Supplementary Material

A. Missing Proof of Proposition 3.2

Recall that for each iteration ¢, we update the ith coordinate x; if t € .7%. Specifically,
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where X(t) := [21(71(t)), ..., 2n(70(¢))]". For analysis, we sort 7% into a sequence (t)>0, where
o is the first element of .7* and ¢}, is the (k + 1)th. Then Theorem A.1 bounds |z;(t) — ]| in a
staircase decreasing way: |x;(t) — x}| will contract when ¢ € 7%, or equivalently, ¢ = ¢ for some k.

Theorem A.1 (Staircase Decreasing). Consider the iteration (1) under Assumption 3.1. Suppose
that G s y-contractive under infinity norm and x* is the fized-point of G. For each t > By and

i€ {1,2,---,n}, if t € (], i:+1] for some k, then x;(t) satisfies
i) — 25| < [|%(0) — X"[lsopfh 5" (2)
(2 [ — [e.@] b

1
where p := yBi1+B2-1,

Proof. We first claim that for each ¢ > By and i € {1,2,--- ,n}, there exists some k > 0 such

that ¢t € (¢}, };H]. This follows from Assumption 3.1 (a), where t§) < By — 1, V i.
Now we prove Eq. (2) by induction. One could check

[%(£) = x"[loo < [[%(0) =x"|[co, V=0

as a corollary of [1, Theorem 2| or by another induction. We skip the details here. Thus for the
basic case,

t) — * —t < O R —t < 0 R —B;
max ()~ % oo™} < max {Ix(0) ~ X' oop™} < [(0) X,

which gives that for each ¢t < By and i € {1,2,--- ,n},
s (t) = 7| < [%(0) = x*[locp™™ P
Since p! is decreasing, we can further obtain that

l24(B1) — af| < [1x(0) — x*||oopP1,

if By € (t},,t},] for some k.

For the induction step, we assume that Eq. (2) holds for all ¢ > B; up to some t'. For a fixed
i €{1,2,---,n}, supposing that ¢’ € (¢, };/H] for some k£, then we analyze the scenario at (' +1)
as two cases.
Case 1: t' ¢ 7', i.e., we do not update coordinate i at iteration #'. Hence, x;(t' + 1) = z;(t') and
t'+ 1€ (t,,t, +1)- Then Eq. (2) follows directly. '
Case 2: t' € ', ie., the ith coordinate is updated at iteration ¢’ and ¢ = tj, ;. Since G is
~v-contractive under infinity norm, we have

jzi(t + 1) — 27| = |Gi(%(t)) — 27| < |GX(#)) — X"

< ymax [z (ry(f)) — 3], )



For a fixed j € {1,2,---,n}, suppose that 7;(t') € (tiT,tiH_l] for some k;. Then the induction

hypothesis gives |z;(7;(t')) ]‘ < ||x(0) — x*Hooptir_Bl. Since 7;(t') < tif + By by Assumption 3.1
(a) and 7;(t") > ' — By 4+ 1 by Assumption 3.1 (b), we obtain

* * J —B
|z (75 (#)) — 25| < A%(0) — x*[|ooplsr TP

< 7l1x(0) = x"[locp™ V72

< Y[[x(0) = x*[locp! T2 E

* i/ _B
= [[%(0) = x*[|aop'b 1177, (4)
where the equality holds since v = pB1+52~1 by definition and ¢ = t};, 4+1- Notice that t'+1¢€
ti,. ., ti, . ]. Inserting Eq. (4) back into Eq. (3) yields the desired result. O
B 410 Uk 42

One may note that if ¢ € (¢}, ], then ¢, + By > ¢ by Assumption 3.1 (a). Hence, Proposi-
tion 3.2 is a direct consequence of Theorem A.1.

