Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory

Jianyi Zhang1 Ruiyi Zhang1 Lawrence Carin1 Changyou Chen2

1Duke University 2University at Buffalo, SUNY

Abstract

Particle-optimization-based sampling (POS) is a recently developed effective sampling technique that interactively updates a set of particles to approximate a target distribution. A representative algorithm is the Stein variational gradient descent (SVGD). We prove, under certain conditions, SVGD experiences a theoretical pitfall, \textit{i.e.}, particles tend to collapse. As a remedy, we generalize POS to a stochastic setting by injecting random noise into particle updates, thus termed stochastic particle-optimization sampling (SPOS). Notably, for the first time, we develop non-asymptotic convergence theory for the SPOS framework (related to SVGD), characterizing algorithm convergence in terms of the 1-Wasserstein distance w.r.t. the numbers of particles and iterations. Somewhat surprisingly, with the same number of updates (not too large) for each particle, our theory suggests adopting more particles does not necessarily lead to a better approximation of a target distribution, due to limited computational budget and numerical errors. This phenomenon is also observed in SVGD and verified via a synthetic experiment. Extensive experimental results verify our theory and demonstrate the effectiveness of our proposed framework.

1 Introduction

Recently there has been extensive development of scalable Bayesian sampling algorithms, such as stochastic gradient MCMC (SG-MCMC) \cite{Welling2011, Chen2014, Ding2014, Chen2014}. SG-MCMC is a family of scalable Bayesian sampling algorithms built on Itó diffusions, stochastic differential equations (SDEs) with appropriately designed coefficients whose stationary distributions match the target distributions. One potential issue of SG-MCMC is that samples may be highly correlated partially due to the nature of Markov chains, leading to undesired low sample-efficiency. SVGD, on the other hand, belongs to the family of particle-optimization-based sampling methods that optimize a set of interacting particles to minimize some distance metric (\textit{e.g.}, KL-divergence) between the target distribution and the particle-induced approximate distribution. By optimization, one seeks to maintain an optimal set of particles. Recent development of SVGD has shown that the underlying mathematical principle is based on a family of \textit{nonlinear} partial differential equations (PDEs) \cite{Liu2017}. Although achieving significant practical successes \cite{Liu2016, Feng2017, Liu2017, Haarnoja2017, Zhang2018, Zhang2019, Liu2018}, little theory is available to fully understand its non-asymptotic convergence properties under numerical errors. A recent theoretical development has interpreted SVGD as a special type of gradient flows, and developed theory to disclose its asymptotic convergence behavior \cite{Liu2017}. The asymptotic theory is also studied in \cite{Lu2018}. A more recent work \cite{Liu2018} investigated non-asymptotic properties of SVGD, limited to the region of finite particles and infinite time with restricted conditions. \cite{Simsekli2018} considers convergence property of the sliced-Wasserstein flow only under an infinite-particle setting. Recently, \cite{Chen2018} unified SG-MCMC and SVGD by proposing a particle-optimization-sampling (POS) framework to interpret both as Wasserstein gradient flows (WGFs). Generally, a WGF is a PDE defined on the space of probability measures, describing the evolution of a density over time. \cite{Chen2018} defined a WGF by combining the corresponding PDEs for both SG-MCMC and SVGD, and solved it with deterministic particle approximations. However,
due to its diffusion nature, deterministic-particle approximation leads to a hard-to-control error, making it challenging for theoretical analysis.

Our contributions In this paper, we generalize POS to a stochastic setting, and develop a novel analytical framework based on granular media equations [Malrieu, 2003, Cattiaux et al., 2008] to analyze its non-asymptotic convergence properties. Our contributions are summarized as follows: i) We first identify a pitfall of standard SVGD, where particles tend to collapse under certain conditions and measurement, indicating challenges in developing non-asymptotic theory for SVGD (if possible at all). ii) Based on the unified framework in [Chen et al., 2018], we propose stochastic particle-optimization sampling (SPOS) by injecting Gaussian noise in particle updates to overcome the pitfall. iii) For the first time, we develop nonasymptotic convergence theory for the family of SPOS algorithms, considering both convex- and nonconvex-energy targets. Different from existing theory for SG-MCMC-based algorithms [Teh et al., 2016, Vollmer et al., 2016, Chen et al., 2015, Raginsky et al., 2017, Zhang et al., 2017, Xu et al., 2018], our development relies on the theory of nonlinear PDEs, which is more involved and less explored in literature. Particularly, we adopt tools from granular media equations [Malrieu, 2003, Cattiaux et al., 2008] to develop non-asymptotic error bounds in terms of 1-Wasserstein distance. More detailed distinctions between our work and existing work are discussed in Section □ of the Supplementary Material (SM). Somewhat surprisingly, our theory indicates adopting more particles does not necessarily lead to better approximations, due to the numerical errors in the algorithms. This phenomenon is also observed for SVGD empirically. iv) Our theory and advantages of the algorithm are verified via various experiments, including synthetic experiments, Bayesian deep learning and Bayesian exploration for reinforcement learning.

2 Preliminaries

Notation We use bold letters to denote variables in continuous-time diffusions and model definitions (no numerical methods included), e.g., \(\theta_r \) in □ below (indexed by “time” \(\tau \)). By contrast, unbold letters are used to denote parameters in algorithms (numerical solutions of continuous-time diffusions), e.g., \(\theta^{(i)}_k \) in □ below (indexed by “iteration” \(k \)). For conciseness, all proofs, extra experimental results and a discussion on algorithmic complexity are presented in the SM.

