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Appendix

A Background of SGHMC

SGHMC, Algorithm 1, reduces the computational cost of full-batch methods by using a stochastic gradient in
lieu of ∇U . SGHMC estimates U(θ) by minibatch D̃. However, naïvely replacing U by Ũ in HMC will lead to
divergence from the target distribution (Chen et al., 2014). Therefore, SGHMC adds the additional friction term
of L2MC to offset the noise introduced by using minibatch. That is, SGHMC is simulating the dynamics

dθ = σ−2rdt,

dr = −∇Ũ(θ)dt− 2βrdt+N (0, 4(β − β̂)σ2dt) (7)

where β controls the friction term and β̂ is an estimate of the stochastic gradient noise, which is often set to be
zero in practice.

B Proof of Results in Section 4

In this section, we will provide proofs of the results that we asserted in Section 4 about reversibility and skew-
reversibility of our algorithms. First, for completeness we re-prove the fact that a skew-reversible chain has
stationary distribution π, which is known, but not as well-known as the corresponding result for reversible chains.

Lemma 1. If G is a skew-reversible chain, that is one that satisfies (5), then π is its stationary distribution.

Proof. Since G is skew-reversibile, by definition it satisfies for any states x and y the conditions that π(x) = π(x⊥)
and

π(x)G(x, y) = π(y⊥)G(y⊥, x⊥).

By combining these two we can easily get

π(x)G(x, y) = π(y)G(y⊥, x⊥).

Next, summing up over all x in the while state space Ω,∑
x∈Ω

π(x)G(x, y) =
∑
x∈Ω

π(y)G(y⊥, x⊥) = π(y)
∑
x∈Ω

G(y⊥, x⊥).

Since ⊥ denotes an involution, it follows that summing up over x for all x in the state space is equal to summing
up over all x⊥, so ∑

x∈Ω

π(x)G(x, y) = π(y)
∑
x∈Ω

G(y⊥, x) = π(y),

where the last equality follows from the fact that for any Markov chain, the sum of the probabilities of transitioning
into all states is always 1. So, we’ve shown that∑

x∈Ω

π(x)G(x, y) = π(y)

which can be written in matrix form as πG = π; this proves the lemma.

Lemma 2. The amortized Metropolis-Hastings procedure described in Section 4 using acceptance probability (3)
results in a chain that is reversible with stationary distribution π.

Proof. According to the algorithm described in Section 4, the probability density of transitioning from state x to
state y 6= x via intermediate states x = x0, x1, x2, . . . , xT−1, xT = y is

E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
,
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where the expected value here is taken over the randomness used to select the stochastic samples ζt. This follows
from the law of total expectation. This means that the total probability of transitioning from x to y 6= x is just
the integral of this over the intermediate states

G(x, y) =

∫
E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1,

Now substituting in the value of τ from (3) gives us

G(x, y) =

∫
E

[
min

(
1,
π(y)

π(x)

T−1∏
t=0

P (xt+1, xt; ζt)

P (xt, xt+1; ζt)

)
·
T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1

=

∫
E

[
min

(
T−1∏
t=0

P (xt, xt+1; ζt),
π(y)

π(x)

T−1∏
t=0

P (xt+1, xt; ζt)

)]
dx1 · dx2 · · · dxT−1.

Multiplying both sides by π(x),

π(x)G(x, y) =

∫
E

[
min

(
π(x)

T−1∏
t=0

P (xt, xt+1; ζt), π(y)

T−1∏
t=0

P (xt+1, xt; ζt)

)]
dx1 · dx2 · · · dxT−1.

From here, the fact that G is reversible follows directly from a substitution of xt 7→ xT−t in the integral, combined
with the observation that the ζt are i.i.d. and so exchangeable.

Lemma 3. The amortized Metropolis-Hastings procedure for skew-reversible chains described in Section 4 using
acceptance probability (6) results in a chain that is skew-reversible with stationary distribution π, as long as π
satisfies π(x) = π(x⊥).

