
Quantized Frank-Wolfe: Faster Optimization, Lower Communication,
and Projection Free

Mingrui Zhang1 Lin Chen1 Aryan Mokhtari2 Hamed Hassani3 Amin Karbasi1
1Yale University 2University of Texas at Austin 3University of Pennsylvania

Abstract

How can we efficiently mitigate the overhead
of gradient communications in distributed op-
timization? This problem is at the heart of
training scalable machine learning models and
has been mainly studied in the unconstrained
setting. In this paper, we propose Quantized
Frank-Wolfe (QFW), the first projection-
free and communication-efficient algorithm
for solving constrained optimization problems
at scale. We consider both convex and non-
convex objective functions, expressed as a
finite-sum or more generally a stochastic op-
timization problem, and provide strong the-
oretical guarantees on the convergence rate
of QFW. This is accomplished by proposing
novel quantization schemes that efficiently
compress gradients while controlling the noise
variance intduced during this process. Finally,
we empirically validate the efficiency of QFW
in terms of communication and the quality of
returned solution against natural baselines.

1 Introduction

The Frank-Wolfe (FW) method [Frank and Wolfe,
1956], also known as conditional gradient, has re-
cently received considerable attention in the machine
learning community, as a projection free algorithm
for various constrained convex [Jaggi, 2013, Garber
and Hazan, 2014, Lacoste-Julien and Jaggi, 2015, Gar-
ber and Hazan, 2015, Hazan and Luo, 2016, Mokhtari
et al., 2018a] and non-convex [Lacoste-Julien, 2016,
Reddi et al., 2016, Mokhtari et al., 2018b, Zhang et al.,
2019b, Hassani et al., 2019] optimization problems. In
order to apply the FW method to large-scale prob-

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

lems (e.g., training deep neural networks [Ravi et al.,
2018, Schramowski et al., 2018, Berrada et al., 2018],
RBMs [Ping et al., 2016]) parallelization is unavoid-
able. To this end, distributed FW variants have been
proposed for specific problems, e.g., online learning
[Zhang et al., 2017], learning low-rank matrices [Zheng
et al., 2018], and optimization under block-separable
constraint sets [Wang et al., 2016]. A significant per-
formance bottleneck of distributed optimization meth-
ods is the cost of communicating gradients, typically
handled by using a parameter-server framework. Intu-
itively, if each worker in the distributed system trans-
mits the entire gradient, then at least d floating-point
numbers are communicated for each worker, where d
is the dimension of the problem. This communication
cost can be a huge burden on the performance of paral-
lel optimization algorithms [Chilimbi et al., 2014, Seide
et al., 2014, Strom, 2015]. To circumvent this draw-
back, communication-efficient parallel algorithms have
received significant attention. One major approach is
to quantize the gradients while maintaining sufficient
information [De Sa et al., 2015, Abadi et al., 2016, Wen
et al., 2017]. For unconstrained optimization, when pro-
jection is not required for implementing Stochastic Gra-
dient Descent (SGD), several communication-efficient
distributed methods have been proposed, including
QSGD [Alistarh et al., 2017], SIGN-SGD [Bernstein
et al., 2018], and Sparsified-SGD [Stich et al., 2018].

In the constrained setting, and in particular for dis-
tributed FW methods, the communication-efficient
versions were only studied for specific problems
such as sparse learning [Bellet et al., 2015, La-
fond et al., 2016]. In this paper, however, we
develop Quantized Frank-Wolfe (QFW), a general
communication-efficient distributed FW for both con-
vex and non-convex objective functions. We study the
performance of QFW in two widely recognized settings:
1) stochastic optimization and 2) finite-sum optimiza-
tion.

To be more specific, let K ⊆ Rd be the constraint set.
In constrained stochastic optimization the goal is to
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xt+1 ← FW (xt, ḡt)
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Figure 1: Stages of our general Quantized Frank-Wolfe scheme at time t. In the first stage, each worker m
computes its local gradient information gmt and sends the quantized version Φ1,t(g

m
t ) to the master node. In the

second stage, master computes the average of decoded received signals Φ′1,t(g
m
t ), i.e., g̃t ← (1/M)

∑M
m=1 Φ′1,t(g

m
t )

and then sends its quantized version Φ2,t(g̃t) to the workers. Note that the two quantization schemes Φ1,t,Φ2,t

depend on t and can be different from each other. In the third stage, workers use the decoded gradient information
computed by all workers Φ′2,t(g̃t) and their previous gradient estimation ḡt−1 to update their new gradient
estimation ḡt via a variance reduction (VR) scheme. Once the variance reduced gradient approximation ḡt is
evaluated, workers compute the new variable xt+1 by following the update of Frank-Wolfe (FW).

solve
min
x∈K

f(x) := min
x∈K

Ez∼P [f̃(x, z)], (1)

where x ∈ Rd is the optimization variable, z ∈ Rq is
a random variable drawn from a probability distribu-
tion P , which determines the choice of a stochastic
function f̃ : Rd × Rq → R. For constrained finite-sum
optimization, we further assume that P is a uniform
distribution over [N ] = {1, 2, · · · , N} and the goal is to
solve a special case of Problem (1), namely,

min
x∈K

f(x) := min
x∈K

1

N

N∑
j=1

fj(x). (2)

In parallel settings, we suppose that we have a com-
puting system consisting of a master node and M
workers, and each worker maintains a local copy of x.
At every iteration of the stochastic case, each worker
has access to independent stochastic gradients of f ;
whereas in the finite-sum case, we assume N = Mn,
thus the objective function can be decomposed as
f(x) = 1

Mn

∑
m∈[M ],j∈[n] fm,j(x), and each worker m

has access to the exact gradients of n component func-
tions fm,j(x) for all j ∈ [n].

