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A Density Function of the Multi-Mode Distribution in Section 3

The negative log-density function of the multi-mode distribution in Section 3 is defined as:

U(✓) , e
3
4✓

2� 3
2

P10
i=1 ci sin( 1

4⇡i(✓+4)) ,

where c = (�0.47,�0.83,�0.71,�0.02, 0.24, 0.01, 0.27,�0.37, 0.87,�0.37) is a vector, ci is the i-th element of c.

B Gronwall Lemma

The Gronwall Lemma plays an important role in parts of our proofs, which is stated in Lemma 11.

Lemma 11 (Gronwall Lemma) Let I denotes an interval of the form [a,+1) for some a 2 R. If v(⌧), defined
on I, is differentiable in I and satisfies the following inequality:

v0(⌧)  �(⌧)v(⌧) ,

where �(⌧) is a real-value continuous function defined on I. Then v(⌧) can be bounded as:
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C Proof of Theorem 3

Proofs of Theorem 2 and 4 rely on techniques in the proofs for Section 4. As a result, we defer the proofs of
Theorem 2 and 4 to the later part.

To prove Theorem 3, we rely on the definition of generalized derivative in Definition 1.

Definition 1 (Generalized Derivative) Let g and � be locally integrable functions on an open set ⌦ ⇢ Rd,
that is, Lebesgue integrable on any closed bounded set F ⇢ !. Then � is the generalized derivative of g with respect
to ✓j on ⌦, written as � = @✓jg, if for any infinitely-differentiable function u with compact support in ⌦, we have
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where ✓ = (✓1,✓2, ...,✓d) on ⌦ ⇢ Rd.

Proof The proof relies on further expansions on the definition of generalized derivative on specific functions.
Specifically, let the function g in Definition 1 be in a form of g , Gf for the product of two functions G and f
(specified below). The generalized derivative of (Gf) with respect to ✓j , written as @✓j (Gf), satisfies

Z
@✓j (Gf) u(✓)d✓ = �

Z
Gf @✓ju(✓)d✓ (17)

for all differentiable function u(·).

In Theorem 3, we want to prove a particle representation of the following PDE:

@⌧⌫⌧ = F1 = r✓ · (⌫⌧F (✓) + (K ⇤ ⌫⌧ )⌫⌧ ) , �
dX

j

@✓j (Gf) ,

where we set f(✓) = ⌫⌧ (✓) and G(✓) , �F (✓)� (K ⇤ ⌫⌧ )(✓). Taking integration on both sides for any continuous
function u(✓), we have
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By applying (17) in (18), we have

Z
@⌧f u(✓)d✓ = �

dX

j

Z
@✓j (Gf) u(✓)d✓

=
dX

j

Z
Gf@✓ju(✓))d✓ .

Since f = ⌫⌧ (✓) and we can set u(✓) = ✓, we will derive
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In particle approximation, we have ⌫⌧ (✓) ⇡ 1
M

PM
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⌧ )
(✓). For each particle,according to the definition of

K ⇤ ⌫⌧ in Sec 2.3, (19) reduces to the following equation:
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which is the update equation in Theorem 3. This completes the proof.

D Proof of Theorem 5

Note that one challenge in our analysis compared with the analysis for diffusion-based methods, such as those for
SG-MCMC [Vollmer et al., 2016, Chen et al., 2015], is how to bound the gap between the original nonlinear PDE
(4) and the reduced SDE (8). Following the analysis of granular media equations such as [Malrieu, 2003, Cattiaux
et al., 2008, Durmus et al., 2018], we introduce a intermediate SDE in-between (6) and (8), defined as:

(
d✓̄⌧ = ���1F (✓̄⌧ )d⌧ � EY⇠⌫⌧K(✓̄⌧ � Y )F (Y )d⌧ +rK ⇤ ⌫⌧ (✓̄⌧ )d⌧ +

p
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L(✓̄⌧ ) = ⌫⌧d✓
(20)

where L(✓̄⌧ ) denotes the probability law of ✓̄⌧ , W̄⌧ 2 Rd is a d-dimensional Brownian motion independent of ✓̄⌧
and Y is a random variable independent of ✓̄⌧ , which is integrated out. In order to match ✓̄⌧ with the particles
{✓(i)

⌧ }Mi=1 in the SDE system (8), we duplicate (20) M times, each endowing an exact solution ✓̄(i)
⌧ indexed by i.

The distribution of each particles {✓̄(i)
⌧ }Mi=1 is denoted as ⌫⌧ . Note since (20) is introduced for the purpose of

proof convenience without any restrictions, we construct it in a way such that all the W̄(i)
⌧ are exactly the same,

but independent of each W(i)
⌧ , i.e.,
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(21)

where, similarly, Yi is a random variable independent of ✓̄(i)
⌧ , introduced for the convenience of the proof.

Furthermore, we set all the ✓̄(i)
0 exact the same but independent of each ✓(i)

0 . Consequently, all the ✓̄(i)
⌧ are also

exactly the same but independent of each other. Please note these settings do not affect our algorithm, as (21)
are only introduced for the purpose of proof. Now it is ready to prove Theorem 5.
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Proof [Proof of Theorem 5] First, from the definitions, we have
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Next, we bound these terms in the following. For the Aij(⌧) term, according to bullet i) in Assumption 3 for F ,
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For the Bij(⌧) term, applying the oddness of rK in Assumption 1, we have
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For the Cij(⌧) term, we have
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where (1) is obtained by applying the Cauchy-Schwarz inequality, and (2) by the fact that
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Similarly, since K  1, we have the following result for the Hij(⌧) term,
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The last inequality follows from the fact that
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For the Fij(⌧) and Gij(⌧) terms, we have:
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The above result is derived with Cauchy-Schwarz inequality and the independence between ✓(i)
⌧ � ✓̄(i)
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⌧ � ✓̄(j)

⌧ )

and ✓̄(j)
⌧ . The independency come from the following argument: According to our constructions of all the ✓̄(i)
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For the Ii,j(⌧) term, following the analysis in [Malrieu, 2003, Cattiaux et al., 2008, Durmus et al., 2018] and
applying the independency between W(i)

⌧ � W̄(i)
⌧ and ✓(i)

⌧ � ✓̄(i)
⌧ , we have

E
X

ij

Iij(⌧) = 0.

Denote �i(⌧) , E
���✓(i)

⌧ � ✓̄(i)
⌧

���
2
. Due to the exchangeability of the particles, �i(⌧) have the same value for all the

particles, denoted as �(⌧). According to (23) and the bounds derived above, we have
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where �1 = ��1mF � 5
2H✓LK � LF � 2LrK . After some algebra, the above inequality can be transformed to
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Note that ✓(i)
⌧ and ✓̄(i)

⌧ are initialized with the same initial distribution µ0 = ⌫0 but independent of each other.
From the proof of Theorems 16 and 18, we can have �(0)  4�0 for some constant �0. When we set �0 small
enough, we can have the following results according to the Gronwall Lemma.

p
�(⌧)  2(HrK +H✓)p

M(��1mF � 5
2H✓LK � LF � 2LrK)

Hence, there exist some positive constant (c1, c2) such that:
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(1)
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E
���✓(i)
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⌧

���
2 (3)
 c1p

M(��1 � c2)
, (24)

where (1) holds due to the relationship between W1 and W2 metric [Givens and Shortt, 1984], (2) due to the
definition of W2, and (3) due to the result from the previous proof.
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E Proof of Theorem 6

Proof [Proof of Theorem 6] First, note our goal is to bound W1(⌫⌧ , ⌫1)  c3 exp (�2�1⌧). According to the
relationship between W1 and W2 metric that W1  W2 [Givens and Shortt, 1984], once we bound W2(⌫⌧ , ⌫1) as
W2(⌫⌧ , ⌫1)  c3 exp (�2�1⌧), the bound for W1 will automatically hold.

In the following, we will bound W2. We first note the following cases based on equation (8):

• We set the initial distribution of each particle to be ⌫0, which means ⇢0 = L(✓(i)
0 ) = ⌫0. In this case, the M

evolved particles are denoted as {✓(i)
⌧,1}Mi=1. We denote the distribution of each ✓(i)

⌧,1 at ⌧ as ⇢⌧,1.

• We set the initial distribution of each particle to be ⌫1, which means ⇢0 = L(✓(i)
0 ) = ⌫1. In this case, the

M evolved particles are denoted as {✓(i)
⌧,2}Mi=1. We denote the distribution of each ✓(i)

⌧,2 at ⌧ as ⇢⌧,2.

To bound W2(⌫⌧ , ⌫1), we decompose it as:

W2(⌫⌧ , ⌫1)  W2(⌫⌧ , ⇢⌧,1) +W2(⇢⌧,1, ⇢⌧,2) +W2(⇢⌧,2, ⌫1) . (25)

Note that ⇢0,1 = ⌫0 and ⇢0,2 = ⌫1. According to (24), we have

W2(⌫⌧ , ⇢⌧,1) 
c1p

M(��1 � c2)

W2(⇢⌧,2, ⌫1)  c1p
M(��1 � c2)

It remains to bound the term W2(⇢⌧,1, ⇢⌧,2). It is worth mentioning that the reason of introducing {✓(i)
⌧,1}Mi=1

and {✓(i)
⌧,2}Mi=1 is to bound the term W2(⌫⌧ , ⌫1), which consequently is to bound W2(⇢⌧,1, ⇢⌧,2). For some special

settings of {✓(i)
⌧,1}Mi=1 and {✓(i)

⌧,2}Mi=1, it will allow us to bound W2(⇢⌧,1, ⇢⌧,2) easier. To this end, we set all the
{✓(i)

0,1}Mi=1 and the corresponding W(i)
⌧,1 to be exactly the same. Consequently, all the {✓(i)

⌧,1}Mi=1 will be identical.
In this setting, the bound proved above for W2(⌫⌧ , ⇢⌧,1) still holds since this is just a specific case for Theorem 5.
The same argument goes for {✓(i)

⌧,2}Mi=1. And we are left to prove the bound for W2(⇢⌧,1, ⇢⌧,2).