Proof. As above, the probability density of transitioning from state x to state y 6= x via intermediate states
x = x0, x1, x2, . . . , xT−1, xT = y is

E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
,

where the expected value here is taken over the randomness used to select the stochastic samples ζt. This follows
from the law of total expectation. This means that the total probability of transitioning from x to y 6= x is just
the integral of this over the intermediate states

G(x, y) =

∫
E

[
τ ·

T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1,

Now substituting in the value of τ from (3) gives us

G(x, y) =

∫
E

[
min

(
1,
π(y)

π(x)

T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

P (xt, xt+1; ζt)

)
·
T−1∏
t=0

P (xt, xt+1; ζt)

]
dx1 · dx2 · · · dxT−1

=

∫
E

[
min

(
T−1∏
t=0

P (xt, xt+1; ζt),
π(y)

π(x)

T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

)]
dx1 · dx2 · · · dxT−1.

Multiplying both sides by π(x), and leveraging the fact that π(x) = π(x⊥),

π(x)G(x, y) =

∫
E

[
min

(
π(x)

T−1∏
t=0

P (xt, xt+1; ζt), π(y⊥)

T−1∏
t=0

P (x⊥t+1, x
⊥
t ; ζt)

)]
dx1 · dx2 · · · dxT−1.

From here, the fact that G is skew-reversible follows directly from a substitution of xt 7→ x⊥T−t in the integral (which
is a valid substitution without introducing an extra constant term because the involution ⊥ is measure-preserving
by assumption), combined with the observation that the ζt are i.i.d. and so exchangeable.



Ruqi Zhang, A. Feder Cooper, Christopher De Sa

Lemma 4. A skew-reversible chain will become reversible by resampling the momentum at the beginning of outer
loop.

Proof. Assume the chain starts at (θ, r) and ends at (θ∗, r∗). By the skew-detailed balance, we have

π(θ, r)G((θ, r), (θ∗, r∗)) = π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r))

Since the momentum is resampled and is independent of θ, we can integrate it and describe the chain in terms of θ

π(θ)H(θ, θ∗) :=

∫
π(θ)π(r)G((θ, r), (θ∗, r∗))drdr∗

Similarly, we have

π(θ∗)H(θ∗, θ) :=

∫
π(θ∗)π(−r∗)G((θ∗,−r∗), (θ,−r))dr∗dr

By the skew-detailed balance we know

π(θ)H(θ, θ∗) = π(θ∗)H(θ∗, θ)

This proves the lemma.

C Proof of Theorem 1

Proof. First, we consider resampling momentum in Algorithm 2 and will show that the chain is reversible. We
consider the probability of starting from θ and going through a particular sequence of rt+ 1

2
and θt and arriving at

(θ∗, r∗). We have G(θ, θ∗), which is the transition probability from θ to θ∗, as the following

G(θ, θ∗) = E

∫
P
(
θ0, θ1, . . . , θT−1, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(θ))dθ0 · · · dθT−1

where θ = {θ0, . . . , θT−1, θ
∗} and the expectation is taken over the stochastic energy function samples Ũt.

Next, we want to derive the probability density in terms of r and η = {η0, . . . , ηT−1}. This involves a change
of variables in the PDF formula. We notice that θ is a bijective function of r and η. By the rule of change of
variables, we know that

P
(
θ0, θ1, . . . , θT−1, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(θ))

= P
(
r, η0, . . . , ηT−1

∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(η, r)))det−1(D(η,r)(θ))

where D(η,r)(θ, θ
∗) is the Jacobian matrix.

To get this Jacobian matrix, we first apply the chain rule,

D(η,r)(θ) = Dr(θ) ·D(η,r)r

where r = {r, r, . . . , rT− 1
2
}.

Since the derivative of θt with respect to any rs− 1
2
for s > t is zero, it follows that Dr(θ) will be triangular, and

so the determinant is just the product of the diagonal entries. From our formula for the update rule,

θt = θ +
1

2
εσ−2rt− 1

2
, for t = 0, T

θt = θt−1 + εσ−2r− 1
2
, for t = 1, . . . , T − 1.

Therefore,

∂θ0

∂rt− 1
2

=
1

2
εσ−2Id, for t = 0, T

∂θt
∂rt− 1

2

= εσ−2Id, for t = 1, . . . , T − 1.
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It follows that

det (Dr(θ)) =
1

4d
(
εσ−2

)(T+1)d
.