This way the task of computing gradients is divided
among the workers. The master node aggregates local
gradients from the workers, and sends the aggregated
gradients back to them so that each worker can update
the model (i.e., their own iterate) locally. Thus, by
transmitting quantized gradients, we can reduce the
communication complexity (i.e., number of transmitted
bits) significantly. The workflow diagram of the pro-
posed Quantized Frank-Wolfe scheme is summarized in
Figure 1. We should highlight that there is a trade-off
between gradient quantization and information flow.
Intuitively, more intensive quantization reduces the
communication cost, but also loses more information,
which may decelerate the convergence rate.

Our contributions: In this paper, we propose a novel
distributed projection-free framework that handles
quantization for constrained convex and non-convex op-
timization problems in finite-sum and stochastic cases.
It is well-known that unlike projected gradient-based
methods, FW methods may diverge when fed with
stochastic gradient [Hazan and Luo, 2016, Mokhtari
et al., 2018a]. Indeed, a similar issue arises in a dis-
tributed setting where nodes exchange quantized gradi-
ents which are noisy estimates of the gradients. By in-
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Table 1: SFO/IFO Complexity per worker in different
settings (M is the number of workers).

Setting Function SFO/IFO Complexity

Finite-sum Convex O
(
N ln(1/ε) + 1/ε2

M

)
Finite-sum Non-convex O

( √
N

ε2
√
M

)
Stochastic Convex O

(
1

Mε2

)
Stochastic Non-convex O

(
1

ε3
√
M

)

corporating appropriate variance reduction techniques,
we show that with quantized gradients, we can obtain
a provably convergent method which preserves the con-
vergence rates of the state-of-the-art vanilla centralized
methods in all the considered cases [Zhang et al., 2019b,
Shen et al., 2019b, Hassani et al., 2019, Yurtsever et al.,
2019]. We believe our work presents the first quantized,
distributed, and projection-free method. Our theoret-
ical results for Quantized Frank-Wolfe (QFW) are
summarized in Table 1, where the SFO complexity is
the required number of stochastic gradients in stochas-
tic case, and the IFO complexity is the number of
exact gradients for component functions in finite-sum
case. For the convex case, the complexity indicates
the number of gradients to achieve an ε-suboptimal
solution; while in the non-convex case, it refers to the
number of gradients to find a first-order ε-stationary
point. We note that since the M workers compute the
gradients simultaneously, the time to obtain gradients
is proportional to the SFO/IFO complexity per worker.
So we report the SFO/IFO complexity per worker, as in
many other works on parallel optimization (e.g., Sign-
SGD [Bernstein et al., 2018]). The results in Table 1
show that more workers can decrease the SFO/IFO
complexity per worker effectively, and thus accelerate
the optimization procedure. All the proofs in this
paper are provided in the appendix.

2 Gradient Quantization Schemes

In most distributed optimization algorithms, the task
of computing gradients is divided among the work-
ers, and the master node uses parts of gradients at
the workers to update the model (iterate) directly
or sends the aggregated gradients to the worker so
that each of them can update the model (iterate) lo-
cally. Therefore, the information that workers need
to send to the master is the elements of the objec-
tive function gradient. Thus, by transmitting quan-

tized gradients, we can reduce the communication bits
effectively. In this section, we introduce a quantiza-
tion scheme called s-Partition Encoding Scheme and
explain how this scheme reduces the overall cost of
exchanging gradients. Consider the gradient vector
g ∈ Rd and let gi be the i-th coordinate of the gra-
dient. The s-Partition Encoding Scheme encodes gi
into an element from the set {±1,± s−1s , · · · ,± 1

s , 0} in
a random way. To do so, we first compute the ratio
|gi|/‖g‖∞ and find the indicator li ∈ {0, 1, · · · , s− 1}
such that |gi|/‖g‖∞∈ [li/s, (li + 1)/s]. Then we define
the random variable bi as

bi =

{
li/s, w.p. 1− |gi|

‖g‖∞ s+ li,

(li + 1)/s, w.p. |gi|
‖g‖∞ s− li.