2.1 Stochastic gradient MCMC

In Bayesian sampling, one aims to generate random samples from a posterior distribution \(p(\theta | X) \propto p(X | \theta)p(\theta) \), where \(\theta \in \mathbb{R}^d \) represents the model parameter with a prior distribution \(p(\theta) \), and \(X = \{x_q\}_{q=1}^N \) represents the observed data with likelihood \(p(X | \theta) = \prod_q p(x_q | \theta) \). Define the potential energy as: \(U(\theta) = -\log p(X | \theta) - \log p(\theta) = -\sum_{q=1}^N (\log p(x_q | \theta) + \frac{1}{\beta} \log p(\theta)) \). SG-MCMC algorithms belong to diffusion-based sampling methods, where a continuous-time diffusion process is designed such that its stationary distribution matches the target posterior distribution. The diffusion process is driven by a specific SDE. For example, in stochastic gradient Langevin dynamic (SGLD) [Welling and Teh, 2011], the SDE endows the following form:

\[
d\theta_r = -\beta^{-1} F(\theta_r) d\tau + \sqrt{2\beta^{-1}} dW_r ,
\]

where \(F(\theta) = \nabla_\theta U(\theta) = \sum_{q=1}^N \nabla_\theta U_q(\theta) \equiv \sum_{q=1}^N F_q(\theta) ; \tau \) is the time index; \(\beta > 0 \) is the temperature parameter; and \(W_r \in \mathbb{R}^d \) is a \(d \)-dimensional Brownian motion. More instances of SDEs corresponding to other SG-MCMC algorithms can be defined by specifying different forms of \(F \) and potentially other diffusion coefficients. We focus on SGLD and □ in this paper, and refer interested readers to [Ma et al., 2015] for a more detailed description of general SG-MCMC algorithms. Denote the probability density function of \(\theta \), in □ as \(\nu_r \), and let \(a \cdot b \equiv a^T b \) for two vectors \(a \) and \(b \). It is known that \(\nu_r \) is characterized by the following Fokker-Planck (FP) equation [Risken, 1989]:

\[
\partial_r \nu_r = \nabla_\theta \cdot (\beta^{-1} \nu_r \cdot F(\theta) + \beta^{-1} \nabla U_q(\theta)) .
\]

According to [Chiang and Hwang, 1987], the stationary distribution \(\nu_\infty \) equals to our target distribution \(p(\theta | X) \). As a result, SGLD is designed to generates samples from \(p(\theta | X) \) by numerically solving the SDE □. For scalability, it replaces \(F(\theta_k) \) in each iteration with an unbiased evaluation by randomly sampling a subset of \(X \), i.e., \(F(\theta_k) \) is approximated by:

\[
G_k \equiv \frac{N}{B_k} \sum_{q \in T_k} F_q(\theta_k) ,
\]

where \(T_k \) is a random subset of \([1, 2, \cdots, N] \) with size \(B_k \) in each iteration. As a result, SGLD uses the Euler method with stepsize \(h_k \) to numerically solve □, resulting in the update equation:

\[
\theta_{k+1} = \theta_k - \beta^{-1} G_k h_k + \sqrt{2\beta^{-1}} h_k \xi_k ,
\]

with \(\xi_k \sim \mathcal{N}(0, I) \).

2.2 Stein variational gradient descent

Different from SG-MCMC, SVGD is a deterministic particle-optimization algorithm that generates approximate samples from a target distribution. In the algorithm, a set of particles interact with each other, driving them to high density regions in the parameter space while keeping them far away from each other with an induced repulsive force. The update equations of the particles follow the fastest descent direction of the KL-divergence between current particle distribution
and the target distribution, on a RKHS (reproducing kernel Hilbert space) induced by a kernel function \(\kappa(\cdot, \cdot)\) ([Liu and Wang, 2016]). Formally, [Liu and Wang, 2016] derived the following update rules for the particles \(\{\theta^{(i)}_k\}_{k=1}^M\) at the \(k\)-th iteration with stepsize \(h_k\) and
\[
\mathcal{G}^{(i)}_k = \frac{N}{M} \sum_{q \in Z_k} \mathcal{F}_q(\theta^{(i)}_k): \text{ for } \forall i, \theta^{(i)}_{k+1} = \theta^{(i)}_k + h_k \sum_{j=1}^M \left[\kappa(\theta^{(j)}_k, \theta^{(i)}_k) \mathcal{G}^{(i)}_k + \nabla_{\theta^{(i)}_k} \mathcal{r}^{(i)}_k \kappa(\theta^{(j)}_k, \theta^{(i)}_k)\right]
\]
(3)
where the first term in the bracket encourages moving particles to the density modes, and the second term serves as repulsive force that pushes away different particles. Particularly, the particle evolution \(\{\theta^{(i)}_k\}\) are numerical solutions of the ODEs:
\[
\frac{d\theta^{(i)}_k}{dt} = \frac{1}{M} \sum_{j=1}^M \left[\kappa(\theta^{(j)}_k, \theta^{(i)}_k) F(\theta^{(i)}_k) + \nabla_{\theta^{(i)}_k} \mathcal{r}^{(i)}_k \kappa(\theta^{(j)}_k, \theta^{(i)}_k)\right].
\]
Different from SG-MCMC, typically only particles at the current iteration, \(\{\theta^{(i)}_k\}_{k=1}^M\), are used to approximate the target distribution.