Since W2(⇢⌧,1, ⇢⌧,2)  E
✓���✓(i)

⌧,1 � ✓(i)
⌧,2

���
2
◆

, r(⌧), we will derive a bound for E
✓���✓(i)

⌧,1 � ✓(i)
⌧,2

���
2
◆

in the following:

d
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘
= ���1

⇣
F (✓(i)

⌧,1)� F (✓(i)
⌧,2)
⌘
d⌧

+
1

M

MX

j

h
rK(✓(i)

⌧,1 � ✓(j)
⌧,1)�rK(✓(i)

⌧,2 � ✓(j)
⌧,2)
i
d⌧

� 1

M

MX

j

⇣
F (✓(j)

⌧,1)K(✓(i)
⌧,1 � ✓(j)

⌧,1)� F (✓(j)
⌧,2)K(✓(i)

⌧,2 � ✓(j)
⌧,2)
⌘
d⌧

+ (
p
2��1dW(i)

⌧,1 �
p

2��1dW(i)
⌧,2)d⌧

As a result, we have

d

 
MX

i

���✓(i)
⌧,1 � ✓(i)

⌧,2

���
2
!

=
2

M

MX

i,j

(⇠1ij(⌧) + ⇠2ij(⌧) + ⇠3ij(⌧) + ⇠4ij(⌧) + ⇠5ij(⌧))d⌧



Jianyi Zhang1, Ruiyi Zhang1, Lawrence Carin1, Changyou Chen2k

where

⇠1ij(⌧) = ���1
⇣
F (✓(i)

⌧,1)� F (✓(i)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

⇠2ij(⌧) =
⇣
rK(✓(i)

⌧,1 � ✓(j)
⌧,1)�rK(✓(i)

⌧,2 � ✓(j)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

⇠3ij(⌧) = �
⇣
F (✓(j)

⌧,1)K(✓(i)
⌧,1 � ✓(j)

⌧,1)� F (✓(j)
⌧,2)K(✓(i)

⌧,1 � ✓(j)
⌧,1)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

⇠4ij(⌧) = �
⇣
F (✓(j)

⌧,2)K(✓(i)
⌧,1 � ✓(j)

⌧,1)� F (✓(j)
⌧,2)K(✓(i)

⌧,2 � ✓(j)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

⇠5ij(⌧) = (
p
2��1dW(i)

⌧,1 �
p

2��1dW(i)
⌧,2)) ·

⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

For the ⇠1ij(⌧) terms, according to Assumption 3 for F , we have

E
X

ij

⇠1ij(⌧) = �E
X

ij

��1
⇣
F (✓(i)

⌧,1)� F (✓(i)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

 ���1mFME
X

i

���✓(i)
⌧,1 � ✓(i)

⌧,2

���
2
.

For the ⇠2ij(⌧) term, applying the concave condition for K and the oddness of rK in Assumption 1, we have

E
X

ij

⇠2ij(⌧) = E
MX

ij

⇣
rK(✓(i)

⌧,1 � ✓(j)
⌧,1)�rK(✓(i)

⌧,2 � ✓(j)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

=
1

2

MX

ij

E
⇣
rK(✓(i)

⌧,1 � ✓(j)
⌧,1)�rK(✓(i)

⌧,2 � ✓(j)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2 � (✓(j)
⌧,1 � ✓(j)

⌧,2)
⌘

 1

2
LKE

MX

ij

���✓(i)
⌧,1 � ✓(i)

⌧,2 � (✓(j)
⌧,1 � ✓(j)

⌧,2)
���
2
 2LKME

X

i

���✓(i)
⌧,1 � ✓(i)

⌧,2

���
2
.

For the ⇠3ij(⌧) terms, applying the LF -Lipschitz property for F and using K  1, we have

E
X

ij

⇠3ij(⌧)

=E
X

ij

�
⇣
F (✓(j)

⌧,1)K(✓(i)
⌧,1 � ✓(j)

⌧,1)� F (✓(j)
⌧,2)K(✓(i)

⌧,1 � ✓(j)
⌧,1)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

E
X

ij

LF

���✓(j)
⌧,1 � ✓(j)

⌧,2

���
���✓(i)

⌧,1 � ✓(i)
⌧,2

���

LFME
X

i

���✓(i)
⌧,1 � ✓(i)

⌧,2

���
2
.

For the ⇠4ij(⌧) terms, recall that all the ✓(i)
⌧,1 are identical (and all the ✓(i)

⌧,2 are identical), we have

E
X

ij

⇠4ij(⌧)

= �E
X

ij

⇣
F (✓(j)

⌧,2)K(✓(i)
⌧,1 � ✓(j)

⌧,1)� F (✓(j)
⌧,2)K(✓(i)

⌧,2 � ✓(j)
⌧,2)
⌘
·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘
= 0 .

Similar to the proof of the Theorem 5, we have

E
X

i,j

⇠5ij(⌧) = E
X

i,j

(
p
2��1dW(i)

⌧,1 �
p
2��1dW(i)

⌧,2)) ·
⇣
✓(i)
⌧,1 � ✓(i)

⌧,2

⌘

= 0
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Combining these bounds, we have

r0(⌧)  �2(��1mF � LF � 2LK)r(⌧) .

According to the Gronwall lemma, we have

r(⌧)  r(0)e�2�1⌧ ,

where �1 = ��1mF � LF � 2LK .

Consequently, there exists some positive constant c3 such that

W2(⇢⌧,1, ⇢⌧,2)  c3e
�2�1⌧

Combing all bounds for (25), we have

W2(⌫⌧ , ⌫1) c3e
�2�1⌧ +

c1p
M(��1 � c2)

+
c1p

M(��1 � c2)

We can further tighten the above bound by noting that ⌫⌧ is the solution of (6), which has nothing to do with
the number of particles M . As a result, we can set M ! 1, resulting in

W2(⌫⌧ , ⌫1)  c3e
�2�1⌧ ,

which completes the proof.

F Proof of Theorem 7

To bound the W1(µT , ⇢PT�1
k=0 hk

) term, note the original SDE driving the particles {✓(i)
⌧ } in (8) corresponds to

is a nonlinear PDE, which is hard to deal with. Fortunately, (8) can be turned into a diffusion-based SDE by
concatenating the particles at each time into a single vector representation, i.e., by defining the new parameter at
time ⌧ as ⇥⌧ , [✓(1)

⌧ , · · · ,✓(M)
⌧ ] 2 RMd. Consequently, ⇥⌧ is driven by the following SDE:

d⇥⌧ = �F⇥(⇥⌧ )d⌧ +
p
2��1dW(Md)

⌧ , (26)

where

F⇥(⇥⌧ ) , [��1F (✓(1)
⌧ )� 1

M

MX

j=1

rK(✓(1)
⌧ � ✓(j)

⌧ ) +
1

M

MX

j=1

K(✓(1)
⌧ � ✓(j)

⌧ )F (✓(j)
⌧ ), · · · ,

��1F (✓(M)
⌧ )� 1

M

MX

j=1

rK(✓(M)
⌧ � ✓(j)

⌧ ) +
1

M

MX

j=1

K(✓(M)
⌧ � ✓(j)

⌧ )F (✓(j)
⌧ )]

is a vector function RMd ! RMd, and W⌧ (Md) is Brownian motion of dimension Md.

Now we define F(q)⇥(⇥⌧ ) , [��1Fq(✓
(1)
⌧ ) � 1

MN

PM
j=1 rK(✓(1)

⌧ � ✓(j)
⌧ ) + 1

M

PM
j=1 K(✓(1)

⌧ �
✓(j)
⌧ )Fq(✓

(j)
⌧ ), · · · ,��1Fq(✓

(M)
⌧ ) � 1

MN

PM
j=1 rK(✓(M)

⌧ � ✓(j)
⌧ ) + 1

M

PM
j=1 K(✓(M)

⌧ � ✓(j)
⌧ )Fq(✓

(j)
⌧ )]. We

can verify that F⇥(⇥⌧ ) =
PN

q=1 F(q)⇥(⇥⌧ ).

Define ⇥k , [✓(1)k , · · · , ✓(M)
k ] and G⇥

Ik
, N

Bk

P
q2Ik

F(q)⇥(⇥k). It is seen that the following result holds:

⇥k+1 = ⇥k �G⇥
Ik
hk +

p
2��1hk⌅k , (27)
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where ⌅k ⇠ N (0, IMd⇥Md). As a result, we have that ⇥k of (27) is accutually the numerical solution of the SDE
(26) via stochastic gradients.

Denote the distribution of ⇥k as µ⇥
k , and the distribution of ⇥⌧ as ⇢⇥⌧ . Before proceeding to our theoretical

results, we first present the following Lemmas, which is very important in our proof.

Lemma 12 W1(µk, ⇢⌧ )  1p
M
W1(µ⇥

k , ⇢
⇥
⌧ )

Proof [Proof of Lemma 12] Let us recall the definition of W1 metric and its Kantorovich-Rubinstein duality
[Villani, 2008], i.e. W1(µ, ⌫) , supkgklip1 |E✓⇠µ[g(✓)]� E✓⇠⌫ [g(✓)]|. We can prove the fact that if g(✓) : Rd ! R
is a Lg-Lipschitz function in Rd, the g⇥(⇥), defined as g⇥(⇥) = 1p

M

PM
i g(✓(i)), is a Lg-Lipschitz function in

RMd, where ⇥ , [✓(1), · · · ,✓(M)]. The proof is as follows:

kg⇥(⇥1)� g⇥(⇥2)k  1p
M

MX

i=1

kg(✓(i)
1 )� g(✓(i)

2 )k

 Lgp
M

MX

i=1

k✓(i)
1 � ✓(i)

2 k

 Lgp
M

p
M

vuut
MX

i=1

k✓(i)
1 � ✓(i)

2 k2 = Lgk⇥1 �⇥2k

As a result, we have:

1

M

MX

i=1

���E✓(i)
k ⇠µk

[g(✓(i)k )]� E
✓(i)
⌧ ⇠⇢⌧

[g(✓(i)
⌧ )]

���

(1)
=

1p
M

�����
1p
M

MX

i=1

(E
✓(i)
k ⇠µk

[g(✓(i)k )]� E
✓(i)
⌧ ⇠⇢⌧

[g(✓(i)
⌧ )])

�����

=
1p
M

|E⇥k⇠µk [g⇥(⇥k)]� E⇥⌧⇠⇢⌧ [g⇥(⇥⌧ )]| ,

where (1) holds because E
✓(1)
k ⇠µk

[g(✓(1)k )] = ··· = E
✓(M)
k ⇠µk

[g(✓(M)
k )] for all the particles ✓(i)k , and E

✓(1)
⌧ ⇠⇢⌧

[g(✓(1)
⌧ )] =

· · · = E
✓(M)
⌧ ⇠⇢⌧

[g(✓(M)
⌧ )] for all the particles ✓(i)

⌧ . According to the definition of W1 metric, we derive that

W1(µk, ⇢⌧ )

= sup
kgklip1

1

M

MX

i=1

���E✓(i)
k ⇠µk

[g(✓(i)k )]� E
✓(i)
⌧ ⇠⇢⌧

[g(✓(i)
⌧ )]

���

=
1p
M

sup
kgklip1

|E⇥k⇠µk [g⇥(⇥k)]� E⇥⌧⇠⇢⌧ [g⇥(⇥⌧ )]|

=
1p
M

sup
kg⇥klip1

|E⇥k⇠µk [g⇥(⇥k)]� E⇥⌧⇠⇢⌧ [g⇥(⇥⌧ )]|

 1p
M

W1(µ
⇥
k , ⇢

⇥
⌧ ) ,

which completes the proof.

