
Appendix for “Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects”

This Appendix provides full proofs for all theorems stated in the main body of this paper, it includes further experimental
and implementation details, a performance analysis for the average treatment effect (as opposed to individualized
treatment effect) and additional figures to illustrate our approach.

1 Theory

In this section, we provide the proof of Theorem 1 and 2 in the main text. For reader’s convenience, we start by restating
the notation introduced in Section 2 of the main text, Theorem 1 and 2 followed by a proof sketch.

Notation. Let Px,t denote the input data distribution p(x, t), Pt = p(yt|x)p(x, t) the joint factual distribution of x and
yt, P1−t = p(yt|x)p(x, 1− t) the joint counterfactual distribution of x and yt. Each instance in the observed (factual)
dataset Dt = {(xi,t, yi,t)}Nti=1, is assumed to be sampled i.i.d from Pt. Dt−1 will be used to denote the unobserved
(counterfactual) data set that results from fliping the treatment assignment for each instance. While we assume φ to be
deterministic, in the following section we let wt be a vector of weights with prior distribution πt = N (0, λ−1t I), λt > 0.
In this sense, πt defines the hypothesis space F of ft and we write ρ̂t for the posterior distribution of ft, itself a random
variable. We write µ(xi|Dt,Θt) and σ2(xi|Dt,Θt) for its posterior mean and variance given context xi. Θt includes all
hyperparameters (both shared parameters (in φ) and specific parameters to each treatment group).

Theorem 1. With the assumption that the squared loss function L : F × X × Y → R is sub-gaussian under πt and
Pt, and using the notation introduced above, the following holds. With probability at least 1− δ and for any posterior
distribution ρ̂t on F , εPEHE is upper-bounded by

1∑
t=0

(
2D̃∞Lρ̂t(Xt,Yt)+

(
D̃∞+1

)
Varρ̂t(Xt)+Varρ̂t(X1−t)+

Ct,1(Nt, N1−t)

NtN1−t
KL(ρ̂t‖πt)+

Ct,2(Nt, N1−t)

NtN1−t

1

δ
+Ct,3

)

where Ct,1(Nt, N1−t), Ct,2(Nt, N1−t) are linear function in their arguments, Ct,3 is constant, Varρ̂t(X) is the
posterior variance on X, Varρ̂t(X) = 1

N

∑N
i=1 σ

2(xi|Dt,Θt), Lρ̂t(X,Y) = 1
N

∑N
i=1

(
µ(xi|Dt,Θt) − yi

)2
is the

posterior prediction loss, D̃∞ = D∞(Px,1−t‖Px,t) + 1, D∞(Px,1−t‖Px,t) = supx
p(x,1−t)
p(x,t) , and finally KL(·‖·) is the

Kullback-Leibler divergence.

Proof. The proof consists of four steps: (a) Use the decomposition method in [14] to derive a upper bound of εPEHE
which is expressed in terms of the expected factual risk and the expected counterfactual risk (Section 1.1); (b) Bound the
expected factual risk using the PAC-Bayes bound of supervised learning (Section 1.2); (c) Derive the PAC-Bayes bound
of the expected counterfactual risk (Section 1.3). (d) Substitute the bounds of the expected factual and counterfactual
risk into the decomposition from (a) (Section 3.5), we have the PAC-Bayes bound in Equation 1.

Theorem 2. Assume the notation introduced above, for any posterior distribution ρ̂t on F , the expected counterfactual
Gibbs risk1 RP1−t(Gρ̂t) is bounded above by,

1

2
DPx,1−t(Gρ̂t) +D∞(Px,1−t‖Px,t)LPt(Gρ̂t). (1)

where LPt(ρ̂t) = E(x,y)∼Pt

[(
µ(x|Dt,Θt) − y

)2
+ 1

2σ
2(x|Dt,Θt)

]
is the expected factual loss, DPx,1−t(ρ̂t) =

Ex∼Px,1−t
[
σ2(x|Dt,Θt)

]
is the expected counterfactual variance, and finally D∞(Px,1−t‖Px,t) = supx

p(x,1−t)
p(x,t) .

Proof. The Theorem is a summary of the results in Lemma 5 and 6 in Section 1.3. Using the notation above, the
expected disagreement loss and the expected ensemble loss in Lemma 5 are given as the expected counterfactual variance

1The expected counterfactual Gibbs risk is an upper bound of the expected Bayesian counterfactual risk, a detailed discussion of Gibbs and
Bayesian risk is given in Appendix 1.2.
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and the expected factual loss respectively in Theorem 2. Replacing the expected disagreement loss by the expected
counterfactual variance, and the expected ensemble loss by the expected factual loss in Lemma 6, we obtain the result in
Equation (1) .

1.1 PEHE decompostion

The expected Precision in Estimation of Heterogeneous Effects, εPEHE, can be bounded using the expected factual risk
and the expected counterfactual risk [14].

Proposition 3. Given data distributions Pt, Bayesian model Bρ̂t , t ∈ {0, 1}, we have

εPEHE ≤ 2

1∑
t=0

(RPt(Bρ̂t) +RP1−t(Bρ̂t)− 2β−1t ) (2)

where RPτ (Bρ̂τ ) =
∫ (
f̂t(x)− yt

)2
p(yt, x, τ)dxdyt is the expected risk under the distribution p(yt, x, τ).