2.3 Particle-optimization based sampling

SG-MCMC and SVGD, though they may look closely related, behave very differently as algorithms, e.g., stochastic and noninteractive versus deterministic and interactive particle updates. Recently, [Chen et al., 2018] proposed a deterministic particle-optimization framework that unified SG-MCMC and SVGD. Specifically, the authors viewed both SG-MCMC and SVGD as solutions of Wasserstein gradient flows (WGFs) on the space of probabilistic measures, and derived several deterministic particle-optimization techniques for particle evolution, like SVGD. For SG-MCMC, the FP equation \(\mathbb{F}\) for SGLD is a special type of WGFs. Together with an interpretation of SVGD as a special case of the Vlasov equation in the nonlinear PDE literature, [Chen et al., 2018] proposed a general form of PDE to characterize the evolution of the density for the model parameter \(\theta\), denoted as \(\nu_\tau\) at time \(\tau\) with \(\nu_\infty\) matching our target (posterior) distribution, i.e.,
\[
\partial_\tau \nu_\tau = \nabla_\theta \cdot (\nu_\tau \beta^{-1} F(\theta) + \nu_\tau (K * \nu_\tau(\theta)) + \beta^{-1} \nabla_\theta \nu_\tau),
\]
(4)
where \(K\) is a function controlling the interaction of particles in the PDE system. For example, in SVGD, [Chen et al., 2018] showed that \(K\) and \(K * \nu_\tau(\theta)\) endow the following forms:
\[
K * \nu_\tau(\theta) \triangleq \int K(\theta, \theta') \nu_\tau(\theta') d\theta',
\]
(5)
where \(K(\theta, \theta') \triangleq F(\theta') \kappa(\theta', \theta) - \nabla_\theta \kappa(\theta', \theta)\) and \(\kappa(\cdot, \cdot)\) is a kernel function such as the RBF kernel. In the following, we introduce a new unary function \(K(\theta) = \exp(-||\theta||^2)\), thus \(\kappa(\theta, \theta')\) can be rewritten as \(\kappa(\theta, \theta') = K(\theta - \theta')\). Hence, \(\mathbb{F}\) with \(K\) defined in \(\mathcal{F}\) is equivalently written as:
\[
\partial_\tau \nu_\tau = \nabla_\theta \cdot (\nu_\tau \beta^{-1} F(\theta) + \nu_\tau (E_{Y \sim \nu_\tau} K(\theta - Y) F(Y)
- \nabla K * \nu_\tau(\theta)) + \beta^{-1} \nabla_\theta \nu_\tau),
\]
(6)
where \(Y\) is a random sample from \(\nu_\tau\) independent of \(\theta\). Note our formula here is significantly different from standard granular media equations in the literature. Please refer to Section \(\mathbb{F}\) of the SM for more details.

Proposition 1 (Chen et al., 2018) \(\mathbb{F}\) The stationary distribution of \(\mathbb{F}\) equals to our target distribution, which means \(\nu_\infty(\theta) = p(\theta | X)\).

Chen et al., 2018 proposed to solve \(\mathbb{F}\) numerically with deterministic particle-optimization algorithms, such as what is called the blob method. Specifically, the continuous density \(\nu_\tau\) is approximated by a set of \(M\) particles \(\{\theta^{(i)}_k\}_{k=1}^M\) that evolve over time \(\tau\), i.e.,
\[
\nu_\tau \approx \frac{1}{M} \sum_{i=1}^M \delta_{\theta^{(i)}_k}(\theta), \text{ where } \delta_{\theta^{(i)}_k}(\theta) = 1 \text{ if } \theta = \theta^{(i)}_k \text{ and 0 otherwise. Note } \nabla_\theta \nu_\tau \text{ in } \mathbb{F} \text{ is no longer a valid definition when adopting particle approximation for } \nu_\tau. \text{ Consequently, } \nabla_\theta \nu_\tau \text{ needs nontrivial approximations, e.g., by discrete gradient flows or blob methods proposed in Chen et al., 2018. We omit the details here for simplicity.}

3 Stochastic Particle-Optimization Sampling (SPOS)

We first introduce a pitfall of SVGD, which is overcome by SPOS. In the analysis for both SVGD and SPOS, we impose the following basic assumptions.

Assumption 1 Assume \(F\) and \(K\) satisfy the following assumptions:

1.1 \(F\) is \(L_F\)-Lipschitz continuous i.e., \(\|F(\theta) - F(\theta')\| \leq L_F \|\theta - \theta'\|\).

1.2 \(K\) is \(L_K\)-Lipschitz continuous; \(\nabla K\) is \(L_{\nabla K}\)-Lipschitz continuous.

1.3 \(F(0) = 0\) and \(K\) is an even function, i.e., \(K(-\theta) = K(\theta)\).

A few remarks: i) Assumptions 1.1 is widely adopted in the other theoretical works such as [Dalalyan and Karagulyan, 2017] [Chatterji et al., 2018] ii) \(F(0) = 0\) in Assumption 1.3 is reasonable, as \(F\) in our setting corresponds to an unnormalized log-posterior, which can be shifted such that \(F(0) = 0\) for a specific problem. The assumptions of \(K\) are mild, and satisfied when adopting the RBF Kernel.

3.1 A pitfall of SVGD

First, we motivate SPOS by discovering a pitfall of standard SVGD, i.e., particles in SVGD tend to collapse to a local mode under some particular conditions. Inspired by the work on analyzing granular media equations by [Malrieu, 2003] [Cattiaux et al., 2008], we measure the
collapse by calculating the expected distance between exact particles (without numerical errors), called expected particle distance (EPD) defined below.