Lemma 13 Assuming F (0) = 0. If F in (9) is Lipschitz with constant LF , and satisfies the dissipative property
that hF (✓),✓i � mF k✓k2 � b. Then F⇥ in (26) satisfies hF⇥(⇥),⇥i � (��1mF �m0) k⇥k2 � ��1Mb, where l0

and m0 are some positive constants. Besides we have EkF⇥(⇥1)� F⇥(⇥2)k2  (
p
2��1LF + l0)Ek⇥1 �⇥2k2 if

the same settings as in the proof of Theorem 6 is adopted.
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Proof [Proof of Lemma 13]

We will bound hF⇥(⇥),⇥i by noting that:

hF⇥(⇥),⇥i

=
MX

i

0

@��1F (✓(i))✓(i) +
1

M

MX

j

K(✓(i) � ✓(j))F (✓(j))✓(i) � 1

M

MX

j

rK(✓(i) � ✓(j))✓(i)

1

A

Notice that:

MX

i

��1F (✓(i))✓(i) � ��1mF

MX

i

k✓(i)k2 � ��1Mb

= ��1mF k⇥k2 � ��1Mb

Furthermore, since it is assumed that F (0) = 0, we have:

MX

i

1

M

MX

j

K(✓(i) � ✓(j))F (✓(j))✓(i)

�� 1

M

MX

i

MX

j

LF k✓(i)kk✓(j)k

� � LF

MX

i=1

k✓(i)k2 = �LF k⇥k2

In addition, since rK is an odd function, we have:

MX

i

1

M

MX

j

rK(✓(i) � ✓(j))✓(i)

��
MX

i

1

M

MX

j

2

⌘2
k✓(i) � ✓(j)kk✓(i)k

� � 4

⌘2

MX

i

k✓(i)k2 = � 4

⌘2
k⇥k2

As a result, we arrive at the following result:

hF⇥(⇥),⇥i � (��1m� LF � 4

⌘2
)k⇥k2 � ��1Mb .

Furthermore, for the other conclusion, we have:

EkF⇥(⇥1)� F⇥(⇥2)k2 = E
MX

i

��!1
i + !2

i + !3
i + !4

i

��2

 E
MX

i

�
k!1

i k+ k!2
i k+ k!3

i k+ k!4
i k
�2

 4E
MX

i

�
k!1

i k2 + k!2
i k2 + k!3

i k2 + k!4
i k2
�
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where
MX

i

Ek!1
i k2 =

MX

i

Ek��1F (✓(i)
1 )� ��1F (✓(i)

2 )k2 
MX

i

��2L2
FEk✓

(i)
1 � ✓(i)

2 k2

MX

i

Ek!2
i k2 =

1

M2
Ek

MX

j

K(✓(i)
1 � ✓(j)

1 )F (✓(j)
1 )�

MX

j

K(✓(i)
2 � ✓(j)

2 )F (✓(j)
1 )k2

=
1

M

MX

j

EkF (✓(j)
1 )(K(✓(i)

1 � ✓(j)
1 )�K(✓(i)

2 � ✓(j)
2 ))k2 = 0

MX

i

Ek!3
i k2 =

MX

i

Ek 1

M
(
MX

j

K(✓(i)
2 � ✓(j)

2 )F (✓(j)
1 )�

MX

j

K(✓(i)
2 � ✓(j)

2 )F (✓(j)
2 ))k2


MX

i

L2
FEk✓

(i)
1 � ✓(i)

2 k2

MX

i

Ek!4
i k2 =

MX

i

Ek � 1

M
(
MX

j

rK(✓(i)
1 � ✓(j)

1 )�
MX

j

rK(✓(i)
2 � ✓(j)

2 ))k2


MX

i

EL2
rK

M
(
MX

j

k✓(i)
1 � ✓(i)

2 � (✓(j)
1 � ✓(j)

2 )k2)


MX

i

EL2
rK(2k✓(i)

1 � ✓(i)
2 k2 + 2

M

MX

j

k✓(j)
1 � ✓(j)

2 k2)

 4L2
rK

MX

i

Ek✓(i)
1 � ✓(i)

2 k2

Hence, we have

EkF⇥(⇥1)� F⇥(⇥2)k2  (��2L2
F + L2

F + 4L2
rK)Ek⇥1 �⇥2k2

Now it is ready to prove Theorem 7. It is worth noting that with the assumption of F (0) = 0, the first bullet in
Assumption 1 recovers the dissipative assumption as hF (✓),✓i � mF k✓k2.

Proof We use Lemma C.5 in [Xu et al., 2018] to verify that F⇥ satisfies the assumptions in [Raginsky et al.,
2017] by setting � = a0

B with a0 a positive constant and B the size of the random set I.

Let µ⇥
k := L(⇥k) and ⇢⇥⌧ := L(⇥⌧ ). We make some modifications to the proof of Lemma 3.6 in [Raginsky et al.,

2017] and derive the following results. The relative entropy DKL(µ⇥
k k⇢⇥kh) satisfies:

DKL(µ
⇥
k k⇢⇥kh)  (A0�

a0
B

+A1h)kh

with

A0 =

✓
2(��2L2

F + L2
F + 4L2

rK)

✓
a2 + 2(1 _ 1

��1mF �m0 ) · (2a
2
1 +

Md

�
)

◆
+ a21

◆

A1 =6(��2L2
F + L2

F + 4L2
rK)(�A0 +Md)

and a1, a2 are some positive constants. When � is small enough such that the subtraction terms in the above
bounds are positive, there exist some positive constants a3, a4 such that

A0  a3
Md

�3
, and A1  a4

Md

�4
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Similar to the proof of Lemma 13, it is easy to verify that there exists some positive constant a5 such that
hF⇥(⇥1)� F⇥(⇥2),⇥1 �⇥2i � (��1mF � a5)k⇥1 �⇥2k2. Note that when � is small enough, (26) satisfies the
conditions of Proposition 4.2 in [Cattiaux et al., 2008]. Hence, there exits some positive constant C such that
W1(µ⇥

k , ⇢
⇥
kh)  C

q
DKL(µ⇥

k k⇢⇥kh) .

According to Corollary 4 and Lemma 8 in [Bolley and Villani, 2005], we can derive an explicit expression for C :

C  a6�
�1Md ,

when � is a small enough constant and a6 is some positive constant.

Applying Lemma 12, we have

W1(µk, ⇢kh) 
1p
M

W1(µ
⇥
k , ⇢

⇥
kh)

a6Md
3
2 ��3(a3a

0�2B�1 + a4h)
1
2 k

1
2h

1
2

Setting k = T completes the poof.

G Proof of Theorem 8

Proof Our proof is based on the techniques in the proof of Lemma 3.6 in [Raginsky et al., 2017]. Firstly,
adopting the same notation as in Section F, we have the following update:

⇥k+1 = ⇥k � ��1G⇥
Ik
hk +

p
2��1hk⌅k , (28)

where ⌅k ⇠ N (0, IMd⇥Md) and hk = h0
k+1 . We note the unbiasness of G⇥

Ik
, i.e., E(G⇥

Ik
) = F⇥(⇥k), 8⇥ 2 RMd,

due to the way we choose the minibatch Ik. We need to define q(⌧), which will be used in the following proof:

q(⌧) = {k 2 R|
k�1X

i=0

hi  ⌧ <
kX

i=0

hi} .

Furthermore, define
P�1

i=0 hi , 0 and
P0

i=0 hi , h0 for the convenience of statement in the following.

Now we focus on the following continuous-time interpolation of ⇥k:

⇥(⌧) =⇥0 �
Z ⌧

0
G̃⇥

I(s)

0

@⇥(

q(s)�1X

i=0

hi)

1

A ds+

r
2

�

Z ⌧

0
W(Md)

s ,

where I(s) ⌘ Ik for ⌧ 2
hPk�1

i=0 hi,
Pk

i=0 hi

⌘
, G̃⇥

I(s)(⇥) , N
B(s)

P
q2I(s) F(q)⇥(⇥) and B(s) is the size of the

minibatch I(s). It is easily seen that for each k, ⇥(
Pk�1

i=0 hi) and ⇥k have the same probability law ⇢⇥k . Besides
we need some similar settings in the proof of Theorem 6 for W(Md)

s . Since ⇥(⌧) is not a Markov process, we
define the following Itô process which has the same one-time marginals as ⇥(⌧)

⇤(⌧) = ⇥0 �
Z ⌧

0
Gs (⇤(s)) ds+

r
2

�

Z ⌧

0
W(Md)

s

where G⌧ (x) := E

2

4G̃⇥
I(⌧)

0

@⇥(

q(⌧)�1X

i=0

hi)

1

A |⇥(⌧) = x

3

5 .
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Let the probability laws P⌧
⇤ := L (⇤(s) : 0  s  ⌧) and P⌧

⇥ := L (⇥(s) : 0  s  ⌧). According to the proof of
lemma 3.6 in [Raginsky et al., 2017], we can derive a similar result for the relative entropy of P⌧

⇤ and P⌧
⇥:

DKL(P
⌧
⇤ kP⌧

⇥) = �
Z

dP⌧
⇤ log

dP⌧
⇤

dP⌧
⇥

=
�

4

Z ⌧

0
EkF⇥(⇤(s))�Gs (⇤(s)) k2ds

=
�

4

Z ⌧

0
EkF⇥(⇥(s))�Gs (⇥(s)) k2ds ,

where the last line follows because L(⇥(s)) = L(⇤(s)), 8s.