The proof of Proposition 3 is provided in Section 3.1. The goal of bounding εPEHE can be achieved by bounding the
expected factual risk RPt(Bρ̂t) and the expected counterfactual risk RP1−t(Bρ̂t). To differentiate the two risks, the
data distribution P1−t and the model Bρ̂t are indexed differently in the expected counterfactual risk, indicating the
counterfactual outcomes are missing.

1.2 PAC-Bayesian Bound for the expected factual risk

We first introduce Gibbs model and Bayesian model in PAC-Bayesian theory [12, 15]. Given a distribution ρ̂ over the
functions in a hypothesis space F , Gibbs model Gρ̂ is defined as making prediction for every example by randomly
sampling a function in F . In other words, to predict the label of an example x, the Gibbs model first draws a function f
from F according to ρ̂, then return f(x) as label. Bayesian model Bρ̂ is defined as making prediction on x by averaging
all the functions in F with respect to ρ̂. The expected risk of Gρ̂ is

RP(Gρ̂) = Ef∼ρ̂E(x,y)∼P
[
l(f(x, y)

]
(3)

and the expected risk of Bρ̂ is
RP(Bρ̂) = E(x,y)∼P

[
l(Ef∼ρ̂

[
f(x)

]
, y)
]

(4)

where l is a loss function. In DKLITE, the loss function l is the squared loss l(ŷ, y) = (ŷ − y)2. There are two well
known connections between the two risks in Equation (3) and (4). First, RP(Bρ̂) < 2RP(Gρ̂) when l is a 0-1 loss. This
is because if Bρ̂ classifies an example incorrectly, at least half of the classifiers in F under ρ̂ will classify this example
incorrectly. When loss function is convex e.g. the squared loss, Jensen’s inequality gives that RP(Bρ̂) ≤ RP(Gρ̂).
Because of these connections, the bound of Gibbs risk is also applicable to the Bayesian risk when a suitable loss
function is in use. The expected factual risk can be bounded using some existing PAC-Bayes theorems in supervised
learning [2, 6]. Following the convention of PAC-Bayes literature, the bound is stated mainly on the Gibbs risk but
implicitly applied to Bayesian risk.

Theorem 4. With the assumption that the squared loss function l : F × X × Y → R is sub-gaussian with variance
factor ξ2t under πt and Pt, and using the notation introduced in Section 1. Then, for δ ∈ (0, 1], with probability at least
1− δ over the random choice St = (Xt,Yt) ∈ PNt , for any posterior distribution ρ̂t on F , we have

RPt(Gρ̂t) ≤ RSt(Gρ̂t) +
1

Nt

[
KL(ρ̂t‖πt) +

1

δ

]
+

1

2
ξ2t (5)

where RP(f) = E(x,y)∼P
[
l(f(x), y)

]
is the expected risk, RS(Gρ̂) = 1

Nt

∑Nt
i=1 l(f(xi,t), y) is the empirical risk on

St.

Proof. Section 3.2.
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1.3 PAC-Bayesian Bound for the expected counterfactual risk

In this section, we show how to derive the PAC-Bayes bound for the expected counterfactual Gibbs risk RP1−t(Gρ̂t).
The PAC-Bayes bound in supervised learning is not applicable to bound RP1−t(Gρ̂t) since we do not have the label
data to construct RS1−t(Gρ̂t). This issue can be addressed by applying some existing methods in the literature, such as
importance weighting [3, 7] and Integral Probability Metrics [14, 17]. We first introduce a decomposition of the Gibbs
risk, which gives rise to the counterfactual variance in Theorem 1 and 2. Then we show importance weighting [3, 7]
and Integral Probability Metrics [14, 17] lead to two different upper bounds for the expected counterfactual Gibbs risk
RP1−t(Gρ̂t).

Lemma 5. Given a distribution P over X × Y , a hypothesis space F , ∀ρ̂ on F , we have

RP(Gρ̂) =
1

4
DPx(Gρ̂) + LP(Gρ̂) (6)

where DPx(ρ̂) is the expected disagreement loss,

DPx(Gρ̂) = E(f,f ′)∼ρ̂2Ex∼Px
[(
f(x)− f ′(x)

)2]
(7)

and LP(ρ̂) is the expected ensemble loss,

LP(Gρ̂) = E(f,f ′)∼ρ̂2E(x,y)∼P

[(f(x) + f ′(x)

2
− y
)2]

(8)

Proof. Section 3.3.

The expected disagreement loss and the expected ensemble loss can be rewritten as the expected counterfactual vari-
ance and the expected factual loss respectively in Theorem 2 using the notation in Section 1. The proof for this
can be found in the Section 3.5 where we derive the empirical estimate of the disagreement and ensemble loss. Let
l̃f,f ′(x, y) =

( f(x)+f ′(x)
2 − y

)2
denote the ensemble loss. We now introduce the upper bounds of the expected counter-

factual Gibbs risk using importance weighting [3, 7] and Integral Probability Metrics [14, 17].

Lemma 6. Given two distributions P1−t and Pt over X × Y , a hypothesis space F , ∀ρ̂t on F , we have

RP1−t(Gρ̂t) ≤
1

4
DPx,1−t(Gρ̂t) +D∞(Px,1−t‖Px,t)LPt(Gρ̂t) (9)

where D∞(Px,1−t‖Px,t) = supx
p(x,1−t)
p(x,t) .

