), by orthogonality, the only non-zero terms
in the sum will correspond to the case when j = j'.
Hence,

E,

.—|
e

k(x y)}
d
:1;[ /01/w1

. e—2miy | (6~

mix | (E—L) 7 s
e (6 R (w — j)
jezd

) fed(we - j)d
/ mite) €| Foi(we — )" de.

Il
T ’:jg

O

Claim 22 (WLSH is Unbiased). For any PDF p(-)
with non-negative support and any even function f :
R — R with support [—1/2,1/2] and ||fl2 = 1 if H
is the LSH family as per Definition 5 and k() is the
WLSH kernel as in Definition 8 then for any x,y €
R? the following holds for the expectation of WLSH
estimator (see Definition 6),

Ehy onn [%(X, y)} =k(x —y).

Proof. The proof follows from Claim 7 and Defini-
tion 8. O

C Omitted claims and proofs from
Section 3.2

The following lemma follows from Theorem 5 of Ghosal
et al. (2006).

Lemma 23. For any shift-invariant kernel k(-), which
has bounded mized partial derivatives of up to fourth
order, if n : R — R is a sample path from the Gaus-
sian process GP(0,k(x —y)), then for any j € [d], the
derivative process Din(zx) is a Gaussian process with
zero mean, i.e., E[D;n(x)] = 0 for every x € R%, and
the covariance E[D;n(x)- Djn(y)] = —Djk(x —y) for
every X,y € R,

The above lemma can be applied multiple times and
extend to higher order derivative of GP.

Corollary 24. For any positive integer q, any shift-
invariant kernel k(-) which has bounded mized partial
derivatives of order up to 2qg + 2, if n : R — R is
a sample path from the Gaussian process GP(0, k(x —
y)), then for any j € [d] the ¢** order partial derivative
process Dgn(x) is a Gaussian process with zero mean

and covariance E[Din(x) - Din(y)] = (—1)‘1Dj2.qk(x -
y)-

The following lemma gives the derivatives of our
WLSH kernel from Definition 8.

Lemma 25. For any positive integer q, any i € [d],
any function f : R — R with support [—1/2,1/2] and
norm || flla = 1 which is [q/2] times differentiable and
any probability density function p(-) with non-negative
support, if k(-) is the WLSH kernel as in Definition 8,
then for any i € [d] the following holds,

Dik(x) 9)
_ [ W) (e la/2] x
_ /]RdJr 73 (Diq f®d * Diq f®d) (7

)dw,
w; w

where D} f®4(x) = [T f(x1) - fO(2:) for any inte-
I#i

= H;i:1 p(wl)'

Therefore if the function f(-) is [¢/2] times differen-
tiable then k() will be ¢ times partially differentiable
with respect to any coordinate. Hence, the LSH-able
kernel k(-) inherits certain smoothness properties from
the band-limited function f(-).

ger j < [q/2] and p®*(w)

Now we use the result of Corollary 24 to show that
a GP(0,k(x —y)) with WLSH covariance kernel k(-)
defined as in Definition 8 inherits its smoothness from
the band-limited function f(-).

Lemma 26. For any positive integer q, any even func-
tion f : R — R with support [—1/2,1/2] which has
bounded derivatives of order up to q+1, if n: R - R
is a sample path from a GP(0,k(x —y)), where k(-)
is the WLSH kernel as in Definition 8, then for any
j € [d], Din(x) is a Gaussian process with zero mean
and covariance

E[Din(z) - Din(y)]

d
= (—1)¢ /]Rd p®w§:V) (D?f@)d*D?f@d) (Xv—v}’) dw
+ J

where D?f®d(x) = [Tieqq fx1) - f(Q)(xj)'

1#]

Proof. The proof follows from Corollary 24 and
Lemma 25. O

One can use Cauchy-Schwarz inequality to bound the
covariance of DIn(x) by the following,

p(w)
Dl < Dl [ B e

In particular, the derivative Gaussian process Dgn(x)
has the following variance, as long as the band-limited
filter f is a normalized function (||f]l2 = 1),

E (D8] = 5@ / 2

|E[D?n(x) - D
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Now we are ready to prove Lemma 9