In the following proof, we let ⌧ =
Pk�1

i=0 hi for some k 2 R. Now we can use the martingale property (conditional
independence) of Itô integral to derive:

DKL(P
Pk�1

i=0 hi

⇤ kP
Pk�1

i=0 hi

⇥ )

=
�

4

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

EkF⇥(⇥(s))�Gs (⇥(s)) k2ds

 �

2

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

EkF⇥(⇥(s))� F⇥(⇥(

q(s)�1X

i=0

hi))k2ds

+
�

2

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

E

������
F⇥(⇥(

q(s)�1X

i=0

hi))� G̃⇥
I(s)

0

@⇥(

q(s)�1X

i=0

hi)

1

A

������

2

ds


�L2

F⇥

2

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

Ek⇥(s)�⇥(

q(s)�1X

i=0

hi)k2ds (29)

+
�

2

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

E

������
F⇥(⇥(

q(s)�1X

i=0

hi))� G̃⇥
I(s)

0

@⇥(

q(s)�1X

i=0

hi)

1

A

������

2

ds , (30)

where L2
F⇥

, ��2L2
F + L2

F + 4L2
rK .

For the first part of (29), consider some s 2 [
Pj�1

i=0 hi,
Pj

i=0 hi). From the definitions, the following equation
holds:

⇥(s)�⇥(
j�1X

i=0

hi)

=� (s�
j�1X

i=0

hi)G
⇥
Ij

+
p
2/�(W(Md)

s �W(Md)
Pj�1

i=0 hi
)

=� (s�
j�1X

i=0

hi)G
⇥
Ij

+ (s�
j�1X

i=0

hi)(F⇥(⇥j)�G⇥
Ij
) +

p
2/�(W(Md)

s �W(Md)
Pj�1

i=0 hi
)

Applying results from Lemma 3.1 and 3.2 in [Raginsky et al., 2017], and Lemma C.5 in [Xu et al., 2018], we have:

Ek⇥(s)�⇥(
j�1X

i=0

hi)k2

3
h0

2

(j + 1)2
EkG⇥

Ij
k2 + 3

h0
2

(j + 1)2
EkF⇥(⇥j)�G⇥

Ij
k2 + 6h0Md

�(j + 1)

12
h0

2

(j + 1)2
max

0jk�1
(L2

F⇥
Ek⇥jk2 + b1) +

6h0Md

�(j + 1)
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where b1 is some positive constant.

Consequently, the first part of (29) can be bounded as:

�L2
F⇥

2

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

Ek⇥(s)�⇥(

q(s)�1X

i=0

hi)k2ds


�L2

F⇥

2

k�1X

j=0


12

h0
3

(j + 1)3
max

0jK�1
(L2

F⇥
Ek⇥jk2 + b1) +

6h0
2Md

�(j + 1)2

�

⇡2�L2
F⇥

h0
3 max
0jK�1

(L2
F⇥

Ek⇥jk2 + b1) +
⇡2L2

F⇥
h0

2Md

2
,

where the last inequality follows from the fact that

k�1X

j=0

1

(j + 1)3


k�1X

j=0

1

(j + 1)2


1X

j=0

1

(j + 1)2
=
⇡2

6
.

Now we bound the second part (30). According to Lemma C.5 in [Xu et al., 2018], we have:

�

2

k�1X

j=0

Z Pj
i=0 hi

Pj�1
i=0 hi

E

������
F⇥(⇥(

q(s)�1X

i=0

hi))� G̃⇥
I(s)

0

@⇥(

q(s)�1X

i=0

hi)

1

A

������

2

ds

=
k�1X

j=0

�h0

2(j + 1)
EkF⇥(⇥j)�G⇥

Ij
k2

�h0 max
0jk�1

(L2
F⇥

Ek⇥jk2 + b1) ·

0

@ 4

B0
+

k�1X

j=1

4

(j + 1)(B0 + log
100
99 (j + 1))

1

A

�h0 max
0jk�1

(L2
F⇥

Ek⇥jk2 + b1) ·

0

@ 4

B0
+

k�1X

j=1

4

(j + 1) log
100
99 (j + 1)

1

A

(b2 +
4

B0
)�h0 max

0jk�1
(L2

F⇥
Ek⇥jk2 + b1) ,

where the last inequality follows from the fact that when r > 1,

k�1X

j=1

4

(j + 1) logr(j + 1)


1X

j=1

4

(j + 1) logr(j + 1)
 4 log1�r 2

r � 1
.

Denote µ⇥
k := L(⇥k) and ⇢⇥⌧ := L(⇥⌧ ). Due to the data-processing inequality for the relative entropy, we have

DKL(µ
⇥
k k⇢⇥Pk�1

i=0 hi
)  DKL(P

Pk�1
i=0 hi

⇤ kP
Pk�1

i=0 hi

⇥ )

 ⇡2�L2
F⇥

h0
3 max
0jk�1

(L2
F⇥

Ek⇥jk2 + b1) +
⇡2L2

F⇥
h0

2Md

2
+ (b2 +

4
B0

)�h0 max
0jk�1

(L2
F⇥

Ek⇥̃jk2 + b1)

 (⇡2�L2
F⇥

h0
3 + b2�h0 +

4
B0

�h0) max
0jk�1

(L2
F⇥

Ek⇥jk2 + b1) +
⇡2L2

F⇥
h0

2Md

2
.

Theorem 14 has provided a uniform bound to max0jk�1(L2
F⇥

Ek⇥jk2 + b1). Hence it can be concluded that

DKL(P
Pk�1

i=0 hi

⇤ kP
Pk�1

i=0 hi

⇥ ) would not increase w.r.t. k. This is a nice property that the fixed-step-size SPOS does
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not endow. Since L2
F⇥

, ��2L2
F +L2

F +4L2
rK , it is easy to verify that when � is small enough, there exists some

positive constants b3, b4, b5 and b6 such that:

DKL(µ
⇥
k k⇢⇥Pk�1

i=0 hi
)

(⇡2�L2
F⇥

h0
3 + b2�h0 +

4�h0

B0
)⇥ max

0jK�1
(L2

F⇥
Ek⇥̃jk2 + b1) +

⇡2L2
F⇥

h0
2Md

2

(b3h
3
0 +

b4�3h0

B0
+ b5h

2
0�

2)
Md

�4
.

Similar to the proof of Theorem 7, we can bound the W1(µ⇥
k k⇢⇥Pk�1

i=0 hi
) term with Corollary 4, Lemma 8 in [Bolley

and Villani, 2005] and Proposition 4.2 in [Cattiaux et al., 2008]. Specifically, when � is small enough, there exist
some positive constant a6 such that:

W1(µ
⇥
k k⇢⇥Pk�1

i=0 hi
)  a6(

Md

�
)
q
DKL(µ⇥

k k⇢⇥Pk�1
i=0 hi

)

a6�
�3M

3
2 d

3
2 (b3h

3
0 +

b4�3h0

B0
+ b5h

2
0�

2)
1
2 .

According to Lemma 12, we have

W1(µk, ⇢kh) 
1p
M

W1(µ
⇥
k k⇢⇥Pk�1

i=0 hi
)

=a6�
�3Md

3
2 (b3h

3
0 +

b4�3h0

B0
+ b5h

2
0�

2)
1
2

Setting k = T finishes the proof.

H Proof of Theorems 2 and 4

Proof [Proof for Theorem 2] The proof is by direct calculation:

d
⇣
✓(i)
⌧ � ✓(j)

⌧

⌘
=

1

M

MX

q

h
rK(✓(i)

⌧ � ✓(q)
⌧ )�rK(✓(j)

⌧ � ✓(q)
⌧ )
i
d⌧

� 1

M

MX

q

⇣
F (✓(q)

⌧ )K(✓(i)
⌧ � ✓(q)

⌧ )� F (✓(q)
⌧ )K(✓(j)

⌧ � ✓(q)
⌧ ))

⌘
d⌧

)d

0

@E
MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2

1

A =

E
MX

ij

2

M

MX

q

h
rK(✓(i)

⌧ � ✓(q)
⌧ )�rK(✓(j)

⌧ � ✓(q)
⌧ )
i
⇥
⇣
✓(i)
⌧ � ✓(j)

⌧

⌘
d⌧

� E
MX

ij

2

M

MX

q

⇣
F (✓(q)

⌧ )K(✓(i)
⌧ � ✓(q)

⌧ )� F (✓(q)
⌧ )K(✓(j)

⌧ � ✓(q)
⌧ ))

⌘⇣
✓(i)
⌧ � ✓(j)

⌧

⌘
d⌧

 �2mKE
MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
d⌧ + 2HFLKE

MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
d⌧ ,
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where HF is the maximum value of kF (✓)k on the bounded space. Denote z(⌧) = E
PM

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
. We have

z(⌧)0  �(2mK � 2HFLK)z(⌧) (31)

Applying Gronwall Lemma on (31) finishes the proof.