Proof. Section 3.4.

Notice that the problem of missing counterfactuals no long exist since DPx,1−t(Gρ̂t) is defined with the input data
distribution Px,1−t, and LPt(Gρ̂t) is under the distribution Pt where we have access to the label data. We can make
use of the PAC-Bayes theory in supervised learning to upperbound DPx,1−t(Gρ̂t) and LPt(Gρ̂t). Then the expected
counterfactual risk RP1−t(Gρ̂t) is easily bounded by substituting these upperbounds into Equation (9). The results are
summarized in the following theorem.

Theorem 7. With the assumption that the squared loss function l : F × X × Y → R is sub-gaussian with variance
factor ξ2t under πt and Pt, and using the notation introduced in Section 1. Then, for δ ∈ (0, 1], κ > 0, with probability at
least 1− δ over the random choice St = (Xt,Yt) ∈ PNtt and Sx,1−t = X1−t ∈ PN1−t

x,1−t, for any posterior distribution
ρ̂t on F , we have

LPt(Gρ̂t) ≤ LSt(Gρ̂t) +
1

Nt

[
2 KL(ρ̂t‖πt) +

1

δ

]
+

1

2
ξ2t (10)
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where LSt(Gρ̂t) = 1
Nt

∑Nt
i=1 E(f,f ′)∼ρ̂2t

( f(xi,t)+f ′(xi,t)
2 − yi,t

)2
. For some constants C̃t,1 and C̃t,2, we have

DPx,1−t(Gρ̂t) ≤ DSx,1−t(Gρ̂t) +
C̃t,1
N1−t

[
2 KL(ρ̂t‖πt) +

1

δ

]
+ C̃t,2 (11)

where DSx,1−t(Gρ̂t) = 1
N1−t

∑N1−t
i=1 E(f,f ′)∼ρ̂2t

(
f(xi,1−t) − f ′(xi,1−t)

)2
. For some linear function C̃t,3(Nt, N1−t)

and constant C̃t,4, we have

RP1−t(Gρ̂t) ≤
1

4
DSx,1−t(Gρ̂t) +D∞(Px,1−t‖Px,t)LSt(Gρ̂t) +

C̃t,3(Nt, N1−t)

N1−tNt

[
2 KL(ρ̂t‖πt) +

1

δ

]
+ C̃t,4 (12)

Proof. Section 3.5.

2 Regularized Bayes

An alternative view of our algorithm is through Regularized Bayes in [9, 20]. In Bayesian inference, variance and recon-
struction loss minimization can be understood as constraints/regularization on the approximate posterior distribution.
However, this view does not provide insight into how these additional regularizers can improve generalization.

Theorem 8. Assume the notation introduced in Section 1. Let D be the union of dataset D0 and D1,H a space of the
neural network parameters in φ , the minimization problem in Equation (13) in the main paper is equivalent to the
Multitask RegBayes optimization problem as follows,

inf
q(w0,w1,φ|D)

1∑
t=0

L(q(wt, φ|D)) + Ω(q(wt, φ|D))

s.t. q(w0, w1, φ|D) ∈ Pprob

with

Ω(q(wt, φ|D)) = α
′

t

N1−t∑
i=1

(∫
wt

[
(wt − E[wt])

>φ(xi,1−t)
]2 · ∫

φ

p(wt|φ,D)q(φ|D)dφdwt

)
and

Pprob =
{
q : q(w0, w1, φ|D) = δφ̂(φ|D)

1∏
t=0

q(wt|φ,D)
}

where L(q(wt, φ|D)) is the KL-divergence between the approximate posterior q(wt, φ|D) and the true posterior
p(wt, φ|D), and Ω(q(wt, φ|D)) is a regularizer of the approximate posterior q(wt, φ|D), H = {φ ∈ H̃ : ∃ ψ ∈
H̃ s.t. ψ = φ−1}, H̃ is an arbitrary parameter space of neural network models, δφ̂(φ|D) is a Dirac measure

concentrated at φ̂ ∈ H and α
′

t = αtNt
N1−t

.

Proof. See Theorem 1 in [9].
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3 Detailed Proofs

3.1 Proof of Proposition 3

Proof.

εPEHE =

∫
(τ̂(x)− τ(x))

2
p(x)dx

=

∫ ((
f̂1(x)− f̂0(x)

)
−
(
f∗1 (x)− f∗0 (x)

))2
p(x)dx

=

∫ ((
f̂1(x)− f∗1 (x)

)
+
(
f̂0(x)− f∗0 (x)

))2
p(x)dx

≤ 2

1∑
t=0

∫ (
f̂t(x)− f∗t (x)

)2
p(x)dx

= 2

1∑
t=0

1∑
t′=0

∫ (
f̂t(x)− f∗t (x)

)2
p(x, t′)dx

= 2

1∑
t=0

∫ (
f̂t(x)− f∗t (x)

)2
p(x, t)dx+ 2

1∑
t=0

∫ (
f̂t(x)− f∗t (x)

)2
p(x, 1− t)dx

= 2

1∑
t=0

(RPt(Bρ̂t) +RP1−t(Bρ̂t)− 2β−1t )

(13)

The first inequality is achieved using the triangle inequality. The last equality is achieved as follows,