Assumption 2 F and K satisfy the following assumptions:

1. There exists positive m_K such that $\langle \nabla K(\theta) - \nabla K(\theta'), \theta - \theta' \rangle \leq -m_K \Vert \theta - \theta' \Vert^2$.
2. F is bounded by H_F i.e., $\Vert F(\theta) \Vert \leq H_F$.

For an RBF kernel, this assumption could be satisfied by setting the bandwidth large enough and only considering the concave region. This seems a little restrictive. However, this assumption is imposed only for the analysis of the pitfall property. It is not needed in the non-asymptotic convergence analysis below. Besides, we point out what might happen without this assumption in Remark 1.

Theorem 2 Under Assumptions 1 and 2, for the particles $\theta^{(i)}$ defined in Section 2.3, the EPD for SVGD is bounded as: $\text{EPD} \leq \sqrt{\sum_{i,j} \mid \theta^{(i)}_0 - \theta^{(j)}_0 \mid^2} \leq C_0 e^{-2\lambda t}$, where $C_0 = \sqrt{\sum_{i,j} \mid \theta^{(i)}_0 - \theta^{(j)}_0 \mid^2}$, $\lambda = m_K - H_F L_K$.

Remark 1 1) In the case of $\lambda \geq 0$, Theorem 2 indicates that particles in SVGD would collapse to a point when $\tau \to \infty$. In practice, we usually find that particles are trapped in a local mode instead of collapsing in practice. This might be due to two reasons: i) Particles in SVGD are numerical solutions instead of exact solutions as used in EPD, which induce extra numerical errors; ii) Some particles might be out of the concave region of K stated in Assumption 1 in SVGD, which is required for the result to hold. These make the empirical EPD behave not exactly the same as the true particle distance. 2) Theorem 3 and its proof in the SM also apply to the case of non-convex energy functions. 3) Even if the kernel is not concave, the result would still indicate that particles in the concave regions would collapse. 4) The pitfall indicates a challenge in developing non-asymptotic theory for SVGD (if possible at all), motivating the development of SPOS. 5) This is a complement to the result of [Liu et al., 2019], which proves SVGD is ill-posed under some conditions.

3.2 Stochastic particle-optimization sampling to mitigate the pitfall

We argue the WGF framework proposed in [Chen et al., 2018] if solved appropriately, is able to overcome the pitfall of SVGD. Specifically, the original solution in [Chen et al., 2018] is based on a deterministic particle-approximation method for 4), which introduces hard-to-control approximation errors. Instead, we propose to solve 4) stochastically to replace the $\nabla_\theta \nu_\tau$ term in 4) with a Brownian motion. Specifically, first note that the term $\beta^{-1} \nabla_\theta \cdot \nabla_\theta \nu_\tau$ is contributed from Brownian motion, i.e., solving the SDE, $d\theta = \sqrt{2}\beta^{-1}dW_\tau$, is equivalent to solving the corresponding FP equation: $\partial \nu_\tau = \beta^{-1} \nabla_\theta \cdot \nabla_\theta \nu_\tau$. Consequently, we decompose the RHS of 4) into two parts: $F_1 \triangleq \nabla_\theta \cdot (\nu_\tau^{-1} F(\theta_\tau) + (K \ast \nu_\tau) \nu_\tau)$ and $F_2 \triangleq \beta^{-1} \nabla_\theta \cdot \nabla_\theta \nu_\tau$. Our idea is to solve F_1 deterministically under a PDE setting, and solve F_2 stochastically based on its corresponding SDE. When adopting particle approximation for the density ν_τ, both solutions of F_1 and F_2 are represented in terms of particles $\{\theta^{(i)}(\tau)\}$. Thus, we can combine the solutions from the two parts directly to approximate the original exact solution of 4).

Theorem 3 When approximating ν_τ in 4) with particles $\{\theta^{(i)}(\tau)\}$, the PDE $\partial_\tau \nu_\tau = F_1$ reduces to the following system of differential equations describing evolutions of the particles over time: $\forall i$

$$
\frac{d\theta^{(i)}_\tau}{d\tau} = -\beta^{-1} F(\theta^{(i)}_\tau) d\tau - \frac{1}{M} \sum_{j=1}^{M} K(\theta^{(i)}_\tau - \theta^{(j)}_\tau) F(\theta^{(j)}_\tau) d\tau + \frac{1}{M} \sum_{j=1}^{M} \nabla K(\theta^{(i)}_\tau - \theta^{(j)}_\tau) d\tau + \sqrt{2}\beta^{-1}dW^{(i)}_\tau
$$

Consequently, by solving $\partial_\tau \nu_\tau = F_2$ stochastically from an SDE perspective, we arrive at the following differential equation system, describing evolution of the particles $\{\theta^{(i)}\}$ over time τ: $\forall i$

$$
\frac{d\theta^{(i)}_\tau}{d\tau} = -\beta^{-1} F(\theta^{(i)}_\tau) - \frac{1}{M} \sum_{j=1}^{M} K(\theta^{(i)}_\tau - \theta^{(j)}_\tau) F(\theta^{(j)}_\tau)
$$

$$
+ \frac{1}{M} \sum_{j=1}^{M} \nabla K(\theta^{(i)}_\tau - \theta^{(j)}_\tau) d\tau + \sqrt{2}\beta^{-1}dW^{(i)}_\tau
$$

Algorithm 1 Stochastic Particle-Optimization Sampling

Input: Initial particles $\{\theta^{(i)}_0\}_{i=1}^{M}$ with $\theta^{(i)}_0 \in \mathbb{R}^d$, step size h_k, batch size B_k