Proof [Proof of Theorem 4]

For the SPOS, we have

d
⇣
✓(i)
⌧ � ✓(j)

⌧

⌘
= ���1

⇣
F (✓(i)

⌧ )� F (✓(j)
⌧ )
⌘
d⌧

+
1

M

MX

q

h
rK(✓(i)

⌧ � ✓(q)
⌧ )�rK(✓(j)

⌧ � ✓(q)
⌧ )
i
d⌧

� 1

M

MX

q

⇣
F (✓(q)

⌧ )K(✓(i)
⌧ � ✓(q)

⌧ )� F (✓(q)
⌧ )K(✓(j)

⌧ � ✓(q)
⌧ ))

⌘
d⌧

+

r
2

�
(dW(i)

⌧ � dW(j)
⌧ )

Hence we have

) d

0

@E
MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2

1

A (32)

=� E2
MX

ij

��1
⇣
F (✓(i)

⌧ )� F (✓(j)
⌧ )
⌘⇣

✓(i)
⌧ � ✓(j)

⌧

⌘
d⌧

+ E
MX

ij

2

M

MX

q

h
rK(✓(i)

⌧ � ✓(q)
⌧ )�rK(✓(j)

⌧ � ✓(q)
⌧ )
i ⇣

✓(i)
⌧ � ✓(j)

⌧

⌘
d⌧

� E
MX

ij

2

M

MX

q

⇣
F (✓(q)

⌧ )K(✓(i)
⌧ � ✓(q)

⌧ )� F (✓(q)
⌧ )K(✓(j)

⌧ � ✓(q)
⌧ ))

⌘⇣
✓(i)
⌧ � ✓(j)

⌧

⌘
d⌧

+ E2
MX

ij

r
2

�
(dW(i)

⌧ � dW(j)
⌧ )

⇣
✓(i)
⌧ � ✓(j)

⌧

⌘

 �2��1mFE
MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
d⌧

� 2mKE
MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
d⌧ + 2HFLKE

MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
d⌧

+ 2

r
2

�

0

@E
MX

ij

(dW(i)
⌧ � dW(j)

⌧ )2

1

A
1/20

@E
MX

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2

1

A
1/2

.

Denote z(⌧) = E
PM

ij

���✓(i)
⌧ � ✓(j)

⌧

���
2
. We have

z(⌧)0  �(2��1mF + 2mK � 2HFLK)z(⌧) + 4M

s
d

�
z(⌧) (33)

Applying Gronwall Lemma on (33) finished the proof.

Based on the bound, we can see that the particles in SPOS will not converge to one point, overcoming the pitfall
of SVGD.
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I The uniform bounds on SPOS

Following the formulations in Section F, we will derive the following theorem about the uniform bound on each
particle in SPOS.

Theorem 14 For the ⇥k in (27), we have

Ek⇥kk2  M�0 + (1 _ 1

m0 )
2Md

�

First we need to prove the following lemma.

Lemma 15 For the F⇥ in the (26)and ⇥k in the (27), we have the following result

kF⇥(⇥k)k2  (3��2L2
F + 3L2

F + 48/⌘4)k⇥kk2 (34)

Proof [Proof of Lemma 15]

kF⇥(⇥k)k2 =
MX

i

��!1
i + !2

i + !3
i

��2


MX

i

�
k!1

i k+ k!2
i k+ k!3

i k
�2  3

MX

i

�
k!1

i k2 + k!2
i k2 + k!3

i k2
�

where

k!1
i k = k��1F (✓(i)

k )k  ��1LF k✓(i)
k k

k!2
i k = k 1

M

MX

j

K(✓(i)
k � ✓(j)

k )F (✓(j)
k )k

 LF
1

M

MX

j

k✓(j)
k k

k!3
i k = k � 1

M

MX

j

rK(✓(i)
k � ✓(j)

k )k

 2/⌘2

M

MX

j

k✓(i)
k � ✓(j)

k k

 2

⌘2
(k✓(i)

k k+ 1

M

MX

j

k✓(j)
k k)

Substituting the above bounds into F⇥(⇥k), it is easy to verify that

kF⇥(⇥k)k2 3
MX

i

0

@��2L2
F k✓

(i)
k k2 + L2

F

M

MX

j

k✓(j)
k k2 + 2(2/⌘2)2k✓(i)

k k2 + 2(2/⌘2)2

M

MX

j

k✓(j)
k k2

1

A

 (3��2L2
F + 3L2

F + 48/⌘4)k⇥kk2

With the Lemma 13 and 15, we can now derive the the uniform bound on each particle in SPOS. Our proof is
based on the proof of Lemma 3.2 in [Raginsky et al., 2017]
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Proof [Proof of Theorem 14] From (27), it follows that

Ek⇥k+1k2 =Ek⇥k �G⇥
Ik
hkk2 +

s
8hk

�
Eh⇥k �G⇥

Ik
hk,⌅ki+

2hk

�
Ek⌅kk2

=Ek⇥k �G⇥
Ik
hkk2 +

2hkMd

�

where the second step uses independence of ⇥k �G⇥
Ik
hk and ⌅k,the unbiasedness property that E[G⇥

Ik
] = F⇥(⇥k)

and E[⌅k] = 0

Ek⇥k �G⇥
Ik
hkk2 = Ek⇥k � F⇥(⇥k)hkk2 + 2hkEh⇥k � F⇥(⇥k)hk, F⇥(⇥k)�G⇥

Ik
i+ h2

kEkF⇥(⇥k)�G⇥
Ik
k2

= Ek⇥k � F⇥(⇥k)hkk2 + h2
kEkF⇥(⇥k)�G⇥

Ik
k2 (35)

The first term in (35) can estimated as

Ek⇥k � F⇥(⇥k)hkk2 = Ek⇥kk2 � 2hkEh⇥k, F⇥(⇥k)i+ h2
kEkF⇥(⇥k)k2

 Ek⇥kk2 + 2hk(�(��1m� LF � 4

⌘2
)Ek⇥kk2) + h2

k(3�
�2L2

F + 3L2
F + 48/⌘4)Ek⇥kk2

 (1� 2hkm
0
F + h2

kL
0)Ek⇥kk2

where m0 , ��1mF � LF � 4
⌘2 and L0 , 3��2L2

F + 3L2
F + 48/⌘4.

Following the Lemma C.5 from [Xu et al., 2018] and some modifications (the settings are a bit different,but the
results are the same), we could estimate the the second term in (35) as

EkF⇥(⇥k)�G⇥
Ik
k2  2(N �B)

B(N � 1)
L0Ek⇥kk2  2L0Ek⇥kk2 (36)

Now we can derive that

Ek⇥k+1k2  (1� 2hkm
0 + 3h2

kL
0)Ek⇥kk2 +

2hkMd

�

Fix some 0 < h0  1 ^ m0

3L0 , we will show that 8k

Ek⇥kk2  Ek⇥0k2 + (1 _ 1

m0 )
2Md

�
= M�0 + (1 _ 1

m0 )
2Md

�
(37)

First, it is easy to see that (1� 2hkm0 + 3h2
kL

0) increases with the decrease of hk. Suppose k? is the last k that
satisfies (1� 2hkm0 + 3h2

kL
0)  0, and 8k  k?, Ek⇥kk2 satisfies (37).

Then we will see that if Ek⇥k�1k2  S(k > k?) and S > 2Md
� , then Ek⇥kk2  S.

Ek⇥kk2  (1� 2hkm
0 + 3h2

kL
0)S +

2hkMd

�
 S � S(2hkm

0 � 3h2
kL

0) +
2Md

�
< S

Since M�0 + (1 _ 1
m0 )

2Md
� > 2Md

� , it is easy to verify that (37) holds.

We next prove the following theorem.

Theorem 16 For the ⇥⌧ in (26), we have

Ek⇥⌧k2  M�0 +
Md

m0�
(38)
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Proof Let Y(⌧) , k⇥⌧k2. The Itô lemma gives

dY(⌧) = �2h⇥⌧ , F⇥(⇥⌧ id⌧ +
2Md

�
d⌧ +

r
8

�
⇥?

⌧dW⌧ ,

where ⇥?
⌧dW⌧ ,PMd

i=1 ⇥i,⌧dWi,⌧ and the ⇥i,⌧ , dWi,⌧ are the i-th components of ⇥⌧ and W⌧ . Now this can be
rewritten as

2m0e2m
0⌧Y(⌧)d⌧ + e2m

0⌧dY(⌧) =

= �2e2m
0⌧ h⇥⌧ , F⇥(⇥⌧ id⌧ + 2m0e2m

0⌧Y(⌧)d⌧ +
2Md

�
e2m

0⌧d⌧ +

r
8

�
e2m

0⌧⇥?
⌧dW⌧ (39)

Since 2m0e2m
0⌧Y(⌧)d⌧ + e2m

0⌧dY(⌧) is the total Itô derivative of e2m
0⌧Y(⌧), we arrive at

d
⇣
e2m

0⌧Y(⌧)
⌘
= �2e2m

0⌧ h⇥⌧ , F⇥(⇥⌧ id⌧ + 2m0e2m
0⌧Y(⌧)d⌧ +

2Md

�
e2m

0⌧d⌧ +

r
8

�
e2m

0⌧⇥?
⌧dW⌧ (40)

With integrating and rearranging, the above equation turns into

Y(⌧) =e�2m0⌧Y(0)� 2

Z ⌧

0
e2m

0(s�⌧)h⇥⌧ , F⇥(⇥⌧ id⌧

+ 2m0
Z ⌧

0
e2m

0(s�⌧)Y(s)ds+
Md

m0�
(1� e�2m0⌧ ) +

r
8

�

Z ⌧

0
e2m

0(s�⌧)⇥?
sdWsds (41)

Now with lemma 13, we can write

�2

Z ⌧

0
e2m

0(s�⌧)h⇥⌧ , F⇥(⇥⌧ id⌧  �2

Z ⌧

0
e2m

0(s�⌧)(m0Y(s))d⌧

Then, with (46) we arrive at

k⇥⌧k2  e�2m0⌧k⇥0k2 +
Md

�m0 (1� e�2m0⌧ ) +

r
8

�

Z ⌧

0
e2m

0(s�⌧)⇥?
sdWsds

Taking expectations and using the martingale property of the Itô integral, we can derive the following result
according to the independence of the the initial particles ✓(i)

0 :

Ek⇥⌧k2  e�2m0⌧Ek⇥0k2 +
Md

�m0 (1� e�2m0⌧ )

 e�2m0⌧M�0 +
Md

�m0 (1� e�2m0⌧ )

This finishes the proof.

It is easy to get the following corollary with the exchangeability of the particles

Corollary 17 For the particles ✓(i)
⌧ in (3), we have

Ek✓⌧k2  �0 +
d

m0�
(42)

Similarly, now we can provide a uniform bound for the ✓̄⌧ in (20).