RPt(Bρ̂t) =

∫ (
f̂t(x)− yt

)2
p(yt|x)p(x, t)dxdyt

=

∫ (
f̂t(x)− f∗t (x)− εt

)2N (εt; 0, β−1t )p(x, T = t)dxdyt

=

∫ ((
f̂t(x)− f∗t (x)

)2 − 2εt
(
f̂t(x)− f∗t (x)

)
+ ε2t

)
N (εt; 0, β−1t )p(x, T = t)dxdyt

=

∫ (
f̂t(x)− f∗t (x)

)2
p(x, t)dx+ β−1t

3.2 Proof of Theorem 4

The proof is based on the following PAC-Bayes theorem in supervised learning. We can bound the expected factual
risk RPt(Gρ̂) using Equation (16) since the factual risk minimization is a supervised learning problem where we have
access to the label information.

Theorem 9. (Alquier et al. [2]) Given a distribution P over X × Y , a hypothesis space F , a loss function l :
F × X × Y → R, a prior distribution π over F , a δ ∈ (0, 1], and a real number κ > 0, with probability at least 1− δ
over the random choice S = (X,Y) ∈ Pn, ∀ρ̂ on F , we have

RP(Gρ̂) ≤ RS(Gρ̂) +
1

κ

[
KL(ρ̂‖π) +

1

δ
+ nζπ,P(κ, n)

]
(14)

where
ζπ,P(κ, n) = lnEf∼πE(x,y)∼P

[
exp

(κ
n

(
RP(f)− l(f(x), y)

))]
, (15)

RP(f) = E(x,y)∼P
[
l(f(x), y)

]
is the expected risk and RS(Gρ̂) = 1

n

∑
(x,y)∈S l(f(x), y) is the empirical risk on S.
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Note that the inner expectation in ζπ,P(κ, n) is the moment generating function of a zero mean random variable
V = RP − l(f(x), y). If we assume the loss l(f(x), y) is sub-gaussian variable with variance factor ξ2 under the prior
π and data distribution P , we have ζπ,P(κ, n) ≤ κ2ξ2

2n2 [6]. Because the moment generating function of a zero-mean
sub-gaussian variable is upper bounded by the moment generating function of the zero-mean Gaussian variable with the
same variance factor ξ2, s.t. EV

[
exp(κnV )

]
≤ exp(κ

2ξ2

2n2 ). The sub-gaussian assumption of l(f(x), y) is more realistic
than the standard bounded assumption because the squared loss function is usually unbounded but with strong tail decay
property. By choosing κ := n, the bound in Equation (14) converges to,

RP(Gρ̂) ≤ RS(Gρ̂) +
1

n

[
KL(ρ̂‖π) +

1

δ

]
+

1

2
ξ2 (16)

The result in Theorem 4 is rewritten from Equation (18) using the notation in Section 1.

3.3 Proof of Lemma 5

Proof. ∀ρ̂ on F , we have

RP(Gρ̂) =Ef∼ρ̂E(x,y)∼P
[(
f(x)− y

)2]
=

1

2
E(f,f ′)∼ρ̂2E(x,y)∼P

[(
f(x)− y

)2
+
(
f ′(x)− y

)2]
=

1

2
E(f,f ′)∼ρ̂2E(x,y)∼P

[
f2(x) + f ′

2
(x)− 2yf(x)− 2yf ′(x) + 2y2

]
=

1

2
E(f,f ′)∼ρ̂2E(x,y)∼P

[1
2

(
f2(x) + f ′

2
(x)− 2f(x)f ′(x)

)
+

1

2

(
f2(x) + f ′

2
(x)

+ 2f(x)f ′(x)− 4y(f(x) + f ′(x)) + 4y2
)]

=
1

2
E(f,f ′)∼ρ̂2E(x,y)∼P

[1
2

(
f(x)− f ′(x)

)2
+

1

2

(
f(x) + f ′(x)− 2y

)2]
=

1

2
E(f,f ′)∼ρ̂2E(x,y)∼P

[1
2

(
f(x)− f ′(x)

)2
+ 2
(f(x) + f ′(x)

2
− y
)2]

=
1

4
DPx(Gρ̂) + LP(Gρ̂)

(17)

3.4 Proof of Lemma 6

Proof. From Lemma 5, we have RP1−t(Gρ̂t) = 1
4DPx,1−t(Gρ̂t) + LP1−t(Gρ̂t). Using the importance weighting trick

in [3, 7], we can split LP1−t(Gρ̂t) into two parts,

LP1−t(Gρ̂t) =E(x,y)∼P1−tE(f,f ′)∼ρ̂2t

[
l̃f,f ′(x, y)

]
=E(x,y)∼Pt

[P1−t

Pt
E(f,f ′)∼ρ̂2t

[
l̃f,f ′(x, y)

]]
≤

(
Ex∼Px,t

[(p(x, 1− t)
p(x, t)

)α]) 1
α [

E(x,y)∼P1−tE(f,f ′)∼ρ̂2t

[
l̃f,f ′(x, y)

] α
α−1

]1− 1
α

(18)