1: for iteration $k=0,1,...,T$ do
2: Update $\hat{\theta}^{(i)}_{k+1}$ with 5) for $\forall i$.
3: end for

Output: $\{\theta^{(i)}_T\}_{i=1}^{M}$

Our intuition is that if the particle evolution $\{\theta^{(i)}\}$ can be solved exactly, the solution of $\{\nu_\tau\}$ will be well-approximated by the particles $\{\theta^{(i)}\}_{i=1}^{M}$. In our theory, we show this intuition is true. In practice, however, solving 5) is typically infeasible, and thus numerical methods are adopted. Furthermore, in the case of big
data, following SG-MCMC, $F(\theta^{(i)}_k)$ is typically replaced by a stochastic version $G^{(i)}_k \triangleq \frac{N}{n_k} \sum_{q \in I_k} F_q(\theta^{(i)}_k)$ evaluated with a minibatch of data of size B_k for computational feasibility. Based on the Euler method [Chen et al., 2015] with a stepsize h_k, (8) leads to the following updates for the particles at the k-th iteration: let $\zeta^{(i)}_k \sim \mathcal{N}(0, I)$ for all i,

$$
\theta^{(i)}_{k+1} = \theta^{(i)}_k - h_k \beta^{-1} G^{(i)}_k - \frac{h_k}{M} \sum_{j=1}^{M} K(\theta^{(i)}_k - \theta^{(j)}_k) G^{(j)}_k + \frac{h_k}{M} \sum_{j=1}^{M} \nabla K(\theta^{(i)}_k - \theta^{(j)}_k) + \sqrt{2\beta^{-1} h_k} \zeta^{(i)}_k
$$

We call the algorithm with particle update equations (9) stochastic particle-optimization sampling (Algorithm 1), in the sense that particles are optimized stochastically with extra random Gaussian noise. Intuitively, the added noise enhances the ability of the algorithm to jump out of local modes, leading to better exploration properties compared to standard SVGD. This serves as one of our motivations to generalize SVGD to SPOS. To illustrate the advantage of introducing the noise term, we compare SPOS and SVGD on sampling a difficult multi-mode distribution, with the density function given in Section A of the SM. The particles are initialized on a local mode close to zero. Note there are always positive probabilities to jump between modes in this example. Figure 1 plots the final locations of the particles along with the true density, which shows that particles in SPOS are able to reach different modes, while they are all trapped at one mode in SVGD. Theorem 4 below bounds the EPD of SPOS, in contrast with that for SVGD in Theorem 2 which is intuitively obtained by taking the $\beta \to \infty$ limit.

Remark 2 There are two interesting cases: i) When $C_1 > 0$, the EPD would decrease to the bound $4\sqrt{d\beta^{-1} M}/\lambda$ along time t. This represents the phenomenon of an attraction force between particles; ii) When $C_1 < 0$, the EPD would increase to the same bound, which represents the phenomenon of a repulsive force between particles, e.g., when particles are initialized with the same value ($\Gamma = 0$), they would be pushed away from each other until the EPD increases to the aforementioned bound.

4 Non-Asymptotic Convergence Analysis

In this section, we prove non-asymptotic convergence rates for the proposed SPOS algorithm under the 1-Wasserstein metric W_1, a special case of p-Wasserstein metric defined as

$$
W_p(\mu, \nu) = \left(\inf_{\rho \in \Pi(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|X_\mu - X_\nu\|^p d\rho(X_\mu, X_\nu) \right)^{1/p}
$$

where $\Pi(\mu, \nu)$ is the set of joint distributions on $\mathbb{R}^d \times \mathbb{R}^d$ with marginal distributions μ and ν. Note that SPOS reduces to SVGD when $\beta \to \infty$, thus our theory also sheds light on the convergence behavior of SVGD, where non-asymptotic theory is currently mostly missing, despite the asymptotic theory developed recently [Liu, 2017] [Lu et al., 2018]. For analysis, we further impose the following assumptions.

Assumption 3 Assume F and ν_0 satisfy the following assumptions:

3.1 There exists positive m_F such that $\langle F(\theta) - F(\bar{\theta}),\theta - \bar{\theta} \rangle \geq m_F \|\theta - \bar{\theta}\|^2$.

3.2 The initial probability law of each particle has a bounded and strictly positive density ν_0 with respect to the Lebesgue measure on \mathbb{R}^d, and $\gamma_0 \triangleq \log \int_{\mathbb{R}^d} e^{i\theta_0^T} \nu_0(\theta) d\theta < \infty$.

A few remarks: i) Assumption 3.1 indicates U to be convex. Theory of non-convex U is presented in Section 4 of the SM with some extra assumptions. ii) Assumptions 3.1 is widely adopted in the other theoretical works such as [Dalalyan and Karagulyan, 2017] [Chaterrji et al., 2018] [Raginsky et al., 2017] iii) Assumptions 3.2 has also been adopted in

4.1 Basic setup and extra notation

Due to the exchangeability of the particle system $\{\theta^{(i)}_k\}_{i=1}^M$ in \mathbb{R}^d, if we initialize all the particles $\theta^{(i)}_0$ with the same distribution ν_0, they would endow the same distribution for each time τ. We denote the distribution of each $\theta^{(i)}_\tau$ as ρ. Similar arguments hold for the particle system $\{\theta^{(i)}_k\}_{i=1}^M$ in \mathbb{R}^d, and thus we denote...
the distribution of each $\theta^{(t)}_k$ as $\mu_k (k = 1, 2, \cdots, T)$. To this end, our analysis aims at bounding $W_1(\mu_T, \nu_\infty)$ since ν_∞ is our target distribution $p(\theta|\mathcal{X})$ according to Proposition 4.