Theorem 18 For the ✓̄(i)
⌧ in (21), we have

Ek✓̄(i)
⌧ k2  �0 +

d

m0�
(43)
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Proof Let Y(⌧) , k✓̄⌧k2, where the ✓̄⌧ is from (20). The Itô lemma gives

dY(⌧) = 2h✓̄⌧ ,���1F (✓̄⌧ )� EY⇠⌫⌧K(✓̄⌧ � Y )F (Y ) +rK ⇤ ⌫⌧ (✓̄⌧ )id⌧ +
2d

�
d⌧ +

r
8

�
✓̄?
⌧dW⌧ ,

where ✓̄?
⌧dW⌧ ,Pd

i=1 ✓̄i,⌧dWi,⌧ and the ✓̄i,⌧ , dWi,⌧ are the i-th components of ✓̄i,⌧ and W⌧ . This can be rewritten
as

2m0e2m
0⌧Y(⌧)d⌧ + e2m

0⌧dY(⌧) =2e2m
0⌧ h✓̄⌧ ,���1F (✓̄⌧ )� EY⇠⌫⌧K(✓̄⌧ � Y )F (Y ) +rK ⇤ ⌫⌧ (✓̄⌧ )id⌧

+ 2m0e2m
0⌧Y(⌧)d⌧ +

2d

�
e2m

0⌧d⌧ + e2m
0⌧

r
8

�
✓̄?
⌧dW⌧ (44)

Since 2m0e2m
0⌧Y(⌧)d⌧ + e2m

0⌧dY(⌧) is the total Itô derivative of e2m
0⌧Y(⌧), we arrive at

d
⇣
e2m

0⌧Y(⌧)
⌘
= 2e2m

0⌧ h✓̄⌧ ,���1F (✓̄⌧ )� EY⇠⌫⌧K(✓̄⌧ � Y )F (Y ) +rK ⇤ ⌫⌧ (✓̄⌧ )id⌧

+ 2m0e2m
0⌧Y(⌧)d⌧ +

2d

�
e2m

0⌧d⌧ + e2m
0⌧

r
8

�
✓̄?
⌧dW⌧ (45)

With integrating and rearranging, the above equation turns into

Y(⌧) =e�2m0⌧Y(0) + 2

Z ⌧

0
e2m

0(s�⌧)h✓̄s,���1F (✓̄s)� EY⇠⌫⌧K(✓̄s � Y )F (Y ) +rK ⇤ ⌫s(✓̄s)ids

+ 2m0
Z ⌧

0
e2m

0(s�⌧)Y(s)ds+
d

m0�
(1� e�2m0⌧ ) +

Z ⌧

0
e2m

0(s�⌧)

r
8

�
✓̄?
sdWsds (46)

With lemma 13, we can write

2

Z ⌧

0
e2m

0(s�⌧)h✓̄s,���1F (✓̄s)ids  �2

Z ⌧

0
e2m

0(s�⌧)(��1mFY(s))ds

2

Z ⌧

0
e2m

0(s�⌧)h✓̄s, EY⇠⌫sK(✓̄s � Y )F (Y )ids  2

Z ⌧

0
e2m

0(s�⌧)
�
LF (EY⇠⌫skY k)k✓̄sk

�
ds

2

Z ⌧

0
e2m

0(s�⌧)h✓̄s,rK ⇤ ⌫s(✓̄s)ids  2

Z ⌧

0
e2m

0(s�⌧)

✓
2

⌘2
(EY⇠⌫skY k)k✓̄sk+

2

⌘2
Y(s)

◆
ds

Then, with (46) we arrive at

Y(⌧)  e�2m0tY(0) +
d

�m0 (1� e�2m0⌧ )� 2

Z ⌧

0
e2m

0(s�⌧)(��1mFY(s))ds

+ 2

Z ⌧

0
e2m

0(s�⌧)
�
LF (EY⇠⌫skY k)k✓̄sk

�
ds+ 2

Z ⌧

0
e2m

0(s�⌧)

✓
2

⌘2
(EY⇠⌫skY k)k✓̄sk+

2

⌘2
Y(s)

◆
ds

+ 2m0
Z ⌧

0
e2m

0(s�⌧)Y(s)ds+

Z ⌧

0
e2m

0(s�⌧)

r
8

�
✓̄?
sdWsds

Taking expectations and using the martingale property of the Itô integral, we can derive the following result:

Ek✓̄⌧k2  e�2m0tEk✓̄0k2 +
d

�m0 (1� e�2m0⌧ )� 2

Z ⌧

0
e2m

0(s�⌧)(��1mFEk✓̄sk2)ds

+ 2

Z ⌧

0
e2m

0(s�⌧)
�
LF (EY⇠⌫skY k)Ek✓̄sk

�
ds+ 2

Z ⌧

0
e2m

0(s�⌧)

✓
2

⌘2
(EY⇠⌫skY k)Ek✓̄sk+

2

⌘2
Ek✓̄sk2

◆
ds

+ 2m0
Z ⌧

0
e2m

0(s�⌧)Ek✓̄sk2ds+
Z ⌧

0
e2m

0(s�⌧)

r
8

�
✓̄?
sdWsds
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With L(✓̄⌧ ) = ⌫⌧d✓ and m0 , ��1mF � LF � 4
⌘2 , we can derive the following result with Cauchy–Schwarz.

inequality,

Ek✓̄⌧k2  e�2m0tEk✓̄0k2 +
d

�m0 (1� e�2m0⌧ )� 2

Z ⌧

0
e2m

0(s�⌧)(��1mFEk✓̄sk2)ds

+ 2

Z ⌧

0
e2m

0(s�⌧)
�
LFEk✓̄sk2

�
ds+ 2

Z ⌧

0
e2m

0(s�⌧)

✓
2

⌘2
Ek✓̄sk2 +

2

⌘2
Ek✓̄sk2

◆
ds

+ 2m0
Z ⌧

0
e2m

0(s�⌧)Ek✓̄sk2ds

 e�2m0tEk✓̄0k2 +
d

�m0 (1� e�2m0⌧ )

 �0 +
d

�m0

This completes the proof.

J Non-Asymptotic Convergence Analysis: the Nonconvex Case

Since the non-convex case is much more complicated than the convex case, we reply on different assumptions
and adopt another distance metric, denoted as B̃, to characterize the convergence behavior of SPOS under the
non-convex case. Note in this section, we give the preliminary convergence results of SPOS under the non-convex
setting. A more complete version will be interesting future work.

Specifically, define B̃(µ, ⌫) as B̃(µ, ⌫) , |E✓⇠µ[f(✓)]� E✓⇠⌫ [f(✓)]| for a known Lf -continuous function f satisfying
Assumption 4 below. Note such metric has also been adopted in [Vollmer et al., 2016, Chen et al., 2015]. Our
analysis considers (T,M, hk) as variables in B̃. In addition, we use {✓̂(i)k }Mi=1 to denote the particles when full
gradients are adopted in (9). The distribution of the particles is denoted as µ̂k.

Our high-level idea of bounding B̃(µT , ⌫1) is to decompose it as follows:

B̃(µT , ⌫1)  B̃(µT , µ̂T ) + B̃(µ̂T , µ̂1) + B̃(µ̂1, ⇢1) + B̃(⇢1, ⌫1) (47)

Similarly, our idea is to concatenate the particles at each time into a single vector representation, i.e. defining
the new parameter at time ⌧ as ⇥⌧ , [✓(1)

⌧ , · · · ,✓(M)
⌧ ] 2 RMd. Consequently, the nonlinear PDE system (8) can

be turned into an SDE ,which means ⇥⌧ is driven by the following SDE:

d⇥⌧ = �F⇥(⇥⌧ )d⌧ +
p
2��1dW(Md)

⌧ , (48)

where F⇥(⇥⌧ ) , [��1F (✓(1)
⌧ ) � 1

M

PM
j=1 rK(✓(1)

⌧ � ✓(j)
⌧ ) + 1

M

PM
j=1 K(✓(1)

⌧ � ✓(j)
⌧ )F (✓(j)

⌧ ), · · · ,��1F (✓(M)
⌧ ) �

1
M

PM
j=1 rK(✓(M)

⌧ � ✓(j)
⌧ ) + 1

M

PM
j=1 K(✓(M)

⌧ � ✓(j)
⌧ )F (✓(j)

⌧ )] is a vector function RMd ! RMd, and W(Md)
⌧ is

Brownian motion of dimension M ⇥ d. Similarly, we can define ⇥̂k , [✓̂(1)k , · · · , ✓̂(M)
k ] 2 RMd for the full-gradient

case. Hence, it can be seen that through such a decomposition in (47), the bound related to a nonlinear PDE
system (8) reduces to that of an SDE. The second term B̃(µ̂T , µ̂1) reflexes the geometric ergodicity of a dynamic
system with a numerical method. It is known that even if a dynamic system has an exponential convergence
rate to its equilibrium, its corresponding numerical method might not. Our bound for B̃(µ̂T , µ̂1) is essentially
a specification of the result of [Mattingly et al., 2002], which has also been applied by [Xu et al., 2018]. The
third term B̃(µ̂1, ⇢1) reflects the numerical error of an SDE, which has been studied in related literature such as
[Chen et al., 2015]. To this end, we adopt standard assumptions used in the analysis of SDEs [Vollmer et al.,
2016, Chen et al., 2015], rephrased in Assumption 4.

Assumption 4 For the SDE (48) and a Lipschitz function f , let  be the solution functional of the Poisson
equation: G (⇥̂k) =

1
M

PM
i=1 f(✓̂

(i)
k )� E✓⇠p(✓|D)[f(✓)], where G denotes the infinite generator of the SDE (48).

Assume  and its up to 4th-order derivatives, Dk , are bounded by a function V, i.e., kDk k  HkVpk for
k = (0, 1, 2, 3, 4), Hk, pk > 0. Furthermore, the expectation of V on {⇥⌧} is bounded: supl EVp(⇥⌧ ) < 1, and V
is smooth such that sups2(0,1) Vp (s⇥ + (1� s)⇥0)  H (Vp (⇥) + Vp (⇥0)), 8⇥,⇥0, p  max{2pk} for H > 0.
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Assumption 5 i) F , K and rK are LF , LK and Lrk Lipschitz; ii) F satisfies the dissipative prop-
erty, i.e., hF (✓),✓i � m k✓k2 � b for some m, b > 0; iii) Remark 3 applies to the nonconvex setting, i.e.
supkfkLip1 |E✓⇠µ1 [f(✓)]� E✓⇠⌫1 [f(✓)]| = W1(⇢1, ⌫1) = O(M�1/2).

