
Supplementary Material

A. Missing Proof of Proposition 3.2

Recall that for each iteration t, we update the ith coordinate xi if t ∈ T i. Specifically,

xi(t+ 1) =

{
Gi(x̂(t)), t ∈ T i;

xi(t), t /∈ T i,
(1)

where x̂(t) := [x1(τ1(t)), . . . , xn(τn(t))]>. For analysis, we sort T i into a sequence (tik)k≥0, where
ti0 is the first element of T i and tik is the (k + 1)th. Then Theorem A.1 bounds |xi(t) − x∗i | in a
staircase decreasing way: |xi(t)− x∗i | will contract when t ∈ T i, or equivalently, t = tik for some k.

Theorem A.1 (Staircase Decreasing). Consider the iteration (1) under Assumption 3.1. Suppose
that G is γ-contractive under infinity norm and x∗ is the fixed-point of G. For each t ≥ B1 and
i ∈ {1, 2, · · · , n}, if t ∈ (tik, t

i
k+1] for some k, then xi(t) satisfies

|xi(t)− x∗i | ≤ ‖x(0)− x∗‖∞ρt
i
k−B1 , (2)

where ρ := γ
1

B1+B2−1 .

Proof. We first claim that for each t ≥ B1 and i ∈ {1, 2, · · · , n}, there exists some k ≥ 0 such
that t ∈ (tik, t

i
k+1]. This follows from Assumption 3.1 (a), where ti0 ≤ B1 − 1, ∀ i.

Now we prove Eq. (2) by induction. One could check

‖x(t)− x∗‖∞ ≤ ‖x(0)− x∗‖∞, ∀ t ≥ 0

as a corollary of [1, Theorem 2] or by another induction. We skip the details here. Thus for the
basic case,

max
0≤t≤B1

{
‖x(t)− x∗‖∞ρ−t

}
≤ max

0≤t≤B1

{
‖x(0)− x∗‖∞ρ−t

}
≤ ‖x(0)− x∗‖∞ρ−B1 ,

which gives that for each t ≤ B1 and i ∈ {1, 2, · · · , n},

|xi(t)− x∗i | ≤ ‖x(0)− x∗‖∞ρt−B1 .

Since ρt is decreasing, we can further obtain that

|xi(B1)− x∗i | ≤ ‖x(0)− x∗‖∞ρt
i
k−B1 ,

if B1 ∈ (tik, t
i
k+1] for some k.

For the induction step, we assume that Eq. (2) holds for all t ≥ B1 up to some t′. For a fixed
i ∈ {1, 2, · · · , n}, supposing that t′ ∈ (tik′ , t

i
k′+1] for some k′, then we analyze the scenario at (t′+ 1)

as two cases.
Case 1: t′ /∈ T i, i.e., we do not update coordinate i at iteration t′. Hence, xi(t

′ + 1) = xi(t
′) and

t′ + 1 ∈ (tik′ , t
i
k′+1]. Then Eq. (2) follows directly.

Case 2: t′ ∈ T i, i.e., the ith coordinate is updated at iteration t′ and t′ = tik′+1. Since G is
γ-contractive under infinity norm, we have

|xi(t′ + 1)− x∗i | = |Gi(x̂(t))− x∗i | ≤ ‖G(x̂(t))− x∗‖∞
≤ γmax

j

∣∣xj(τj(t′))− x∗j ∣∣. (3)
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For a fixed j ∈ {1, 2, · · · , n}, suppose that τj(t
′) ∈ (tjkτ , t

j
kτ+1] for some kτ . Then the induction

hypothesis gives
∣∣xj(τj(t′))−x∗j ∣∣ ≤ ‖x(0)−x∗‖∞ρt

j
kτ
−B1 . Since τj(t

′) ≤ tjkτ +B1 by Assumption 3.1
(a) and τj(t

′) ≥ t′ −B2 + 1 by Assumption 3.1 (b), we obtain

γ
∣∣xj(τj(t′))− x∗j ∣∣ ≤ γ‖x(0)− x∗‖∞ρt

j
kτ
−B1

≤ γ‖x(0)− x∗‖∞ρτj(t
′)−2B1

≤ γ‖x(0)− x∗‖∞ρt
′−2B1−B2−1

= ‖x(0)− x∗‖∞ρt
i
k′+1
−B1 , (4)