The second equality is achieved because the Overlap assumption in the Rubin-Neyman potential outcomes model [13]
ensures that SUPP(P1−t) = SUPP(Pt). The first inequality is achieved by using Hölder’s inequality. Note that
the label distribution p(yt|x) is canceled out since it is shared by P1−t = p(yt, x, 1 − t) = p(yt|x)p(x, 1 − t) and
Pt = p(yt, x, t) = p(yt|x)p(x, t). Taking the positive constant α→ +∞, we obtain

RP1−t(Gρ̂t) ≤
1

4
DPx,1−t(Gρ̂t) +D∞(Px,1−t‖Px,t)LPt(Gρ̂t). (19)
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3.5 Proof of Theorem 7

Proof. The proof is to show the terms LPt(Gρ̂t) and DPx,1−t(Gρ̂t) can be bounded using the supervised PAC-Bayes
bound in Theorem 9. The key of applying Theorem 9 is to show Equation (15) is bounded for the proposed Gibbs model.
In DPx,1−t(Gρ̂t) and LPt(Gρ̂t), the hypothesis pair (f, f ′) is drawn from a product posterior distribution ρ̂2t on F2. We

also consider a product prior π2
t over F2. Recall that l̃f,f ′(x, y) = l

( f(x)+f ′(x)
2 , y

)
=
( f(x)+f(x′)

2 − y
)2

. The Equation
(15) for LPt(Gρ̂t) is given as

ζπ2
t ,Pt(κ,Nt) = lnE(f,f ′)∼π2

t
E(x,y)∼Pt

[
exp

( κ
Nt

(
E(x′,y′)∼Pt

[
l̃f,f ′(x

′, y′)
]
− l̃f,f ′(x, y)

))]
(20)

Recall that the prior πt = N (wt; 0, λ
−1
t I) is given as a Gaussian distribution in Section 1. For (f, f ′) ∼ π2

t , the
ensemble model f+f

′

2 in l̃f,f ′(x, y) follows the same Gaussian prior distribution πt. Let f̃ = f+f ′

2 , we can rewrite
Equation (20) as

ζπ2
t ,Pt(κ,Nt) = lnE(x,y)∼PtEf̃∼πt

[
exp

( κ
Nt

(
E(x′,y′)∼Pt

[
l(f̃(x′), y′)

]
− l(f̃(x), y)

))]
(21)

Under the sub-gaussian assumption of l(f̃(x), y), we have ζπ2,Pt(κ,Nt) ≤ κ2s2

2N2
t

. Applying Equation (15) to LPt(Gρ̂t)
gives the bound in Equation (10) where the double KL divergence is from KL(ρ̂2‖π2) = 2 KL(ρ̂‖π) (see Lemma 10).

Recall that f(x) = w>t φ(x), we define f̃(x) = w̃>t φ(x) = (wt − w′t)>φ(x). Let π̃t denote the prior distribution
N (w̃t; 0, 2λ

−1
t I), f̃(x) = f(x) − f ′(x), d̃f̃ (x) =

(
f(x) − f ′(x)

)2
and γt = Ex∼Px,1−t

[
‖φ(x)‖2

]
. Note that we do

not assume DPx,1−t(Gρ̂t) is sub-gaussian, we can upperbound the Equation (15) for DPx,1−t(Gρ̂t) as follows,

ζπ̃t,Px,1−t(κ,N1−t) = lnEx∼Px,1−tEf̃∼π̃t
[

exp
( κ

N1−t

(
Ex′∼Px,1−t

[
d̃f̃ (x′)

]
− d̃f̃ (x)

))]
≤ lnEw̃t

[
exp

( κ

N1−t
Ex∼Px,1−t

[
(w̃>t φ(x))2

])]
≤ lnEw̃t

[
exp

(
γ̃w̃>t w̃t

)]
= ln

∫
1√

(2π)dφ(2λ−1t )dφ
exp

(
− 1

2
(
λt
2
− 2γ̃)w̃>t w̃t

)
= −dφ

2
ln
(

1− 4γ̃

λt

)
≤ 2dφγ̃

λt − 4γ̃

(22)

where γ̃ = κγt
N1−t

, the first inequality is achieved by d̃f̃ (x) ≥ 0 and the last inequality is achieved by ln(1− c) ≥ −c
1−c ,

c ∈ [0, 1). We need to set κ > 0 s.t. λt−4γ̃ > 0⇒ 0 < κ < N1−tλt
4γt

. Let κ = N1−tλt
Cκγt

for some Cκ > 4. Then we have

γ̃ = λt
Cκ

and ζπ̃t,Px,1−t(κ,N1−t) ≤ 2dφ
Cκ−4 . Substituting κ = N1−tλt

Cκγt
and the upper bound of ζπ̃t,Px,1−t(κ,N1−t) into

Equation (14), we obtain the bound for DPx,1−t(Gρ̂t) in Equation (11), where C̃t,1 = Cκλ
−1
t γt and C̃t,2 = 2dφ(Cκ −

4)−1Cκλ
−1
t γt. Bounding DPx,1−t(Gρ̂t) and LPt(Gρ̂t) in Equation (9) with Equation (10) and (11) respectively, we

obtain the bound for RP1−t(Gρ̂t) in Equation (12), where C̃t,3(Nt, N1−t) =
C̃t,1
4 Nt + D∞(Px,1−t‖Px,t)N1−t and

C̃t,4 = 1
4 C̃t,2 + 1

2D∞(Px,1−t‖Px,t)ξ2t .