In the following, for conciseness, we use a summation of stepsizes to represent the “time index” of some density, e.g., $\rho_{\sum_{k=0}^{T-1} h_k}$. The high-level idea of bounding $W_1(\mu_T, \nu_\infty)$ in this section is to decompose it as follows:

$$W_1(\mu_T, \nu_\infty) \leq W_1(\mu_T, \rho_{\sum_{k=0}^{T-1} h_k}) + W_1(\rho_{\sum_{k=0}^{T-1} h_k}, \nu_{\sum_{k=0}^{T-1} h_k}) + W_1(\nu_{\sum_{k=0}^{T-1} h_k}, \nu_\infty)
\tag{10}$$

4.2 Bounds with stochastic particle approximation

In this section, we bound $W_1(\rho_{\sum_{k=0}^{T-1} h_k}, \nu_{\sum_{k=0}^{T-1} h_k})$ and $W_1(\nu_{\sum_{k=0}^{T-1} h_k}, \nu_\infty)$ in (10). The first term corresponds to a variant of granular media equation, but is much more challenging to bound.

Theorem 5 Under Assumption 4 and letting $\rho_0 = \nu_0$, there exist positive constants c_1 and c_2 independent of (M, τ) and satisfying $c_2 < \beta^{-1}$ such that

$$W_1(\rho_T, \nu_T) \leq c_1(\beta^{-1} - c_2)^{-1}M^{-1/2}, \quad \forall T. \quad \tag{11}$$

Remark According to Theorem 5, we can bound the $W_1(\rho_{\sum_{k=0}^{T-1} h_k}, \nu_{\sum_{k=0}^{T-1} h_k})$ term as $W_1(\rho_{\sum_{k=0}^{T-1} h_k}, \nu_{\sum_{k=0}^{T-1} h_k}) \leq \frac{c_1}{\sqrt{M(\beta^{-1} - c_2)}}$. Furthermore, by letting $\tau \to \infty$, we have $W_1(\rho_\infty, \nu_\infty) \leq \frac{c_1}{\sqrt{M(\beta^{-1} - c_2)}}$, an important result to prove the following theorem.

Theorem 6 Under Assumption 4, the following holds: $W_1(\nu_T, \nu_\infty) \leq c_3 e^{-2\lambda_1 T}$, where $\lambda_1 = \beta^{-1} m_F - L_F - 2L_K$ and c_3 is some positive constant independent of (M, τ). Furthermore, the $W_1(\nu_{\sum_{k=0}^{T-1} h_k}, \nu_\infty)$ term in (10) can be bounded as:

$$W_1(\nu_{\sum_{k=0}^{T-1} h_k}, \nu_\infty) \leq c_3 \exp \left(-2\lambda_1 \sum_{k=0}^{T-1} h_k \right). \quad \tag{12}$$

To ensure $W_1(\nu_{\sum_{k=0}^{T-1} h_k}, \nu_\infty)$ decreases over time, one needs to choose β small enough such that $\lambda_1 > 0$. This also sheds light on a failure case of SVGD (where $\beta \to \infty$) discussed in Section 3.1.

4.3 Bounds with a numerical solution

To bound the $W_1(\mu_T, \rho_{\sum_{k=0}^{T-1} h_k})$ term in (10), we adopt techniques from [Raginsky et al., 2017; Xu et al., 2018] on analyzing the behavior of SGLD, and derive the following results for our SPOS algorithm:

Theorem 7 Under Assumptions 4.5, for a fixed step size $h_k = h$ (\forall k) that is small enough, the corresponding $W_1(\mu_T, \rho_{T,h})$ is bounded as:

$$W_1(\mu_T, \rho_{T,h}) \leq c_4 M d^2 \beta^{-3} (c_5 \beta^2 B^{-1} + c_6 h)^{1/2} T^{1/2} h^{1/2} \quad \tag{13}$$

where B is the minibatch size and (c_4, c_5, c_6) are some positive constants independent of (M, T, h).

Combining bounds from Theorems 5 and 7, given T, the optimal bound over h can be seen to decrease at a rate of $O(M^{-1/2})$. Furthermore, the dependence of T in the bound of Theorem 7 makes the bound relatively loose. Fortunately, the bound can be made independent of T by considering a decreasing-stepsizre SPOS algorithm, stated in Theorem 8.

Theorem 8 Under Assumptions 4.5, for a decreasing step size $h_k = h_0/(k+1)$, and letting the minibatch size in each iteration k be $B_k = B_0 + \log(k+1))^{100/99}$ with B_0 the initial batch size, the corresponding $W_1(\mu_T, \rho_{\sum_{k=0}^{T-1} h_k})$ term is bounded, for some β small enough, as:

$$W_1(\mu_T, \rho_{\sum_{k=0}^{T-1} h_k}) \leq c_4 \beta^{-3} M d^2 \left(c_7 h_0^3 + c_8 \beta^3 h_0/B_0 \right) + c_9 h_0^3 \beta^2 \right)^{1/2}, \quad \tag{14}$$

where (c_4, c_7, c_8, c_9) are positive constants independent of (M, T, h_0).