where the equality holds since γ = ρB1+B2−1 by definition and t′ = tik′+1. Notice that t′ + 1 ∈
(tik′+1, t

i
k′+2]. Inserting Eq. (4) back into Eq. (3) yields the desired result. �

One may note that if t ∈ (tik, t
i
k+1], then tik + B1 ≥ t by Assumption 3.1 (a). Hence, Proposi-

tion 3.2 is a direct consequence of Theorem A.1.

B. Missing Proof from Section 4.1

To analyze the sampling error, we first review Hoeffeding’s Inequality [2].

Lemma B.1 (Hoeffeding’s Inequality [2]). Let X1, · · · , Xm be i.i.d real valued random variables
with Xj ∈ [aj , bj ] and Y = 1

m

∑m
j=1Xj. For all ε ≥ 0,

P
[∣∣Y − E[Y ]

∣∣ ≥ ε] ≤ 2e
−2m2ε2∑m
j=1

(bj−aj)2 .

By Hoeffeding’s Inequality, the error between the sample averages and the true expectations
can be controlled with enough number of samples. Specifically, we have:

Lemma B.2. Given a constant L, with K =
⌈

8
(1−γ)4ε2 log(4Lδ )

⌉
samples, AsyncQVI returns r(t)

and S(Q̂(t)) satisfying

|r(t)− r̄atit | ≤
(1− γ)2ε

4
, |S(Q̂(t))− patit

>v̂(t)| ≤ (1− γ)ε

4

with probability at least 1− δ
L .

Proof. As we explained before, both r(t) and S(Q̂(t)) are averages of K i.i.d. samples with
E[r(t)] =

∑
j p

at
itj
ratitj := r̄atit and E[S(Q̂(t))] =

∑
j p

at
itj
v̂j(t) := patit

>v̂(t). Since we assume raij ∈
[0, 1], it is easy to verify 0 ≤ v̂(t) ≤ 1

1−γ by induction. We skip the details here. Then letting

K =
⌈

8
(1−γ)4ε2 log

(
4L
δ

)⌉
, we can obtain that

P
[
|r(t)− r̄atit | ≥

(1− γ)2ε

4

]
≤ 2e

−2K2(1−γ)4ε2
16K ≤ δ

2L
;

P
[
|S(Q̂(t))− patit

>v̂(t)| ≥ (1− γ)ε

4

]
≤ 2e

−2K2(1−γ)4ε2
16K ≤ δ

2L
.

�
Proof. [Proof of Proposition 4.3] For a fixed iteration t, by Lemma B.2,∣∣r(t) + γS(Q̂(t))− r̄atit − γpatit

>v̂(t)
∣∣ ≤ |r(t)− r̄atit |+ γ|S(Q̂(t))− patit

>v̂(t)| ≤ (1− γ)ε

4
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holds with probability at least 1− δ
L . Taking a union bound over all 0 ≤ t ≤ L− 1 iterations gives

the desired result. �
Proof. [Proof of Proposition 4.4] We denote by E1 the event{∣∣r(t) + γS(Q̂(t))− r̄atit − γpatit

>v̂(t)
∣∣ ≤ (1− γ)ε

4
, ∀ 0 ≤ t ≤ L− 1

}
.

By Proposition 4.3, E1 occurs with probability at least 1− δ. Next, we condition on E1 and prove

‖Q(t)−QE(t)‖∞ ≤
ε

2
, ∀ 1 ≤ t ≤ L (5)

by induction. The basic case is trivial. For the induction step, we analyze the scenario at t + 1
as two cases. When t /∈ T i,a, |Qi,a(t + 1) − QE

i,a(t + 1)| ≤ ε/2 follows from the hypothesis, since
Eqs. (5) and (6) give that

Qi,a(t+ 1)−QE
i,a(t+ 1) = Qi,a(t)−QE

i,a(t).