Lemma 10. Given any two distributions ρ̂ and π over a hypothesis space F . Suppose ρ̂2(f, f ′) = ρ̂(f)ρ̂(f ′) and
π2(f, f ′) = π(f)π(f ′), we have

KL(ρ̂2‖π2) = 2 KL(ρ̂‖π).
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Proof. Given any two distributions ρ̂ and π, we have

KL(ρ̂2‖π2) =

∫
ρ̂(f)ρ̂(f ′) log

ρ̂(f)ρ̂(f ′)

π(f)π(f ′)
dfdf ′

=

∫
ρ̂(f) log

ρ̂(f)

π(f)
df +

∫
ρ̂(f ′) log

ρ̂(f ′)

π(f ′)
dfdf ′

= 2 KL(ρ̂‖π).

(23)

3.6 Proof of Theorem 1

Proof. Substituting the bounds for RPt(Gρ̂t) and RP1−t(Gρ̂t) in Equation (5) and (12) into Equation (2) gives that

εPEHE ≤2

1∑
t=0

(RPt(Bρ̂t) +RP1−t(Bρ̂t)− 2β−1t )

≤2

1∑
t=0

(RPt(Gρ̂t) +RP1−t(Gρ̂t)− 2β−1t )

≤
1∑
t=0

(
1

2
DSx,1−t(Gρ̂t) + 2D∞(Px,1−t‖Px,t)LSt(Gρ̂t) + 2RSt(Gρ̂t)

+
Ct,1(Nt, N1−t)

NtN1−t
KL(ρ̂t‖πt) +

Ct,2(Nt, N1−t)

NtN1−t

1

δ
+ Ct,3

)
(24)

We express Ct,1(Nt, N1−t), Ct,1(Nt, N1−t), Ct,3 in terms of the linear function C̃t,3(Nt, N1−t) and constant C̃t,4
defined in the proof Theorem 7 (See Section 3.5): Ct,1(Nt, N1−t) = 4C̃t,3(Nt, N1−t) + 2N1−t, Ct,2(Nt, N1−t) =

2C̃t,3(Nt, N1−t) + 2N1−t and Ct,3(Nt, N1−t) = ξ2t + 2C̃t,4 − 4β2
t . We now compute the explicit expression of

the empirical terms in Equation (24) with the posterior distribution ρ̂t = N
(
µ(x|Dt),Θt, σ

2(x|Dt,Θt)
)

where
µ(x|Dt,Θt) = m>wtφ(x), and σ2(x|Dt,Θt) = φ(x)>K−1wt φ(x). The empirical disagreement loss can be expressed as
the variance of the missing counterfactuals,

DSx,1−t(Gρ̂t) =
1

N1−t

N1−t∑
i=1

E(f,f ′)∼ρ̂2t

(
f(xi,1−t)− f ′(xi,1−t)

)2
=

1

N1−t

N1−t∑
i=1

2σ2(xi,1−t|Dt,Θt) + 2µ2(xi,1−t|Dt,Θt)− 2µ2(xi,1−t|Dt,Θt)

= 2Varρ̂t(X1−t)

The empirical ensemble loss is

LSt(Gρ̂t) =
1

Nt

Nt∑
i=1

E(f,f ′)∼ρ̂2t

(f(xi,t) + f ′(xi,t)

2
− yi,t

)2
=

1

Nt

Nt∑
i=1

µ2(xi,t|Dt,Θt) +
σ2(xi,t|Dt,Θt)

2
− 2µ(xi,t|Dt,Θt)yi,t + y2i,t

=
1

Nt

Nt∑
i=1

[(
yi,t − µ(xi,t|Dt,Θt)

)2
+
σ2(xi,t|Dt,Θt)

2

]
= Lρ̂t(Xt,Yt) +

1

2
Varρ̂t(Xt)
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The empirical factual Gibbs risk is

RSt(Gρ̂t) =
1

Nt

Nt∑
i=1

Ef∼ρ̂t
(
f(xi,t)− yi,t

)2
=

1

Nt

Nt∑
i=1

[(
µ(xi,t|Dt,Θt)− yi,t

)2
+ σ2(xi,t|Dt,Θt)

]
= Lρ̂t(Xt,Yt) + Varρ̂t(Xt)

Substituting the above expressions of DSx,1−t(Gρ̂t), LSt(Gρ̂t) and RSt(Gρ̂t) into Equation (24), we obtain the bound
in Equation (1).

Lemma 11. In DKLITE, the negative log marginal likelihood L(Θt) can be rewritten as,

L(Θt) = KL(ρ̂t‖πt) +
Nt
2

ln(2πβ−1t ) +
Ntβt

2

[
Varρ̂t(Xt) + Lρ̂t(Xt,Yt)

]
Proof.