Proof of Lemma 9: It follows from multiple applica-
tion of Lemma 26 that the derivative process Dn(x) is
a Gaussian process with zero mean and the covariance
of Dn(x) is the following,

E[Dn(x) - Dn(y)]

S8 Hp

+l1

(Do« D24 ( Wy)dw

1>QH/ 2’2’3 (Dfff D ) (<) d

In order to show that the supremum of the Gaus-
sian process Dn(x) has sub-Gaussian tail bound we
use Proposition A.2.7 of Van Der Vaart and Wellner
(1996). Let || - ||, denote the intrinsic semi-metric of
the process Dn(x) which is defined as follows:

~E [IDy(x) - Dn(y)[’]

d , .
ZQH (Hf(‘ﬂ) Q/R 1;2212[ dwl>
an/ guqll) (D £+ D) (L

Since f is an even function with bounded derivatives
of order up to ¢ + 1, we have that

Dj|x|[|x=0 = 0,

I —yl;

)dwl.

for every j € [d] and also
D;Di|x[[3|x=0 = 0

for every j # k € [d]. Therefore, by Taylor’s theorem
we have the following,

Ix—yl2< sup [D2al?]- Ix -yl
z€[0,1]¢
jeld]
. Hf(q'”“) / B L T}
AR 2 Ju, 2t

l#a

where §; ; = 1 iff | = j, and ; ; = 0 otherwise. There-
fore, the covering number of [0, 1]¢ with respect to p
is bounded as follows:

N (e,]0,1)%,p) < (f)d
IT ], [ 27 aw

where

CzQ\/g-sup

Jeld e [d]
I#]

Now using Proposition A.2.7 of Van Der Vaart and
Wellner (1996), we have that

LM\ a2
Pr{ sup |Dn(z)| > M] < <2) e T,
o

z€[0,1]¢

and L =

)

D Omitted lemmas and proofs from
Section 4.1

where o2

2 w
= H;i:l <||f(m)||2 fR+ p(?qzl) dw

o <S“Pae Hle[d] [FACERE N Je. del

O

Lemma 27 (Running time and Memory of WLSH
Kernel Matrix). For any positive integers n,d and any
dataset x',x2, ..., x" € R, if ks, (-) is the WLSH
estimator as in Definition 6 and K € R™™ s jts
corresponding kernel matriz then there exists an algo-
rithm which using O(dn) pre-processing time forms a
data structure which can be stored using O(n) memory
words such that using this data structure, the product
KfB can be computed in time O(n) for an arbitrary
vector 8 € R".

Proof of Claim 10: First note that for any 5 € R™,
we can write the quadratic form as,

n i 2
DY (;ﬁi~f®d(j+z;x )) >0

jezd

Also by Cauchy-Schwarz inequality we have,

BTEB=73 (Zﬂm@d (j+ == ))

jezd \i=1
2

<220 > 18

JELD \ithw,a(2%)=]
g i ]
< nll fEYIBIE.

O

Lemma 28. (Matriz Chernoff, Tropp (2012)) Let
A; € R™"™ be independent random positive semi-
definite matrices satisfying B>, A;] = I and for all i,
[l Aillop < o with probability 1. Then for any 0 < e < 1,

Pr {”ZZ Ai - I”Op < 6} >1—2n-exp (7%)
Lemma 29 (Slud’s Inequality Slud (1977)). Let

X1, X5, X, be iid Bernoulli random variables with
Pr[X; =1 =p. Ifp<1/4dandnp <r < n or
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np < r < (1—p)n then the following holds,

Pr Z X, >r| >Pr
i€[n]

zs_I=m |
np(l —p)

where Z is a normal random variable with zero mean
and variance one.