B. Missing Proof from Section 4.1

To analyze the sampling error, we first review Hoeffeding’s Inequality [2].
Lemma B.1 (Hoeffeding’s Inequality [2]). Let Xi,---, X, be i.i.d real valued random variables
with Xj € [a;,b;] and Y = L > iy Xj. Foralle >0,
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P[[Y —E[Y]| > <] < 2e=m07"

By Hoeffeding’s Inequality, the error between the sample averages and the true expectations
can be controlled with enough number of samples. Specifically, we have:

Lemmzil B.2. Given a constant L, with K = {mlog( L)] samples, AsyncQVI returns r(t)
and S(Q(t)) satisfying

2 . e
iy - < S22 @) - p o) < U2

with probability at least 1 — %

Proof. As we explained before, both r(t) and S (Q(t)) are averages of K ii.d. samples with

E[r(t)] = Z pf:j f:] = r“t and E[S(Q ( )] = Z pf:]A (t) := pZtT\?(t). Since we assume ri; €

[0,1], it is easy to verify O < v(t) < _7 by induction. We skip the details here. Then letting
K= [(1 oL log( )], we can obtain that
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Proof. [Proof of Proposition 4.3] For a fixed iteration ¢, by Lemma B.2,
~ =0t ar T4 —at A a; T4 (1 - '7)5
(1) +¥S(Q(E) — 75 —py V(O] < Ir(t) = [ +IS(Q)) — piy V(#) <



holds with probability at least 1 — %. Taking a union bound over all 0 <t < L — 1 iterations gives
the desired result. 0
Proof. [Proof of Proposition 4.4] We denote by &; the event

[y 5@ — 7~ 7o) < 5 vo<i<n 1)

By Proposition 4.3, £ occurs with probability at least 1 — §. Next, we condition on £ and prove

QM) - QW) < 5, VIt L (5)

by induction. The basic case is trivial. For the induction step, we analyze the scenario at ¢t + 1
as two cases. When t ¢ 75 |Q;q(t + 1) — Ea(t +1)| < ¢/2 follows from the hypothesis, since
Egs. (5) and (6) give that

Qia(t +1) = Qfa(t + 1) = Qialt) — Qia(t)-
When t € 7% by Eq. (5), Eq. (6) and triangle inequality, we have that

|Qiat +1) — QF,(t+1)|

= |r(t) + 9s(Qu) - L RYEELAY
< |r(t) +vS(Q()) — 7 —ypf V(1) — L‘ + ‘vp - ’YZP?J' H}Z%XQI;E‘,QI(U’
(1-

< |r(t) +78(Q(1) — 78 — e o ()| + +vzp”!maxczja<> max Q% (1)
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By definition of & and the induction hypothesis, we further obtain that

1—7)e 1—7)e g€ €
Qualt+1) ~ QE e+ < L2 B2

which completes the proof. [
Proof. [Proof of Theorem 4.5] By Proposition 3.2,

L—2B;

1Q" — Q¥ (L)oo < (1 =) 1p" 2P = (1 — 7)1y PrimeT,
Notice that v = (1 — (1 — 7)) < e~=7). We have that

L-2B, €

1Q" = Q¥(L)oe < (1 = )~ AT < 2 (6)

where the last inequality holds with L = (231 + B lJ{f 371 log (

,27)5)}- Then, by Proposition 4.4,
with probability at least 1 — ¢,

a

IQ*(L) - QL) <
Inserting Eq. (7) back into Eq. (6) gives the desired result

1Q* — Q(L)[lse < 1Q* = Q*(L) ]l + 1Q%(L) — Q(L)[|oc < &

Then one can check ||[v* — v(L)||o < € at ease. O

(7)

[\’)\(‘f)



C. Missing Proof of Theorem 4.6

After L iterations, AsyncQVI returns a policy 7(L) with m;(L) = argmaxse 4 Qi o(L). To show
that m(L) is e-optimal, we first define a policy operator.

Definition C.1 (Policy Operator). Given a policy m and a vector v € RIS! the policy operator T :
RISI — RIS| s defined as

(Tevli = 7 9w v =] 49 3Py (®)
JjES
Proposition C.2 (T;’s Properties). Given a policy 7, for any vectors v, v/ € RS,
(a) Momnotonicity: if v <V, then Trv < T v'.
(b) v-Contraction: ||Txv — Tpv'||co < Y|V — V'] co-
(¢) v™ is the fized-point of T.
The proof is straightforward following the definition. We skip the details here.