L(Θt) = −dφ
2

lnλt −
Nt
2

lnβt +
Nt
2

ln(2π) +
βt
2
‖Yt −Φtmwt‖2 +

λt
2

m>wtmwt +
1

2
ln |Kwt |

= KL(ρ̂t‖πt) +
dφ
2
− λt

2
Tr(K−1wt ) +

Nt
2

ln(2πβ−1t ) +
βt
2
‖Yt −Φtmwt‖2

= KL(ρ̂t‖πt) +
1

2
Tr(KwtK

−1
wt )− λt

2
Tr(K−1wt ) +

Nt
2

ln(2πβ−1t ) +
βt
2
‖Yt −Φtmwt‖2

= KL(ρ̂t‖πt) +
1

2
Tr((Kwt − λtI)K−1wt ) +

Nt
2

ln(2πβ−1t ) +
βt
2
‖Yt −Φtmwt‖2

= KL(ρ̂t‖πt) +
βt
2

Tr((Φ>t ΦtK
−1
wt ) +

Nt
2

ln(2πβ−1t ) +
βt
2
‖Yt −Φtmwt‖2

= KL(ρ̂t‖πt) +
βt
2

Tr((ΦtK
−1
wt Φ

>
t ) +

Nt
2

ln(2πβ−1t ) +
βt
2

Nt∑
i=1

(
yi,t − µ(xi,t|Dt,Θt)

)2
= KL(ρ̂t‖πt) +

Nt
2

ln(2πβ−1t ) +
βt
2

Nt∑
i=1

[(
yi,t − µ(xi,t|Dt,Θt)

)2
+ σ2(xi,t|Dt,Θt)

]
= KL(ρ̂t‖πt) +

Nt
2

ln(2πβ−1t ) +
Ntβt

2

[
Varρ̂t(Xt) + Lρ̂t(Xt,Yt)

]
where the second equality is achieved by

KL(ρ̂t‖πt) =
λt
2

Tr(K−1wt ) +
λt
2

m>wtmwt −
dφ
2
− dφ

2
lnλt +

1

2
ln |Kwt |
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4 Hyperparameter selection

Hyperparameters Range
Variance regularization parameter α1 {0.001, 0.01, 0.1, 1, 10, 25, 50, 75, 100}

Reconstruction regularization parameter α2 {0.001, 0.01, 0.1, 1, 10, 25, 50, 75, 100}
Number of hidden layers {1, 2, 3}
Number of hidden units {50, 100, 150, 200}

Dimension of the feature map {25, 50, 75, 100}
Regression Form {Primal,Dual}

Table 1: Hyperparameters and ranges of DKLITE

Due to the missing of counterfactual outcomes, standard methods for hyperparameter selection, such as cross-validation,
are not generally applicable for estimating the PEHE loss. Following the hyperparameter optimization code of the
work [14], we choose hyperparameters using random search over the hyperparameter space in Table 1. The missing
counterfactual outcomes in the PEHE loss are approximated by the observed outcome of the nearest neighbor in the
opposite group.

5 Further experimental details and additional figures

5.1 Data description

IHDP. Counterfactual outcomes are randomly generated via a predefined probabilistic model [1, 8, 14, 18, 19]. The
objective is to estimate the effects of specialist home visits to individuals on their future cognitive test scores. Patient
covariates X were collected from the actual randomized experiment but the overall cohort was made artificially
imbalanced by removing a subset of the treated population. The dataset comprises 747 units (139 treated, 608 control)
and 25 covariates measuring aspects of children and their mother2.

• Metric. We evaluate performance on IHDP with the empirical precision in estimating heterogeneous effects,

ε̂PEHE =
1

N

N∑
i=1

(τ(xi)− τ̂(xi))
2 (25)

Twins. Outcomes are observed but the treatment assignment is simulated. The objective is to predict the mortality of
each of one of two twins in their first year. We consider the ”treated” twin to be the one with higher weight at birth and,
since we have records for both twins, we treat their outcomes as two potential outcomes, i.e. y(1) and y(0). Now, in
order to simulate an observational study, we need to select one of the two twins for inclusion into our data, that is define
Pr(T |X). We do so by sampling from t|x ∼ Bern(Sigmoid(w>x+ ε)) where w> ∼ Uniform((−0.1, 0.1)30×1) and
ε ∼ N (0, 0.1). The final data contains 11400 individuals with 30 measured covariates relating to their parents, the
pregnancy and their birth.

• Metric. We evaluate performance on Twins with the observed precision in estimating heterogeneous effects,

ε̃PEHE =
1

N

N∑
i=1

(yi,1 − yi,0 − τ̂(xi))
2 (26)

Jobs. Approximately real data [4, 10, 14]. The objective is to measure the policy risk of a government job training
program on future employment and income. The study includes 7 pre-treatment covariates such as demographics and
previous employment details, on a total of 3112 individuals, 297 of them were enrolled in the program and 2915 of them

2Outcomes Y (0) and Y (1) are obtained by implementing the setting “A” in the NPCI package [5].
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are considered the control sample (from a mixture of randomized and experimental samples, see [10] for a description
of the data collection process).

• Metric. We evaluate performance on Jobs with the policy risk, it measures the expected loss if the treatment is taken
according to the ITE policy prescribed by the algorithm. It is defined as:

Rpol = 1− E[Y (1)|π(x) = 1]P (π(x) = 1)

+ E[Y (0)|π(x) = 0]P (π(x) = 0 (27)

where π(x) = 1 if ŷ(1)− ŷ(0) > 0 and π(x) = 0, otherwise.

For the IHDP dataset, we average over 1000 realizations of the outcomes with 63/27/10% train/validation/test split, as
suggested in [14]. For Twins and Jobs dataset, each dataset is divided 56/24/20% into training/validation/testing sets,
and we report the results average over 100 realizations.