Remark 5 Assumption 4 is necessary to control the gap between a numerical solution and the exact solution
of an SDE. Specifically, it is used to bound the B̃(µ̂1, ⇢1) term and the B̃(µT , µ̂T ) term above. Purely relying
on the dissipative assumption in Assumption 5 as in non-convex optimization with SG-MCMC [Raginsky et al.,
2017, Xu et al., 2018] would induce a bound increasing linearly w.r.t. time ⌧ . Thus it is not suitable for our
goal. Finally, iii) in Assumption 5 is a mild condition and reasonable because we expect particles to be able to
approximate all distributions equally well in the asymptotic limit of t ! 1 by ergodicity due to the injected noise.
How to remove/replace this assumption is an interesting future work.

Based on the assumptions above, the bounds for B̃(µ̂T , µ̂1) and B̃(µ̂1, ⇢1) are summarized below.
Theorem 19 Under Assumption 4–5, if we set the stepsize hk = h, we can have the following results:

B̃(µ̂T , µ̂1)  C2&�
�Md/2(1 + &em⇥h) exp

�
�2m⇥Th�Md/ log(&)

�
,

and B̃(µ̂1, ⇢1)  C3h/�, (49)

where & = 2L⇥(Mb� + m⇥� + Md)/m⇥, L⇥ =
p
2��1LF + l0, m⇥ = ��1m � m0, and (�, C2, C3, l0,m0) are

some positive constants independent of (T, M, h) and � 2 (0, 1)

Remark 6 In order to make the B̃(µ̂T , µ̂1) term asymptotically decrease to zero, the number of running iteration
T should increase at a rate faster enough to compensate the effect of increasing M . We believe there is room for
improving this bound, which is an interesting future work.

Next we bound the B̃(µT , µ̂T ) term related to stochastic gradients. By adapting results from analysis of diffusion
processes [Xu et al., 2018], B̃(µT , µ̂T ) can be bounded with Theorem 20.

Theorem 20 Under Assumptions 4–5, if we set Bk = B and hk = h, B̃(µT , µ̂T ) is bounded as

B̃(µT , µ̂T )  C5Th(L⇥�0 +MC4)
p
(6 + 2�0)�/(BM),

where �0 = 2(1+1/m⇥)(Mb+2M2C2
4 +Md/�) and , (C4, C5) is some positive constant independent of (T, M, h)

Finally, by combining the results from Theorem 19, 20 and iii) in Assumption 5, we arrive at a bound for our
target B̃(µT , ⌫1), summarized in Theorem 21.

Theorem 21 Under Assumptions 4–5, there exist some positive constants (C2, C3, C4, C5, C6) such that:

B̃(µT , ⌫1) C2&�
�Md/2(1 + &em⇥h)⇥ exp

�
�2m⇥Th�Md/ log(&)

�
+ C3h/�

+ C5Th(L⇥�0 +MC4) ((6 + 2�0)�/(BM))
1/2

+ C6/
p
M,

where �, & and �0 are the same as those in Theorem 19–20.

K Proof of Theorem 19

Proof [Proof of Theorem 19] Our conclusion for B̃(µ̂T , µ̂1) is essentially a specification of the result in [Mattingly
et al., 2002], which has also been applied in [Xu et al., 2018].

Specifically, we rely on the following lemma, which is essentially Theorem 7.3 in [Mattingly et al., 2002] and
Lemma C.3 in [Xu et al., 2018]. Consider the following SDE (eq.48):

d⇥⌧ = �F⇥(⇥⌧ )d⌧ +
p

2��1dW(Md)
⌧

As mentioned in Section 5, we denote the distribution of ⇥⌧ as ⇢⇥⌧ , and define ⇥̂k , [✓̂(1)k , · · · , ✓̂(M)
k ] 2 RMd,

which is actually the numerical solution of (48) using full gradient with Euler method. Denote the distribution of
⇥̂k as µ̂⇥

k .
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Lemma 22 Let F⇥ be Lipschitz-continuous with constant L⇥, and satisfy the dissipative property that
hF⇥(⇥),⇥i � m⇥ k⇥k2 � b⇥. Define V⇥(⇥) = C0 + L⇥/2k⇥k2. The Euler method for (48) has a unique
invariant measure µ̂⇥

1, and for all test function f⇥ such that |f⇥|  V⇥(⇥), we have
���E[f⇥(⇥̂k))]� E⇥̂1⇠µ̂⇥

1
[f(⇥̂1)]

���

C⇢�Md/2(1 + em⇥h) exp

✓
�2m⇥kh⇢Md

log()

◆
,

where ⇢ 2 (0, 1), C > 0 are positive constants, and  = 2L⇥(b⇥� +m⇥� +Md)/m⇥.

Now we define f⇥ : RMd ! R as f⇥(⇥) = 1
M

PM
i f(✓(i)), where f : Rd ! R is a Lf -Lipschitz function satisfying

our Assumption 4, and ⇥ , [✓(1), · · · ,✓(M)]. Similar to the proof of Lemma 11, we can find that f⇥ : RMd is
a Lf/

p
M -Lipschitz function. Furthermore, according to Lemma 13, it is easily check that F⇥ is L⇥-Lipschitz

where L⇥ =
p
2��1LF + l0. Hence, when � is small enough, we have Lf/

p
M 

p
2��1LF + l0. As a result, we

can set the C0 large enough to force f⇥ to satisfy the condition in Lemma 22 that |f⇥|  V⇥(⇥). According to
the exchangeability of the particle system {✓̂(i)k } and Lemma 13, we can bound B̃(µ̂T , µ̂1) as

B̃(µ̂T , µ̂1) 
���E[f⇥(⇥̂T ))]� E⇥̂1⇠µ̂⇥

1
[f(⇥̂1)]

���

C2&�
�Md/2(1 + &em⇥h) exp

�
�2m⇥Th�Md/ log(&)

�

where & = 2L⇥(Mb� +m⇥� +Md)/m⇥, L⇥ =
p
2��1LF + l0, m⇥ = ��1m�m0, and (�, C2, l0,m0) are some

positive constants independent of (T, M, h) and � 2 (0, 1).

To prove the bound for B̃(µ̂1, ⇢1), since ⇥̂k = (✓̂(1)k , · · · , ✓̂(M)
k ) can be considered as a solution to the SDE (48),

standard results from linear FP equation can be applied. Specifically, for the B̃(µ̂1, ⇢1) term, we rely on the
following lemma adapted from Lemma C.4 in [Xu et al., 2018, Chen et al., 2015], which is essentially the result of
[Chen et al., 2015] when taking T ! 1.

Lemma 23 Under the same assumption as in Lemma 22, for the Lipschitz-continuous function f⇥(⇥) =
1
M

PM
i f(✓(i)) mentioned above, the following bound is satisfied for some positive constant C:

�����
1

T

T�1X

k=1

E[f⇥(⇥̂k)]� E⇥1⇠⇢⇥
1
[f(⇥1)]

�����  C(
h

�
+

�

Th
) .

The uniqueness of invariant measure of the Euler method from Lemma 22 implies the numerical solution ⇥̂k to be
ergodic. Then similar to the proof of Lemma 4.2 in [Xu et al., 2018], we consider the case where T ! 1. Taking
average over the {⇥̂k}T�1

k=0 , we have

E⇥̂1⇠µ̂⇥
1
[f⇥(⇥̂1)] = lim

T!1

1

T

TX

k=1

E[f⇥(⇥̂k)]

Now according to the exchangeability of the particle system {✓̂(i)k } and {✓(i)
⌧ }, we can bound the B̃(µ̂1, ⇢1) as :

B̃(µ̂1, ⇢1) 
���E⇥̂1⇠µ̂⇥

1
[f⇥(⇥̂1)]� E⇥1⇠⇢⇥

1
[f⇥(⇥1)]

���

 C3h/� ,

where C3 are some positive constant.

L Proof of Theorem 20

Proof [Proof of Theorem 20] Adopting the same notation used in the proof of Theorem 7, we define ⇥k ,
[✓(1)k , · · · , ✓(M)

k ] and G⇥
Ik

, N
Bk

P
q2Ik

F(q)⇥(⇥k). We denote the distribution of ⇥k as µ⇥
k , where

⇥k+1 = ⇥k � ��1G⇥
Ik
hk +

p
2��1hk⌅k .
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We firstly derive a bound for W2(µ⇥
k , µ̂

⇥
k ) (the definition of µ̂⇥

k is given in the last section). According to the
proof of Lemma 4.4 in [Xu et al., 2018]

W2(µ
⇥
k , µ̂

⇥
k )  kh(L⇥�0 +MC4) ((6 + 2�0)�/B)

1/2

where �0 = 2(1 + 1/m⇥)(Mb + 2M2C2
4 +Md/�) and C4 is some positive constant independent of (T, M, h).

By applying the facts that W1(µ⇥
k , µ̂

⇥
k )  W2(µ⇥

k , µ̂
⇥
k ) and W1(µk, µ̂k)  1p

M
W1(µ⇥

k , µ̂
⇥
k ) (see the proof of

Lemma 12, similar result holds here), we get

W1(µT , µ̂T )  Th(L⇥�0 +MC4) ((6 + 2�0)�/(BM))
1/2

.

Since the definitions of W1(µ, ⌫) and B̃(µ, ⌫) are given as:

W1(µ, ⌫) , sup
kgklip1

|E✓⇠µ[g(✓)]� E✓⇠⌫ [g(✓)]|

B̃(µ, ⌫) , |E✓⇠µ[f(✓)]� E✓⇠⌫ [f(✓)]| ,

it is easily seen that B̃(µT , µ̂K)  LfW1(µT , µ̂T ), which finishes the proof.

M Discussion on the complexity of the proposed SPOS

The complexity of an algorithm mainly refers to its time complexity (corresponding to the number of iterations in
our method i.e. T) and space complexity (corresponding to the number of particles used in our method i.e. M).
Hence the complexity of our method can be well explored with our work, since our non-asymptotic convergence
theory is developed w.r.t. both the number of particles i.e. M and iterations i.e. T. Their relationship (tradeoff)
is discussed further in the experiments. Moreover, by comparing (9) with (3) , one can easily find that our
space complexity is exactly the same as SVGD and our computational time in each iteration is almost the same
as SVGD with an extra addition operation. However, it is worth noting that our method have much better
performance in practice with no “pitfall” verified by both our theory and experiments.