Therefore it follows from the above that, if p < 1/4
and t > 0or p<1/2and 0 <t <n(l—2p) then,

Pr ZXi—,uZt > Pr

1€[n]

Vnp(l —p)

where = E[}_,c,; Xi]. This probability can be fur-
ther lower bounded as follows:

o]

1 <
Pr|d Xi—pzt| = e?m

i€[n]

Proof of Theorem 12: Let the points {z}7_, C R?
be positioned as 2! = --- = /2 = (=\/n,0,0,---0) "
and z"/?*t! = ... = 2" = (\/n,0,0,---0)T. Let
the vector 8 € C" be defined as, f; = B = -+ =
Bns2 = —1 and B, /241 = -+ = B, = 1. The proof
proceeds by showing that in order to preserve the
quadratic form corresponding to this 3, one needs to
set m = (6% - % - log n) and hence the lower bound
follows for achieving an OSE. Let us compute the ex-
pectation of the quadratic form,

Eh, ,~n[8 K*8) = 8T KB
=n? (1 —exp(—2)\/n)) /2.

Now we compute the second moment of the quadratic
form as follows:

En, .o [(8TK8)’]

n . ] 2
_ 4 jw—2'+12z
= ]Ew,z Z (Z ﬁz reCt®d (W > )

jezd \i=1

2

n4
, Z1{|z|>%—% or w< 2 }

n? 2 n? 2
= 2 mi kA ) L 2 VA
E, [4 min <1’nw>} 1 (1 e )

Hence, we have the following for the ratio of second
moment to the square of the first moment,

E[BTE B2
E {,BTf(Sﬁ]Q e

>

3|

n
> —.
2

Note that the LSH estimator ﬂTf( 53 for this particu-
lar dataset x1, - - - , x,, and vector S take in two possible
values, zero and %-. Therefore,
,BTI?SB _ %2 W%th probab?l%ty p < %
0  with probability 1 —p

Note that (1 + €)3T KB + eA||B]|3 < (1 + 3¢)8T KB.
Since p < 1/4, by using Slud’s inequality,
Lemma 29, the probability of guaranteeing that
LS BTK*B < (1+€)BT KB+ e)||B]3 is bounded
as follows:

1 m .
Pr {m > BTK B> (1+€)B KB+ 6)\||5|§]

s=1

> Pr {"11 S BTK B> (1+ 3e)ﬂTK6]

s=1

—Pr ﬁ SOFTRB> (1430 [ﬂﬁ?ﬂﬂ

s=1

Therefore, in order to have Pr[% >y BTK®B > (1+
€)BTKB + e)||B]3] < L, we need to average at least
m = Q(% - logn/€®) independent instances of WLSH
estimator. [

E Risk bound of approximate KRR
via LSH-Estimator

We use risk bounds to analyze the quality our approx-
imate KRR estimator. It is common to bound the
expected in-sample predication error of the KRR esti-
mator as an empirical estimate of the statistical risk
Avron et al. (2017b); Bach (2013); Alaoui and Ma-
honey (2015); Musco and Musco (2017). Formally, the
empirical risk of an estimator 7 is defined as,

n

R(p) =By |- D (nlx) — n* (<))’

i=1

Suppose 7(+) is the exact KRR estimator using kernel
function k(). Also suppose that 7j() is the regressor
obtained by solving the approximate KRR problem
using the approximate kernel function k(-). The fol-
lowing Lemma bounds the excess risk of approximate
KRR estimator 7(-).

Lemma 30 (Approximate KRR Empirical Risk
Bound). Let n(-) be the exact KRR estimator using
the WLSH kernel function k(-) (Definition 8). Sup-
pose Eé() are independent instances of WLSH esti-
mator for all s € [m]. Let i be the approximate
KRR estimator obtained by using the approrimate
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kernel function k(-) = = > k5(-) and let K be

the corresponding kernel matriz to E() If m =
d2
Q (% -(n/A) - log n) then the following holds®,

R(n) eo?- rank(f() L
Pr |:’2(ﬁ) < 1_e + (]_ + e)n :| =1- pOIY<")

Proof. First note that Theorem 11 implied that with
probability 1 — m the approximate kernel matrix
satisfies following spectral guarantee,

(1—€)(K +A,) = K + A, < (1+¢)(K + \,).

Therefore the lemma follows directly from invoking
Lemma 2 of Avron et al. (2017b). O

4When we hash n points using LSH, we expect the num-
ber of non-empty buckets to grow at a lower rate than n.

rank(K)
n

Therefore, we expect to have — 0 as n grows.