5.2 Estimation of Average Treatment Effects

The estimation of treatment effects on average over a population is much more widely studied. It is useful in many
domains and typically a first step into understanding the impact of an intervention. In this section, we evaluate all
algorithms on all benchmark data sets for the average treatment effect. Below with give the exact formulation of the
metrics use and results.

Metrics. In the IHDP dataset, we use the empirical absolute error of average treatment effect ε̂ATE,

ε̂ATE =
∣∣ 1

N

N∑
i=1

τ(xi)−
1

N

N∑
i=1

τ̂(xi)
∣∣ (28)

In the Twins dataset, we use the approximate absolute error of average treatment effect ε̃ATE,

ε̃ATE =
∣∣ 1

N

N∑
i=1

(yi,1 − yi,0)− 1

N

N∑
i=1

τ̂(xi)
∣∣ (29)

In the Jobs dataset, we use the true average treatment effect on the treated (ATT),

ATT =
1

|Q1|
∑
xi∈Q1

yi,1 −
1

|Q0|
∑
xi∈Q0

yi,0 (30)

where Qj = Wj ∪ E, j ∈ 0, 1. The absolute error of ATT is given as,

ε̂ATT =
∣∣ATT − 1

|Q1|
∑
xi∈Q1

(f1(xi)− f0(xi))
∣∣ (31)

Results. Full performance results for the ATE problem are given in Table 2. Suggested by one of the reviewers, we add
an additional experiment for top 3 benchmarks on the LBIDD dataset [11] in the IBM causal inference benchmarking
framework [16], which enables us to run experiments on a much wider range of data generating processes. The results
are given in Table 3.

5.3 Additional figures

Similarly to Figure 1 in the main body of the paper, we illustrate in Figure 1 the T-SNE visualizations of the learned
embeddings for the treated potential outcomes Y (1) of the IHDP dataset optimized for different loss functions. In
Figure 2, we provide the corresponding T-SNE visualizations of the learned embeddings for the control group (in purple)
and treated group (in yellow) of the IHDP dataset.
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Dataset (Mean ± Std) IHDP (ε̂ATE) Twins (ε̃ATE) Jobs (ε̂ATT)

Dataset

Metrics
In-sample Out-sample In-sample Out-sample In-sample Out-sample

OLS/LR1 .73 ± .04 .94 ± .06 .0038 ± .0025 .0069 ± .0056 .01 ± .00 .08 ± .04

OLS/LR2 .14 ± .01 .31 ± .02 .0039 ± .0025 .0070 ± .0059 .01 ± .01 .08 ± .03

BLR .72 ± .04 .93 ± .05 .0057 ± .0036 .0334 ± .0092 .01 ± .01 .08 ± .03

K-NN .14 ± .01 .90 ± .05 .0028 ± .0021 .0051 ± .0039 .21 ± .01 .13 ± .05

BART .23 ± .01 .34 ± .02 .1206 ± .0236 .1265 ± .0234 .02 ± .00 .08 ± .03

R-FOREST .73 ± .05 .96 ± .06 .0049 ± .0034 .0080 ± .0051 .03 ± .01 .09 ± .04

C-FOREST .18 ± .01 .40 ± .03 .0286 ± .0035 .0335 ± .0083 .03 ± .01 .07 ± .03

BNN .37 ±.03 .42 ± .03 .0056 ± .0032 .0203 ± .0071 .04 ± .01 .09 ± .04

TARNET .26 ± .01 .28 ± .01 .0108 ± .0017 .0151 ± .0018 .05 ± .02 .11 ± .04

CARWASS .25 ± .01 .27 ± .01 .0112 ± .0016 .0284 ± .0032 .04 ± .01 .09 ± .03

CMGP .11 ± .10 .13 ± .12 .0124 ± .0051 .0143 ± .0116 .06± .06 .09 ± .07

DKLITE .08 ± .01 .10 ± .02 .0035 ± .0024 .0042 ± .0025 .03 ± .01 .08 ± .02

DKLITE-U .08 ± .01 .09 ± .02 .0034 ± .0020 .0043 ± .0021 .03 ± .01 .08 ± .01

Table 2: Performance of average treatment effect estimation on three real-world datasets

Metrics PEHE ATE

Mean ± Std In-sample Out-sample In-sample Out-sample

CARWASS 27.08 ± 2.49 26.92 ± 2.48 25.44 ± 2.45 25.39 ± 2.46

CMGP 27.21 ± 2.48 27.24 ± 2.49 25.28± 2.45 25.30 ± 2.44

DKLITE 25.41 ± 2.43 25.19 ± 2.44 23.28 ± 2.37 23.25 ± 2.38

Table 3: Performanceof PEHE and ATE on the LBIDD dataset

Representation optimized for 
Gaussian Likelihood

Representation optimized for 
Gaussian Likelihood and Counterfactual Variance

Representation optimized for 
Gaussian Likelihood and Wasserstein Distance

Figure 1: T-SNE visualizations of the learned embeddings for the treated potential outcomes Y (1).
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Representation optimized for
Gaussian Likelihood 

Representation optimized for
Gaussian Likelihood 

and Wasserstein Distance

Representation optimized for
Gaussian Likelihood 

and Counterfactual Variance 

Figure 2: T-SNE visualizations of the learned embeddings for the control group (in purple) and treated group (in yellow)
of the IHDP dataset.
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