Similarly, the derivative of ηt with respect to any rs− 1
2
for s > t is zero, it follows that D(η,r)r will be triangular,

and so the determinant is just the product of the diagonal entries. That is,

Dr(η, r)) =

T−1∏
t=0

∂ηt
∂rt+ 1

2

.

From our original formula for the update rule,

rt+ 1
2

= rt− 1
2
− ε∇Ũt(θt)− εβ

(
rt− 1

2
+ rt+ 1

2

)
+ ηt

we have

(1 + εβ)rt+ 1
2

= rt− 1
2
− ε∇Ũt(θt)− εβrt− 1

2
+ ηt,

and so

∂ηt
∂rt+ 1

2

= (1 + εβ)Id.

It follows that

det
(
D(η,r)r

)
= (1 + εβ)−Td

Now we can get that

det
(
D(η,r)(θ)

)
= det (Dr(θ)) · det

(
D(η,r)r

)
= (1 + εβ)−Td · 1

4d
(
εσ−2

)(T+1)d

Thus,

G(θ, θ∗) = E

∫
P
(
θ0, θ1, . . . , θT−1, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(θ))dθ0 · · · dθT−1

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫
P
(
r, η0, . . . , ηT−1

∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(η, r)))dθ0 · · · dθT−1

By the distribution of r and ηt, we know that

P
(
r, η0, η2, . . . , ηT−2

∣∣∣θ, Ũ0, . . . , ŨT−1

)
=
(
2πσ2

)−d
2 · exp

(
−‖r‖

2

2σ2

)
·
T−1∏
t=0

(
8πεβσ2

)−d
2 · exp

(
− ‖ηt‖

2

8εβσ2

)

=
(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
−‖r‖

2

2σ2

)
· exp

(
− 1

8εβσ2

T−1∑
t=0

‖ηt‖2
)
.
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Notice that

T−1∑
t=0

‖ηt‖2 =

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt) + εβ

(
rt− 1

2
+ rt+ 1

2

)∥∥∥2

=

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ 2εβ
(
rt+ 1

2
− rt− 1

2
+ ε∇Ũt(θt)

)T (
rt− 1

2
+ rt+ 1

2

)
+ ε2β2

∥∥∥rt− 1
2

+ rt+ 1
2

∥∥∥2

=

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ 2εβ

(∥∥∥rt+ 1
2

∥∥∥2

−
∥∥∥rt− 1

2

∥∥∥2
)

+ 2ε2β∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)
+ ε2β2

∥∥∥rt− 1
2

+ rt+ 1
2

∥∥∥2

= 2εβ

(∥∥∥rT− 1
2

∥∥∥2

− ‖r‖2
)

+

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ 4εβσ2
(
ρt+ 1

2
− ρt− 1

2

)
+ ε2β2

∥∥∥rt− 1
2

+ rt+ 1
2

∥∥∥2

= 2εβ
(
‖r∗‖2 − ‖r‖2

)
+ 4εβσ2

(
ρT− 1

2
− ρ− 1

2

)
+

T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2

.

By substituting this above and recalling that ρ− 1
2

= 0,

G(θ, θ∗) = (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫
P
(
r, η0, η2, . . . , ηT−2, θ

∗
∣∣∣θ, Ũ0, . . . , ŨT−1

)
min(1, a(η, r))dθ0 · · · dθT−1

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫ (
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
−‖r‖

2

2σ2

)

· exp

(
− 1

8εβσ2
· 2εβ

(
‖r∗‖2 − ‖r‖2

))
· exp

(
− 1

8εβσ2
· 4εβσ2

(
ρT− 1

2
− ρ− 1

2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

·min(1, a)dθ0 · · · dθT−1

= (1 + εβ)Td · 4d
(
εσ−2

)−(T+1)d
E

∫ (
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2

· exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
−1

2
ρT− 1

2

)
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

·min(1, a)dθ0 · · · dθT−1

where r are to be understood as functions of the θt, and the integral is taken over θt.
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Substituting the expression of a, then the term inside the integral is

(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
−1

2
ρT− 1

2

)
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

·min
(

1, exp
(
U(θ)− U(θ∗) + ρT− 1

2

))
=
(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

· exp (U(θ)) ·min

(
exp

(
−U(θ)− 1

2
ρT− 1

2

)
, exp

(
−U(θ∗) +

1

2
ρT− 1

2

))
.