Lemma C.3. [3] Given a policy 7, for any vector v € RS, if there exists a v € RS such that
v <vand v <T,v, then v < v™.

Proof. By Proposition C.2 (a) and v/ < v, we first have T,v/ < Tpv. Combining with
v < Tpv', we further obtain v < Trv. By induction, one can check v < T7v, V n € N. Moreover,
since Ty is a y-contraction, v = lim, oo T7v. Hence, v <lim, oo Thv=v". [

Next, we consider the special case that v(L) and (L) are both derived from AsyncQVI with

mi(L) = argmax Q; (L), v;(L) =maxQ;q(L), Vi € S.

If |v* — v™||oo < €, then 7 is e—optimal. To achieve this, we first show that v(L) satisfies Lemma
C.3 (see Lemma C.4). Then with Theorem 4.5, ||[v* — v || < ||[V* — v(L)]|eo < €.

Lemma C.4. Under Assumption 3.1, AsyncQVI generates a sequence of {v(t)}r_, and {m(t)}E,
satisfying
v(t—1)<v(t) < Trpv(t—1), V1<t<L (9)

with probability at least 1 — §.

Proof. By Proposition 4.3,

(1) + (@) — 7 — i o) < T o< <n

holds with probability at least 1 — §. Denote by & the event

{r(t) +~5(QM) - (1;7)5 < pl U, YO <t < L1},

Then & occurs with probability at least 1 — §.

Now we condition on & and prove Eq. (9) by induction. For simplicity, we let v(—1) = v(0) =0
and start our proof from ¢ = 0. Then the basic case holds. For the induction step, suppose that
Eq. (9) is true for all ¢ up to some t’. Recall that in AsyncQVI, for each iteration, whether v; or
m; will be updates depends on the value of Q;,. We hence analyze the scenario at (¢’ 4+ 1) as two
cases.



Case 1: Qj,q,(t' +1) < v;,(t'). Then v and 7 will not be updated, i.e., v(t' + 1) = v(t') and
7w(t'+ 1) = 7(t'). In this case, the inequality v(¢') < v(¢’ + 1) follows directly. For the other part,
by induction hypothesis we have

v(t' +1) =v(t') < Trnv(t' = 1) = Traynv(t’ = 1) < Trpqv(t),

where the last inequality comes from v(#' — 1) < v(#') and the monotonicity of T7(y 1)
Case 2: Qi q, (t' +1) > v, (t'). ThenVic S,

Case 2.1: i # iy. In this case, v;(t' + 1) = v;(¢') and m;(t' + 1) = m;(¢'). Hence, once again by

induction hypothesis and 7’s monotonicity, we obtain

Ui(t/ + 1) =U; (t/) < [Tﬂ(t/)v(t’ - 1)]Z = [Tﬂ(t/+1)v(tl - 1)]Z < [Tw(t/+1)v(t/)]i.

Case 2.2: i = iy. According to Lines 8 and 10 of Algorithm 2, the ith coordinate of v is

updated at iteration ¢’ and the former inequality follows directly. For the latter inequality,
by Line 7 of Algorithm 2 we have

. 1—
0t 1) = Qo (1) = o(t) +98(Qu) — L2
By definition of & and m;(t' + 1) = ay, we obtain

a1 A

vi(t' + 1) < o + vp; V(t/) = [Tﬁ(turl){’(t/)]i-

(2

Owing to v(t') < v(t') by induction hypothesis and the monotonicity of Ty 41y, we can
complete our proof by

U’i(t/ + 1) < [TTr(t’—s—l)‘A’(t/)]i < [Tﬂ(t’+1)v(t/)]i‘

Finally, combining the results of Lemma C.3, Lemma C.4 and Theorem 4.5, we can establish

Theorem 4.6 at ease.
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