N Comparison with Related Work

Firstly, our proposed framework SPOS is different from the recently proposed particle-optimization sampling
framework [Chen et al., 2018], in the sense that we solve the nonlinear PDE (6) stochastically. For example they
deterministically solve the equation in (6) @⌫⌧ = ��1r✓ ·r✓⌫⌧ approximately using blob method adopted from
[Carrillo et al., 2017].

Secondly, our method is also distinguishable to existing work on granular media equations such as [Durmus et al.,
2018]. The work about the granular media equations mainly focuses on the following PDE:

@⌧⌫⌧ = r✓ ·
�
⌫⌧�

�1F (✓) + ⌫⌧ (rK ⇤ ⌫⌧ (✓)) + ��1r✓⌫⌧
�
, (50)

whereas our framework focuses on the following one:

@⌧⌫⌧ =r✓ ·
�
⌫⌧�

�1F (✓) + ⌫⌧ (EY⇠⌫⌧K(✓ � Y )F (Y )

�rK ⇤ ⌫⌧ (✓)) + ��1r✓⌫⌧
�
. (51)

The extra term ⌫⌧ (EY⇠⌫⌧K(✓ � Y )F (Y )) in our framework makes the analysis much more challenging. The
main differences between our work and [Durmus et al., 2018] including related work are summarized below:

• Formulations are different. The extra term EY⇠µ⌧K(✓ � Y )F (Y ) cannot be combined with the F (✓) term
in (50) in [Durmus et al., 2018]. This is because function F (✓) itself is a function independent of ⌧ ; while
EY⇠µ⌧K(✓ � Y )F (Y ) depends on both ✓ and ⌧ . This makes our problem much more difficult.
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Figure 5: Errors versus #iterations on a simple posterior Gaussian model.

• Assumptions are different. For example, the analysis on granular media equations in [Cattiaux et al., 2008]
requires that F satisfies a special condition C(A,↵), which is a strong condition impractical to be satisfied in
our case; And [Durmus et al., 2018] adopts different assumptions from ours with a different goal.

• For the Euler integrator, [Durmus et al., 2018] does not consider an Euler solution. Furthermore, our sampling
method needs "stochastic gradient" i.e. G(i)

k , N
Bk

P
q2Ik

Fq(✓
(i)
k ) in (9) for computational feasibility, which

is quite different from the former work on particle-SDE such as [Malrieu, 2003, Cattiaux et al., 2008]. Few of
the former work on particle-SDE considered the stochastic gradient issue.

To sum up, the main purpose of our paper is to provide a non-asymptotic analysis of our method instead of
improving the former work on a certain type of PDE. This is also the reason why we said that parts of our proof
techniques are based on those for analyzing granular media equations.

O Extra Experiments

O.1 Posterior sampling of a Gaussian model

We further follow [Chen et al., 2015] and consider a relatively more complex Gaussian model for posterior sampling:
xi ⇠ N (✓, 1), ✓ ⇠ N (0, 1), where 1000 data samples {xi} are generated. We adopt the same setting as above. The
posterior average E✓⇠p(✓|{xi})[f(✓)] endows an explicit expression. Figure 5 plots the error versus the running
iterations for different particle sizes. It is observed that at the beginning, the errors for the ones with less particles
decrease faster than those with more particles. This is reflected in the overall bound given in Theorem 9, which
are dominated by the bound in Theorem 7 (indicating larger M results in larger errors at the beginning). When
more running time/iterations are given, the impact of the exponentially-decaying term in Theorem 6 could be
ignored. We also observe a trend of increasing errors when number of iterations are large enough, which is not
drawn in the figure for simplicity.

O.2 Toy Experiments

We compare the proposed SPOS with other popular methods such as SVGD and standard SGLD on four mutil-
mode toy examples. We aim to sample from four unnormalized 2D densities p(z)/ exp{U(z)}, with the functional
form provided in [Rezende and Mohamed, 2015]. We optimize/sample 50 and 2000 particles to approximate the
target distributions. The results are illustrated in Figure 6 and Figure 7, respectively.
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Figure 6: Illustration of different algorithms on toy distributions. Dots are the final particles; the blue regions
represent ground true densities. Each column is a distribution case. First row: standard SGLD; Second row:
SVGD; Third row: SPOS.

Figure 7: Illustration of different algorithms on toy distributions. Dots are the final particles; the blue regions
represent densities estimated by the particles. Each column is a distribution case. First row: ground true densities;
Second row: standard SGLD; Third row: SVGD; Fourth row: SPOS.

O.3 More details on Bayesian neural networks for regression

The Bayesian DNNs are used to model weight uncertainty of neural networks, an important topic that has
been well explored [Hernández-Lobato and Adams, 2015, Blundell et al., 2015, Li et al., 2016, Louizos and
Welling, 2016]. We assign simple isotropic Gaussian priors to the weights, and perform posterior sampling with
different methods. For SVGD and SPOS methods, we use a RBF kernel K(✓,✓0) = exp(�k✓ � ✓0k22/⌘2), with
the bandwidth set to ⌘ = med2/ logM . Here med is the median of the pairwise distance between particles. We
use a single-layer BNN for regression tasks. Following [Li et al., 2015], 10 UCI public datasets are considered: 100
hidden units for 2 large datasets (Protein and YearPredict), and 50 hidden units for the other 8 small datasets.
Following [Zhang et al., 2018b], we repeat the experiments 20 times with batchsize 100 for all datasets except for
Protein and YearPredict, which we repeat 5 times and once with batchsize 1000. The datasets are randomly
split into 90% training and 10% testing. For a fair comparison, we use the same split of data (train, val and
test) for the three methods. The test results are reported on the best model on the validation set. We adopt the
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Table 2: Averaged predictions with standard deviations in terms of RMSE and log-likelihood on test sets.
Test RMSE Test Log likelihood

Dataset SGLD SVGD SPOS SGLD SVGD SPOS
Boston_Housing 3.114 ± 0.144 2.961 ± 0.109 2.829± 0.126 �2.633± 0.083 -2.591 ± 0.029 �2.532± 0.082

Concrete 5.508± 0.275 5.157 ± 0.082 5.071± 0.1495 �3.133± 0.087 -3.247 ± 0.01 �3.062± 0.037
Energy 0.842± 0.060 1.291 ± 0.029 0.752± 0.0285 �1.268± 0.143 -1.534 ± 0.026 �1.158± 0.073
Kin8nm 0.080± 0.001 0.090 ± 0.001 0.079± 0.001 1.080± 0.025 0.986 ± 0.004 1.092± 0.013
Naval 0.004± 0.000 0.004 ± 0.000 0.004± 0.000 4.127± 0.028 4.032 ± 0.008 4.145± 0.02
CCPP 4.059± 0.080 4.127 ± 0.027 3.939± 0.0495 �2.823± 0.039 -2.843 ± 0.006 �2.794± 0.025

Winequality 0.632± 0.022 0.604 ± 0.007 0.598± 0.014 �0.962± 0.067 -0.926 ± 0.009 �0.911± 0.041
Yacht 1.183± 0.263 1.597 ± 0.099 0.84± 0.0865 �1.680± 0.393 -1.818 ± 0.06 �1.446± 0.121

Protein 4.281± 0.011 4.392 ± 0.015 4.254± 0.005 �2.877± 0.002 -2.905 ± 0.010 �2.876± 0.009
YearPredict 8.707± NA 8.684 ± NA 8.681±NA -3.582 ± NA -3.580 ± NA �3.576±NA

Table 3: Classification error of FNN on MNIST.

Method Test Error
400-400 800-800

SPOS 1.32% 1.24%

SVGD 1.56% 1.47%
SGLD 1.64% 1.41%
RMSprop 1.59% 1.43%
RMSspectral 1.65% 1.56%
SGD 1.72% 1.47%
BPB, Gaussian 1.82% 1.99%
SGD, dropout 1.51% 1.33%

root mean squared error (RMSE) and test log-likelihood as the evaluation criteria. The experimental results are
shown in Table 2, from which we can see the proposed SPOS outperforms SVGD and other existing methods
presented in [Zhang et al., 2018b] (results not shown due to space limit), achieving state-of-the-art results.

O.3.1 Bayesian Neural Networks for MNIST classification

We perform the classification tasks on the standard MNIST dataset. A two-layer MLP 784-X-X-10 with ReLU
activation function is used, with X being the number of hidden units for each layer. The training epoch is set to
100. The test errors are reported in Table 3. Surprisingly, the proposed SPOS outperforms other algorithms such
as SVGD at a significant level, though it is just a simple modification of SVGD by adding in random Gaussian
noise. This is partly due to the fact that our SPOS algorithm can jump out of local modes efficiently, as explained
in Section 2.2.

O.4 Bayesian exploration in deep RL

We denote the policy as ⇡✓(a | s) parameterized by ✓ with prior distribution p(✓), where a represent the action
variable, and s the state variable. According to [Liu et al., 2017], learning the optimal policy corresponds to
calculating the following posterior distribution for ✓: q(✓) / exp(J(✓)/↵)p(✓), where J(✓) denotes the expected
cumulative reward under the policy with parameter ✓ and ↵ a hyperparameter. Consequently, ✓ could be updated
by drawing samples from q(✓) with the proposed SPOS. We denote this method as SPOS-PG. In addition, when
drawing samples with SVGD, the resulting algorithm is called Stein variational policy gradient (SVPG) [Liu
et al., 2017]. Note in implementation, the term J(✓) can be approximated with REINFORCE [Williams, 1992] or
advantage actor critic [Schulman et al., 2015], which we will investigate in our experiments.

The policy is parameterized as a two-layer (25-10 hidden units) neural network with tanh as the activation
function. The maximal length of horizon is set to 500. We use a sample size of 10000 for policy gradient estimation,
and M = 16, ↵ = 10. For the simplest task, Cartpole, all agents are trained for 100 episodes; whereas they are
trained up to 1,000 episodes for the other two tasks. The average reward versus number of episodes are plotted in
Figure 8. It is observed that our SPOS-PG obtains much larger average rewards and smaller variance compared
to SVPG, though the convergence behaviors are similar in the simplest Carpole task.
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Figure 8: Policy learning with Bayesian exploration in policy-gradient methods on six scenarios with SVPG and
SPOS-PG.