Finally, this probability multiplied by the probability of θ0, which is 1
Z exp (−U(θ)), is

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · 4d

(
εσ−2

)−(T+1)d

E

∫ (
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 · exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
)

· exp (U(θ)) ·min

(
exp

(
−U(θ)− 1

2
ρT− 1

2

)
, exp

(
−U(θ∗) +

1

2
ρT− 1

2

))
dθ0 · · · dθT−1

=
1

Z
· (1 + εβ)Td · 4d

(
εσ−2

)−(T+1)d ·
(
2πσ2

)−d
2 ·
(
8πεβσ2

)−Td
2 ·

E

∫
exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

·min

(
exp

(
−U(θ)− 1

2
ρT− 1

2

)
, exp

(
−U(θ∗) +

1

2
ρT− 1

2

))
dθ0 · · · dθT−1

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣U(θ)− U(θ∗) + ρT− 1
2

∣∣∣) dθ0 · · · dθT−1.

And writing this out explicitly in terms of

ρT− 1
2

=
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)
,
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we get

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)∣∣∣∣∣
)
dθ0 · · · dθT−1.

Now, for this forward path from θ to θ∗, consider the reverse leapfrog trajectory from θ∗ to θ. This trajectory will
have the same values for θ, θ0, . . . , θ

∗ in the reversed order and will have negated values for r− 1
2
, r1− 1

2
, . . . , rT− 1

2

in the reversed order again. Because of this negation, the values of ρ 1
2
, ρ1+ 1

2
, . . . , ρT− 1

2
will also be negated. It

follows that π(θ∗)G(θ∗, θ) will have the same expression.

Therefore,

π(θ)G(θ, θ∗) = π(θ∗)G(θ∗, θ).

This shows that Algorithm 2 with resampling momentum is reversible.

Now we show that the chain satisfies skew detailed balance and the stationary distribution of θ is π(θ) if not
resampling momentum. Skew detailed balance means that the chain satisfies the following condition (Turitsyn
et al., 2011)

π(x)G(x, y) = π
(
y⊥
)
G
(
y⊥, x⊥

)
where G is the transition probability.

By Section B, we know that a chain that satisfies the above condition will have invariant distribution π(x).

In our setting, x = (θ, r) and x⊥ = (θ,−r). Given this, the skew detailed balance is

π(θ, r)G((θ, r), (θ∗, r∗)) = π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r)).

Next we will show that Algorithm 2 without resampling momentum satisfies the above condition and it naturally
follows that Algorithm 2 without resampling converges to the desired distribution.

We consider the joint distribution of (θ, r). By a similar analysis of resampling case, we can get that

π(θ, r) ·G((θ, r), (θ∗, r∗))

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)∣∣∣∣∣
)
dθ0 · · · dθT−1.
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Again, the reverse trajectory will have the same values for θ, θ0, . . . , θ
∗ and will have negated values for

r− 1
2
, r1− 1

2
, . . . , rT− 1

2
in the reversed order. Therefore, π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r)) will have the same ex-

pression.

It follows that

π(θ, r)G((θ, r), (θ∗, r∗)) = π(θ∗,−r∗)G((θ∗,−r∗), (θ,−r))

which is what we want.