Note B_k increases at a very low speed, e.g., only by 15 after 10^5 iterations, thus it does not affect algorithm efficiency. Consequently, $W_1(\mu_T, \rho_{\sum_{k=0}^{T-1} h_k})$ would approach zero when $h_0^{1/2} M \to 0$.

The Overall Non-Asymptotic Bounds By directly combining results from Theorems 5-8, one can easily bound the target $W_1(\mu_T, \nu_\infty)$, stated in Theorem 9 and Theorem 10.

Theorem 9 (Fixed Stepsize) Under Assumption 4, and setting $h_k = h_0$, $B_k = B_0$, $W_1(\mu_T, \nu_\infty)$ is bounded as:

$$W_1(\mu_T, \nu_\infty) \leq \frac{c_1}{\sqrt{M(\beta^{-1} - c_2)}} + c_4 M d^2 \beta^{-3} (c_5 \beta^2 B^{-1} + c_6 h)^{1/2} T^{1/2} h^{1/2} + c_3 \exp \left\{ -2 \left(\beta^{-1} m_F - L_F - 2L_K \right) T h \right\}, \quad \tag{15}$$

where $(c_1, c_2, c_3, c_4, c_5, c_6, \beta)$ are positive constants such that $\frac{1}{\beta} > c_2$ and $m_F > L_F + 2L_K$.

Theorem 10 (Decreasing Stepsize) Denote $h_T = \frac{1}{\sum_{k=0}^{T-1} h_k}$. Under Assumption 4.5, if we set $h_k = =$
\[h_0/(k+1) \text{ and } B_k = B_0 + \lfloor \log(k+1) \rfloor^{100/99}, \]
\[W_1(\mu_T, \nu_\infty) \text{ is bounded as:} \]
\[
W_1(\mu_T, \nu_\infty) \leq \frac{c_1}{\sqrt{M(\beta^{-1} - c_2)}} \\
+ c_3 \exp\{ -2 (\beta^{-1} m_F - L_F - 2L_K) \tilde{h}_T \} \\
+ c_0 \beta^{-3} M d^2 (c_0 h_0^3 + c_7 \beta^3 h_0 / B_0 + c_8 h_0^2 \beta^2)^{\frac{1}{2}}.
\]
where \((c_1, c_2, c_3, \beta, c_7, c_8, c_9, c_0, \beta)\) are positive constants such that \(\frac{1}{\beta} > c_2\) and \(\frac{m_F}{\beta} > L_F + 2L_K\).

Remark 4 Four implications are highlighted from the theorems: i) \(M\) and \(T\) play a similar role when bounding the numerical errors (the third term in the RHS of (15)). The bound increases with increasing \(M\) and \(T\), which seems unavoidable and is consistent with the latest result for SGLD, whose bound is proved to increase w.r.t. \(T\) [Raginsky et al., 2017]. ii) The increasing bound w.r.t. \(T\) can be compromised by using decreasing stepsizes shown in Theorem 4. Unfortunately, this does not seem to eliminate the effect of \(M\). To accommodate this, one should either use a smaller \(h\) or a larger \(\beta\). We believe future work is needed to improve the bound w.r.t. \(M\). iii) When \(T \times M\) (proportional to computation cost) is not too large, the error is bounded above by \(O(M^{-1/2} + M)\), indicating the existence of an optimal \(M\), i.e., one should not choose arbitrary many particles as it would induce larger numerical-error bounds. This is somewhat surprising and counter-intuitive compared with the asymptotic theory [Liu, 2017; Lu et al., 2018]. However, we will demonstrate this is true with synthetic experiments below, where the phenomenon is also observed in SVGD. iv) When \(T \times M\) is large enough, the \(O(M)\) term dominates, indicating an increasing error w.r.t. \(M\). This is verified by the experiments in Section 5.2 (Figure 3), although the bound might not be strictly tight.

5 Experiments

We use a simple synthetic experiments to demonstrate the non-asymptotic convergence behaviors of SPOS indicated by our theory. For more experiments and real applications and comparisons of SPOS with SVGD and SGLD on Bayesian learning of deep neural network and Bayesian exploration in deep reinforcement learning (RL), please refer to Section 6 of the SM.

5.1 Sampling a Gaussian distribution

We apply the algorithms to sample from a simple 1-D Gaussian distribution with mean 2 and variance 1. Since the 1-Wasserstein distance is infeasible to calculate, we follow Vollmer et al., 2016, Chen et al., 2015 and measure the convergence using \(E_{\theta \sim P_\nu} |f(\theta) - E_{\theta \sim \mathcal{N}(2,1)} [f(\theta)]|\) with a test function \(f(\theta) \triangleq \theta^2\). We fix \(T = 1000\) and \(h = 0.03\). Particles are initialized as being drawn from \(\mathcal{N}(0,1)\). Figure 2 plots the estimation errors versus the number of iterations for different particles \(M\). For both SPOS and SVGD, it is observed that when \(T\) is not too large (\(\approx 100\)), the errors increase w.r.t. \(T\), and the optimal \(M\) is around 300, consistent with our theory. When \(T\) is large enough, the errors decrease w.r.t. \(T\), and larger \(M\) induces larger errors. This is also consistent with our theory because the last term in Theorem 7 dominates when \(T\) is large, leading to increasing errors with larger \(M\). The only concern seems to be the tightness of the bound, which might be due to technical difficulty as current techniques for SGLD also indicate an increasing bound w.r.t. \(T\) [Raginsky et al., 2017]. The large optimal \(M\) also suggests using a relative large \(M\) should not be a problem in real applications.