When t ∈ T i,a, by Eq. (5), Eq. (6) and triangle inequality, we have that∣∣Qi,a(t+ 1)−QE
i,a(t+ 1)

∣∣
=
∣∣∣r(t) + γS(Q̂(t))− (1− γ)ε

4
− r̄ai − γ

∑
j

paij max
a′

Q̂E
j,a′(t)

∣∣∣
≤
∣∣∣r(t) + γS(Q̂(t))− r̄ai − γpai

>v̂(t)− (1− γ)ε

4

∣∣∣+
∣∣∣γpai

>v̂(t)− γ
∑
j

paij max
a′

Q̂E
j,a′(t)

∣∣∣
≤
∣∣∣r(t) + γS(Q̂(t))− r̄ai − γpai

>v̂(t)
∣∣∣+

(1− γ)ε

4
+ γ

∑
j

paij
∣∣max

a′
Q̂j,a′(t)−max

a′
Q̂E
j,a′(t)

∣∣.
By definition of E1 and the induction hypothesis, we further obtain that

|Qi,a(t+ 1)−QE
i,a(t+ 1)| ≤ (1− γ)ε

4
+

(1− γ)ε

4
+ γ

ε

2
=
ε

2
,

which completes the proof. �
Proof. [Proof of Theorem 4.5] By Proposition 3.2,

‖Q∗ −QE(L)‖∞ ≤ (1− γ)−1ρL−2B1 = (1− γ)−1γ
L−2B1

B1+B2−1 .

Notice that γ = (1− (1− γ)) ≤ e−(1−γ). We have that

‖Q∗ −QE(L)‖∞ ≤ (1− γ)−1e
−(1−γ) L−2B1

B1+B2−1 ≤ ε

2
, (6)

where the last inequality holds with L =
⌈
2B1 + B1+B2−1

1−γ log
(

2
(1−γ)ε

)⌉
. Then, by Proposition 4.4,

with probability at least 1− δ,
‖QE(L)−Q(L)‖∞ ≤

ε

2
. (7)

Inserting Eq. (7) back into Eq. (6) gives the desired result

‖Q∗ −Q(L)‖∞ ≤ ‖Q∗ −QE(L)‖∞ + ‖QE(L)−Q(L)‖∞ ≤ ε.

Then one can check ‖v∗ − v(L)‖∞ ≤ ε at ease. �
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C. Missing Proof of Theorem 4.6

After L iterations, AsyncQVI returns a policy π(L) with πi(L) = arg maxa∈AQi,a(L). To show
that π(L) is ε-optimal, we first define a policy operator.

Definition C.1 (Policy Operator). Given a policy π and a vector v ∈ R|S|, the policy operator Tπ:
R|S| → R|S| is defined as

[Tπv]i = r̄πii + γpπii
>v = rπii + γ

∑
j∈S

pπiij vj . (8)

Proposition C.2 (Tπ’s Properties). Given a policy π, for any vectors v, v′ ∈ RS ,

(a) Monotonicity: if v ≤ v′, then Tπv ≤ Tπv′.
(b) γ-Contraction: ‖Tπv − Tπv′‖∞ ≤ γ‖v − v′‖∞.

(c) vπ is the fixed-point of Tπ.

The proof is straightforward following the definition. We skip the details here.

Lemma C.3. [3] Given a policy π, for any vector v ∈ RS , if there exists a v′ ∈ RS such that
v′ ≤ v and v ≤ Tπv′, then v ≤ vπ.

Proof. By Proposition C.2 (a) and v′ ≤ v, we first have Tπv
′ ≤ Tπv. Combining with

v ≤ Tπv
′, we further obtain v ≤ Tπv. By induction, one can check v ≤ Tnπ v, ∀ n ∈ N. Moreover,

since Tπ is a γ-contraction, vπ = limn→∞ T
n
π v. Hence, v ≤ limn→∞ T

n
π v = vπ. �

Next, we consider the special case that v(L) and π(L) are both derived from AsyncQVI with

πi(L) = arg max
a

Qi,a(L), vi(L) = max
a

Qi,a(L), ∀i ∈ S.