D Connection to HMC

When using a full-batch, β = 0, and resampling, AMAGOLD becomes HMC. To see this, we first notice that
with β = 0 the update rules of θ and r are the same as in HMC. The remaining thing is to show a is also the
same as in HMC. We rewrite ρt+ 1

2
as

ρt+ 1
2

= ρt− 1
2

+
1

2
σ−2

(
rt− 1

2
− rt+ 1

2

)T (
rt− 1

2
+ rt+ 1

2

)
= ρt− 1

2
+

1

2
σ−2

(∥∥∥rt− 1
2

∥∥∥2

−
∥∥∥rt+ 1

2

∥∥∥2
)

As a result,

ρT− 1
2

=
1

2
σ−2

T−1∑
t=0

(∥∥∥rt− 1
2

∥∥∥2

−
∥∥∥rt+ 1

2

∥∥∥2
)

=
1

2
σ−2

(∥∥∥r− 1
2

∥∥∥2

−
∥∥∥rT− 1

2

∥∥∥2
)

It follows that a becomes the same as in HMC.

E Proof of Theorem 2

In this section we prove a bound on the convergence rate of AMAGOLD as compared with second-order Langevin
dynamics (L2MC).

Proof. We start with the expression we derived for the transition probability in the proof of reversibility.

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·E
∫

exp

(
− 1

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥rt+ 1
2
− rt− 1

2
+ ε∇Ũt(θt)

∥∥∥2

+ c2ε2β2
∥∥∥rt− 1

2
+ rt+ 1

2

∥∥∥2
))

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũt(θt)T
(
rt− 1

2
+ rt+ 1

2

)∣∣∣∣∣
)
dθ0 · · · dθT−1.

Since
θt = θt−1 + εσ−2rt− 1

2
,

if we define θ−1 and θT by convention such that

θ−1 + θ0

2
= θ and

θT−1 + θT
2

= θ∗,

it follows that for all t ∈ {0, . . . , T − 1}

rt+ 1
2
− rt− 1

2
= ε−1σ2 (θt+1 − 2θt + θt−1)
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and

rt+ 1
2

+ rt− 1
2
ε−1σ2 (θt+1 − θt−1)

so we can write the above transition probability explicitly in terms of the θt as

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·E
∫

exp
(
− c

4σ2

(
‖r∗‖2 + ‖r‖2

))
· exp

(
− 1

8εβσ2
·
T−1∑
t=0

(∥∥∥ε−1σ2 (θt+1 − 2θt + θt−1) + ε∇Ũt(θt)
∥∥∥2

+ c2ε2β2
∥∥ε−1σ2 (θt+1 − θt−1)

∥∥2

))
· exp

(
−U(θ) + U(θ∗)

2

)

· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2
εσ−2

T−1∑
t=0

∇Ũ(θt)
T
(
ε−1σ2 (θt+1 − θt−1)

)∣∣∣∣∣
)

· dθ0 · · · dθT−1.

Simplifying this a bit, we get

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·E
∫

exp

(
−σ

2

ε2

(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2

))
· exp

(
− σ2

8ε3β
·
T−1∑
t=0

∥∥∥θt+1 − 2θt + θt−1 + ε2σ−2∇Ũt(θt)
∥∥∥2
)

· exp

(
−βσ

2

8ε
·
T−1∑
t=0

‖θt+1 − θt−1‖2
)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣U(θ)− U(θ∗) +
1

2

T−1∑
t=0

∇Ũt(θt)T (θt+1 − θt−1)

∣∣∣∣∣
)
dθ0 · · · dθT−1.

Next, let

Nt = ∇Ũt(θt)−∇Ut(θt),
At = θt+1 − 2θt + θt−1 + ε2σ−2∇Ut(θt),
Bt = θt+1 − θt−1,

Ct = U(θ)− U(θ∗) +
1

2

T−1∑
t=0

∇Ut(θt)T (θt+1 − θt−1) .
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Notice that only Nt depends on the randomness of the stochastic gradient samples. Then,

π(θ)G(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

E

[
exp

(
−σ

2

ε2

(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2

))

· exp

(
− σ2

8ε3β
·
T−1∑
t=0

(
‖At‖2 + 2ε2σ−2ATt Nt + ε4σ−4 ‖Nt‖2

))

· exp

(
−βσ

2

8ε
·
T−1∑
t=0

‖Bt‖2
)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2

∣∣∣∣∣Ct +
1

2

T−1∑
t=0

NT
t Bt

∣∣∣∣∣
)]

dθ0 · · · dθT−1.