Impact of particle number \(M\) In addition to the above result to demonstrate the existence of an optimal \(M\), we further verify that when \(T \times M\) is large enough, for a fixed \(T\), we observe the errors increase with increasing \(M\)’s. We use the same setting as above. Figure 4 plots the curves of errors versus number of particles. We see that errors indeed increase w.r.t. particle numbers, consistent with our theory. Although the rate of the bound from our theory might not match exactly with the experimental results, we believe this is still significant as the problem has never been discovered before, which is somewhat counter-intuitive. On the other hand, the results are also reasonable, as.

![Figure 2: Estimation errors versus number of iterations for SPOS (left) and SVGD (right).](image-url)
more particles would need much more updates to fit a distribution well. The results indicate that to get a smaller error, one should increase number of iterations faster than increasing the number of particles.

Table 1: Averaged RMSE with standard deviations.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SGLD</th>
<th>SVGD</th>
<th>SPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>3.114 ± 0.144</td>
<td>2.961 ± 0.169</td>
<td>2.529 ± 0.126</td>
</tr>
<tr>
<td>Concrete</td>
<td>5.508 ± 0.275</td>
<td>5.157 ± 0.082</td>
<td>5.071 ± 0.150</td>
</tr>
<tr>
<td>Energy</td>
<td>0.842 ± 0.060</td>
<td>1.291 ± 0.029</td>
<td>0.752 ± 0.029</td>
</tr>
<tr>
<td>Kin8nm</td>
<td>0.080 ± 0.001</td>
<td>0.090 ± 0.001</td>
<td>0.079 ± 0.001</td>
</tr>
<tr>
<td>Naval</td>
<td>0.004 ± 0.000</td>
<td>0.004 ± 0.000</td>
<td>0.004 ± 0.000</td>
</tr>
<tr>
<td>CCPP</td>
<td>4.059 ± 0.030</td>
<td>4.127 ± 0.027</td>
<td>3.939 ± 0.049</td>
</tr>
<tr>
<td>Wine</td>
<td>0.632 ± 0.022</td>
<td>0.604 ± 0.007</td>
<td>0.598 ± 0.014</td>
</tr>
<tr>
<td>Yacht</td>
<td>1.183 ± 0.513</td>
<td>1.537 ± 0.099</td>
<td>0.840 ± 0.087</td>
</tr>
<tr>
<td>Protein</td>
<td>4.281 ± 0.011</td>
<td>4.392 ± 0.015</td>
<td>4.254 ± 0.005</td>
</tr>
<tr>
<td>YearPred</td>
<td>8.707 ± NA</td>
<td>8.684 ± NA</td>
<td>8.681 ± NA</td>
</tr>
</tbody>
</table>

5.2 BNNs for regression

We next conduct experiments for Bayesian learning of deep neural networks (DNNs) to empirically compare SGLD, SVGD and SPOS for posterior sampling of BNN weights with standard Gaussian priors. We use a RBF kernel with the bandwidth set to the medium of particles. Following [Li et al., 2015], 10 UCI public datasets are considered: 100 hidden units for 2 large datasets (Protein and YearPredict), and 50 hidden units for the other 8 small datasets. We use the same setting as [Zhang et al., 2018b]. The datasets are randomly split into 90% training and 10% testing. For a fair comparison, we use the same split of data (train, val and test) for all methods. We report the root mean squared error (RMSE) in Table 1. The proposed SPOS outperforms both SVGD and SGLD. More detailed settings and results are given in Section of the SM.

5.3 Bayesian exploration in deep RL

It is well-accepted that RL performance directly measures how well the uncertainty is learned, due to the need for exploration. We apply SPOS for RL, and compare it with SVPG, a SVGD version of the policy gradient method [Liu et al., 2017]. Following [Liu et al., 2017] [Zhang et al., 2018a], we define policies with Bayesian DNNs. This naturally introduces uncertainty into action selections, rendering Bayesian explorations to make policy learning more effective.

We follow the same setting as in [Liu et al., 2017] except using simpler policy-network architectures as in [Houthooft et al., 2016]. We conduct experiments on three classical continuous control tasks are considered: Cartpole Swing-Up, Double Pendulum, and Cartpole.

Detailed experimental settings are given in the SM. Figure 4 plots the cumulative rewards over time on the Cartpole environment, which clearly shows the advantage of our method over SVPG. More results are provided in the SM.

6 Conclusion

We propose an approach for particle-optimization-based sampling that overcomes a potential pitfall of standard SVGD. Notably, for the first time, we develop non-asymptotic convergence theory for the proposed SPOS framework, a missing yet important theoretical result since the development of SVGD. Within our theoretical framework, a pitfall of SVGD, which has been studied empirically [Wang et al., 2017], [Zhuo et al., 2018], is formally analyzed. Our theory is practically significant as it provides nonasymptotic theoretical guarantees for the recently proposed particle-optimization-based algorithms such as the SVGD, whose advantages have also been extensively examined in real applications. Surprisingly, our theory indicates the existence of an optimal particle size, i.e., increasing particle size does not necessarily guarantee performance improvement. This is also observed for SVGD in a synthetic experiment. There are a number of interesting future works. For example, one might explore more recently developed techniques such as [Cheng et al., 2018] [Liu and Wang, 2018] to improve the convergence bound; one can also adopt the SPOS framework for non-convex optimization like where SG-MCMC is used, and develop corresponding theory to study the convergence properties of the algorithm to the global optimum.
References

Ma et al., 2015 Ma, Y. A., Chen, T., and Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In NIPS.