If ‖v∗ − vπ‖∞ ≤ ε, then π is ε−optimal. To achieve this, we first show that v(L) satisfies Lemma
C.3 (see Lemma C.4). Then with Theorem 4.5, ‖v∗ − vπ‖∞ ≤ ‖v∗ − v(L)‖∞ ≤ ε.

Lemma C.4. Under Assumption 3.1, AsyncQVI generates a sequence of {v(t)}Lt=1 and {π(t)}Lt=1

satisfying
v(t− 1) ≤ v(t) ≤ Tπ(t)v(t− 1), ∀ 1 ≤ t ≤ L (9)

with probability at least 1− δ.

Proof. By Proposition 4.3,∣∣r(t) + γS(Q̂(t))− r̄atit − γpatit
>v̂(t)

∣∣ ≤ (1− γ)ε

4
, ∀ 0 ≤ t ≤ L− 1

holds with probability at least 1− δ. Denote by E2 the event{
r(t) + γS(Q̂(t))− (1− γ)ε

4
≤ r̄atit + γpatit

>v̂(t), ∀ 0 ≤ t ≤ L− 1
}
.

Then E2 occurs with probability at least 1− δ.
Now we condition on E2 and prove Eq. (9) by induction. For simplicity, we let v(−1) = v(0) = 0

and start our proof from t = 0. Then the basic case holds. For the induction step, suppose that
Eq. (9) is true for all t up to some t′. Recall that in AsyncQVI, for each iteration, whether vi or
πi will be updates depends on the value of Qi,a. We hence analyze the scenario at (t′ + 1) as two
cases.
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Case 1: Qit′ ,at′ (t
′ + 1) ≤ vit′ (t

′). Then v and π will not be updated, i.e., v(t′ + 1) = v(t′) and
π(t′ + 1) = π(t′). In this case, the inequality v(t′) ≤ v(t′ + 1) follows directly. For the other part,
by induction hypothesis we have

v(t′ + 1) = v(t′) ≤ Tπ(t′)v(t′ − 1) = Tπ(t′+1)v(t′ − 1) ≤ Tπ(t′+1)v(t′),

where the last inequality comes from v(t′ − 1) ≤ v(t′) and the monotonicity of Tπ(t′+1).
Case 2: Qit′ ,at′ (t

′ + 1) > vit′ (t
′). Then ∀ i ∈ S,

Case 2.1: i 6= it′ . In this case, vi(t
′ + 1) = vi(t

′) and πi(t
′ + 1) = πi(t

′). Hence, once again by
induction hypothesis and Tπ’s monotonicity, we obtain

vi(t
′ + 1) = vi(t

′) ≤
[
Tπ(t′)v(t′ − 1)

]
i

=
[
Tπ(t′+1)v(t′ − 1)

]
i
≤
[
Tπ(t′+1)v(t′)

]
i
.

Case 2.2: i = it′ . According to Lines 8 and 10 of Algorithm 2, the ith coordinate of v is
updated at iteration t′ and the former inequality follows directly. For the latter inequality,
by Line 7 of Algorithm 2 we have

vi(t
′ + 1) = Qi,at′ (t

′ + 1) = r(t′) + γS(Q̂(t′))− (1− γ)ε

4
.

By definition of E2 and πi(t
′ + 1) = at′ , we obtain

vi(t
′ + 1) ≤ r̄at′i + γp

at′
i
>

v̂(t′) =
[
Tπ(t′+1)v̂(t′)

]
i
.

Owing to v̂(t′) ≤ v(t′) by induction hypothesis and the monotonicity of Tπ(t′+1), we can
complete our proof by

vi(t
′ + 1) ≤

[
Tπ(t′+1)v̂(t′)

]
i
≤
[
Tπ(t′+1)v(t′)

]
i
.

�
Finally, combining the results of Lemma C.3, Lemma C.4 and Theorem 4.5, we can establish

Theorem 4.6 at ease.
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