Now, for any constant c > 1, we can bound

E

[∣∣∣∣∣
T−1∑
t=0

NT
t Bt

∣∣∣∣∣
]
≤

√√√√√E

(T−1∑
t=0

NT
t Bt

)2


=

√√√√T−1∑
t=0

BTt E
[
NtNT

t

]
Bt

≤

√√√√T−1∑
t=0

V 2

d
‖Bt‖2

≤ V 2

d

ε

2(c− 1)βσ2
+ (c− 1)

βσ2

2ε

T−1∑
t=0

‖Bt‖2 .

Additionally, we know that E [Nt] = 0 and

E
[
‖Nt‖2

]
= E

[
tr
(
NtN

T
t

)]
≤ tr

(
V 2

d
I

)
= V 2.

So, since by Jensen’s inequality, E [exp(X)] ≥ exp(E [X]), we can bound this with

π(θ)G(θ, θ∗)

≥ 1

Z
· (1 + εβ)Td · β−Td2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

exp

(
−σ

2

ε2

(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2

))
· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2
)
· exp

(
−εTV

2

8σ2β

)

· exp

(
−cσ

2β

8ε
·
T−1∑
t=0

‖Bt‖2
)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|

)
· exp

(
− 1

(c− 1)Td
· εTV

2

8σ2β

)
dθ0 · · · dθT−1.
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Now, this is a lower bound on the AMAGOLD chain with parameters (ε, σ, β). Next, we consider the transition
probability of a rescaled chain, with slightly different parameters, that will be set as a function of c. Specifically,
consider the chain with parameters (ε, σ · c−1/4, β · c−1/2). (We will set the parameter c later; at this point in
the proof it is just an arbitrary constant c > 1.) If we call this rescaled chain Gr, then by substitution of the
parameters into the above expression, we get

π(θ)Gr(θ, θ
∗)

≥ 1

Z
· (1 + c−1/2εβ)Td · β−Td2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · c− d4 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

E exp

(
− σ2

c1/2ε2

(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2

))
· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2
)
· exp

(
−cεTV

2

8σ2β

)

· exp

(
−σ

2β

8ε
·
T−1∑
t=0

‖Bt‖2
)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
dθ0 · · · dθT−1

≥ 1

Z
· (1 + c−1/2εβ)Td · β−Td2 · 2−

3(T−1)d
2 · π−

(T+1)d
2 · c− d4 · ε−

(3T+2)d
2 · σ(T+1)d

· exp

(
−cεTV

2

8σ2β

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
·
∫

E exp

(
−σ

2

ε2

(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2

))
· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2
)

· exp

(
−σ

2β

8ε
·
T−1∑
t=0

‖Bt‖2
)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|

)
dθ0 · · · dθT−1.

On the other hand, consider the transition probability of the full-gradient L2MC chain with parameters (ε, σ, β).
This chain will be the same as the AMAGOLD chain, except that Nt = 0 always. So, if we call this chain’s
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transition probability Ḡ, we will have

π(θ)Ḡ(θ, θ∗)

=
1

Z
· (1 + εβ)Td · β−Td2 · 2−

(3T−1)d
2 · π−

(T+1)d
2 · ε−

(3T+2)d
2 · σ(T+1)d

·
∫

exp

(
−σ

2

ε2

(
‖θ∗ − θT−1‖2 + ‖θ0 − θ‖2

))
· exp

(
− σ2

8ε3β
·
T−1∑
t=0

‖At‖2
)

· exp

(
−βσ

2

8ε
·
T−1∑
t=0

‖Bt‖2
)

· exp

(
−U(θ) + U(θ∗)

2

)
· exp

(
−1

2
|Ct|

)
dθ0 · · · dθT−1.

Using this, we can simplify our bound on the transition probability of the AMAGOLD chain to

π(θ)Gr(θ, θ
∗) ≥

(
1 + c−1/2εβ

1 + εβ

)Td
· c− d4 · exp

(
−cεTV

2

8σ2β

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
· π(θ)Ḡ(θ, θ∗).

Thus,

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥
(

1 + c−1/2εβ

1 + εβ

)Td
· c− d4 · exp

(
−cεTV

2

8σ2β

)
· exp

(
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
.

All that remains to get a bound is to set c appropriately. Since

c−
d
4 = exp

(
−d

4
log(c)

)
≥ exp

(
−d

4
(c− 1)

)
,

and

c−1/2 ≥ 1− c− 1

2
,

we can bound this with

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥

(
1 +

(
1− c−1

2

)
εβ

1 + εβ

)Td
· exp

(
−d

4
(c− 1)− cεTV 2

8σ2β
− 1

(c− 1)Td
· cεTV

2

8σ2β

)

≥
(

1− (c− 1)εβ

2(1 + εβ)

)Td
· exp

(
−d

4
(c− 1)− cεTV 2

8σ2β
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
.

Since for any 0 ≤ x < 1/2, it holds that 1− x ≥ exp(−2x), as long as

(c− 1)εβ

1 + εβ
≤ 1,

it holds that

1− (c− 1)εβ

2(1 + εβ)
≥ exp

(
− (c− 1)εβ

1 + εβ

)
.
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So, under this assumption,

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥ exp

(
− (c− 1)εβTd

1 + εβ
− d

4
(c− 1)− cεTV 2

8σ2β
− 1

(c− 1)Td
· cεTV

2

8σ2β

)
= exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−(c− 1)

(
(1 + εβ(1 + 4T ))d

4(1 + εβ)
+
εTV 2

8σ2β

)
− εV 2

8(c− 1)σ2βd

)
= exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−(c− 1)

(
3

2
Td+

εTV 2

8σ2β

)
− εV 2

8(c− 1)σ2βd

)
.

If we also assume that
εV 2

4σ2βd
≤ 1,

then
εTV 2

8σ2β
≤ Td

2
,

and so

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥ exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−(c− 1)2Td− εV 2

8(c− 1)σ2βd

)
.

Next, set

c− 1 =

√
εV 2

16σ2βTd2
.

From this, we will get

π(θ)Gr(θ, θ
∗)

π(θ)Ḡ(θ, θ∗)
≥ exp

(
−εTV

2

8σ2β
− εV 2

8σ2βd

)
· exp

(
−

√
εTV 2

σ2β

)

≥ exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)
.

Now, in order for this to hold, we needed
(c− 1)εβ

1 + εβ
≤ 1.

With our setting of c, and our other assumption,

c− 1 =

√
εV 2

16σ2βTd2
=

√
εV 2

4σ2βd
· 1

4Td
≤
√

1

4Td
≤ 1,

so the bound will trivially hold. Thus the only added assumption we needed is the one stated in the Theorem
statement, that

εV 2

4σ2βd
≤ 1.

Now we apply the standard Dirichlet form argument. The spectral gap of a Markov chain can be written as
(Aida, 1998)

γ = inf
f∈L2

0(π):V arπ [f ]=1
E(f)
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where L2
0(π) denotes the Hilbert space of all functions that are square integrable with respect to probability

measure π and have mean zero. E(f) is the Dirichlet form of a Markov chain associated with transition operator
T (Fukushima et al., 2010):

E(f) =
1

2

∫ ∫ [
(f(θ)− f(θ∗))

2
]
G(θ, θ∗)π(θ)dθdθ∗

By the expression of the spectral gap, it follows that

γ = inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ∗))

2
]
G(θ, θ∗)π(θ)dθdθ∗

]

≥ exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)
· inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ∗))

2
]
Ḡ(θ, θ)π(θ)dθdθ∗

]

= exp

(
−εTV

2

4σ2β
−

√
εTV 2

σ2β

)
· γ̄

This finishes the proof.

F Reformulation of AMAGOLD Algorithm

We reformulate our algorithm by setting v = εσ−2r,b = εβ, h = ε2σ−2 and outline the algorithm after reformulation
in Algorithm 3.

Algorithm 3 Reformulated AMAGOLD
1: given: Energy U , initial state θ ∈ Θ
2: loop
3: optionally, resample momentum: v ∼ N (0, hI)
4: initialize momentum and energy acc: v− 1

2
← v, ρ− 1

2
← 0

5: half position update: θ0 ← θ + 1
2v− 1

2

6: for t = 0 to T − 1 do
7: if t 6= 0 then
8: position update: θt ← θt−1 + vt− 1

2

9: end if
10: sample noise ηt ∼ N (0, 4hb)
11: sample random energy component Ũt
12: update momentum: vt+ 1

2
←
(

(1− b)vt− 1
2
− h∇Ũt(θt) + ηt

)
/(1 + b)

13: update energy acc: ρt+ 1
2
← ρt− 1

2
+ 1

2∇Ũt(θt)
T
(
vt− 1

2
+ vt+ 1

2

)
14: end for
15: half position update: θT ← θT−1 + 1

2vT− 1
2

16: new values: θ∗ ← θT , v∗ ← vT− 1
2

17: a← exp
(
U(θ)− U(θ∗) + ρT− 1

2

)
18: with probability min(1, a) update θ ← θ∗, v ← v∗ (as long as θ∗ ∈ Θ)
19: otherwise update v ← −v− 1

2

20: end loop
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G Additional Experiments Results and Setting Details

G.1 Double Well Potential

We visualize the estimated density on additional step size settings. Consistent with Figure 1d, it is clear here
that SGHMC is very sensitive to step size. A small change in step size will cause a big difference in the estimated
density. In contrast, AMAGOLD is more robust and can work well with a large range of step sizes.

When the setup of step size is inappropriate, as in Figures 6a and b where it is fixed to be too small, either
SGHMC or AMAGOLD converges in the training time. This is because the chain moves too slowly toward the
stationary distribution. However, AMAGOLD with step size tuning is able to automatically adjust the step size
based on the information provided by M-H step. As shown in Figure 1c, tuned AMAGOLD can determine a
step size that causes convergence given the same training time budget. All results are obtained by collecting 105

samples with 1000 burn-in samples.
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Figure 6: Estimated densities of SGHMC (1st column) and AMAGOLD (2nd column) on varying step sizes.
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G.2 Two-Dimensional Synthetic Distributions

G.2.1 Analytical Expression

Dist1: N (z1; z2
2/4, 1)N (z2; 0, 4)

Dist2: 0.5N

(
z; 0,

[
2 1.8

1.8 2

])
+ 0.5N

(
z; 0,

[
2 −1.8

−1.8 2

])

G.2.2 Runtime Comparisons

We report runtime comparisons between AMAGOLD and SGHMC on Dist1 and Dist2 with step size 0.15 (Figure
7). This experiment uses the analytical energy expression (no data examples), so there is no speed-up of stochastic
methods over full-batch methods. At the beginning, SGHMC converges faster due to the lack of M-H step, but
eventually it converges to a biased distribution. AMAGOLD is not much slower than SGHMC, which shows that
AMA can reduce the amount of computation of adding M-H step while keep the chain unbiased.
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Figure 7: Runtime comparisons between SGHMC and AMAGOLD on synthetic distributions (a) Dist1 and (b)
Dist2.

G.2.3 Additional Note on Figure 2

It is worth noting that, even though it is lower than SGHMC’s, AMAGOLD’s KL divergence grows when the step
size is large compared to full-batch methods. This is because the M-H acceptance probability decreases, causing
the chain to converge more slowly. This is expected. It is well-known that stochastic methods are more sensitive
to step sizes than full-batch methods (Nemirovski et al., 2009). However, since AMAGOLD’s KL divergence
grows much slower than SGHMC’s, AMAGOLD is more robust to different step sizes

G.3 Bayesian Logistic Regression

We report the acceptance probability of AMAGOLD on Heart for varying step sizes in Figure 8. For a large range
of step sizes, the acceptance rate is sufficiently high to allow the chain converge fast, demonstrated in Figure
4. The acceptance rate may become very low with a large step size resulting in slow move. But this undesired
acceptance probability can be easily detected and avoided in practice.

G.4 Bayesian Neural Networks

The architecture of Bayesian Neural Networks is a two-layer MLP with first hidden layer size 500 and the second
hidden layer size 256.
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Figure 8: The acceptance probability of the M-H step in AMAGOLD for varying step sizes on the Heart dataset.