(3)

Finally, instead of transmitting gi, we send sgn(gi) · bi,
alongside the norm ‖g‖∞. It can be verified that
E[bi|g] = |gi|/‖g‖∞. So we define the corresponding
decoding scheme as φ′(gi) = sgn(gi)bi‖g‖∞ to ensure
that φ′(gi) is an unbiased estimator of gi. We note that
the encoding/decoding schemes in Figure 1 are denoted
as capital Φ/Φ′, indicating that they can be any gen-
eral schemes. The proposed s-Partition Encoding
Scheme is denoted by φ/φ′. We also note that this
quantization scheme is similar to the Stochastic Quan-
tization method in [Alistarh et al., 2017], except that
we use `∞-norm while they adopt the `2-norm. In the
s-Partition Encoding Scheme, for each coordinate i,
we need 1 bit to transmit sgn(gi). Moreover, since
bi ∈ {0, 1/s, . . . , (s− 1)/s, 1}, we need z = log2(s+ 1)
bits to send bi. Finally, we need 32 bits to transmit
‖g‖∞. Hence, the total number of communicated bits
is 32 + d(z + 1). Here, by “bits” we mean the number
of 0’s and 1’s transmitted.

One major advantage of the s-Partition Encoding
Scheme is that by tuning the partition parameter s
or the corresponding assigned bits z, we can smoothly
control the trade-off between gradient quantization and
information loss, which helps distributed algorithms to
attain their best performance. We proceed to character-
ize the variance of the s-Partition Encoding Scheme.

Lemma 1 The variance of s-Partition Encoding
Scheme φ for any g ∈ Rd is bounded by

Var[φ′(g)|g] ≤ d

s2
‖g‖2∞. (4)

Lemma 1 demonstrates the trade-off between the er-
ror of quantization and the communication cost for s-
Partition Encoding Scheme. In a nutshell, for larger
choices of s, the variance is smaller, which in turn re-
sults in higher communication cost. If we set s = 1,
we obtain the Sign Encoding Scheme, which requires
communicating the encoded scalars sgn(gi)bi ∈ {±1, 0}
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and the norm ‖g‖∞. Since z = log2(s + 1) = 1, the
overall communicated bits for each worker are 32 + 2d
per round. We characterize its variance in Lemma 2.

Lemma 2 The variance of Sign Encoding Scheme is
given by

Var[φ′(g)|g] = ‖g‖1‖g‖∞−‖g‖22. (5)

Remark 1 For the probability distribution of the ran-
dom variable bi, instead of ‖g‖∞, we can use other
norms ‖g‖p (where p ≥ 1). But it can be verified that
the `∞-norm leads to the smallest variance for Sign
Encoding Scheme. That is also the reason why we do
not use `2-norm as in [Alistarh et al., 2017].

3 Convex Minimization

In this section, we analyze the convex minimization
problem in both finite-sum and stochastic settings.
Note that even in the setting without quantization,
if we use stochastic gradients in the update of FW, it
might diverge [Hazan and Luo, 2016, Mokhtari et al.,
2018a]. So appropriate variance reduction techniques
are needed for communicating quantized gradients.
Nguyen et al. [2017a,b, 2019] developed the StochAstic
Recursive grAdient algoritHm (SARAH), a stochas-
tic recursive gradient update framework. Fang et al.
[2018] proposed Stochastic Path-Integrated Differential
Estimator (SPIDER) technique, a variant of SARAH,
for centralized unconstrained optimization. Recently,
Hassani et al. [2019], Shen et al. [2019a], Yurtsever et al.
[2019] proposed the SPIDER variants of FW method
for both convex and non-convex optimization problems.
Similar variance reduction idea was also combined with
SGD to solve non-convex finite-sum problems in [Zhou
et al., 2018]. In this paper, we generalize SPIDER to
the constrained and distributed settings.

We first consider the case where no quantization is
performed. Let {pi} ∈ N+ be a sequence of period
parameters. At the beginning of each period i, namely,
t =

∑i−1
j=1 pj + 1, each worker m samples Si,1 compo-

nent functions in finite-sum case, or stochastic func-
tions in stochastic case, which are denoted as Smi,1.
We define the local average gradient on set Smi,1 as
gmi,1 , ∇fSm

i,1
(xt) = 1

Si,1

∑
j∈Sm

i,1
∇fj(xt). Then each

worker m computes the average of all these local gra-
dients gmi,1 and sends it to the master. Then, master
node calculates the average of the M received signals
and broadcasts it to all workers. Then, the workers
update their gradient estimation ḡt as the averaged
signal ḡt = 1

M

∑M
m=1 g

m
i,1.

Note ḡt is identical for all the workers. In the rest of
that period, i.e., t =

∑i−1
j=1 pj + k, where 2 ≤ k ≤ pi,

each worker m samples a set of local functions, denoted

Algorithm 1 Quantized Frank-Wolfe (QFW)
1: Input: constraint set K, total iteration number T ,

No. of workers M , period parameters {pi}, sample
sizes {Si,k}, learning rate ηt, initial point x1 ∈ K

2: Output: xT+1 or xo, where xo is chosen from
{x1, x2, · · · , xT } uniformly at random

3: for t = 1 to T do
4: Set xi,k ← xt, where t =

∑i−1
j=1 pj+k, 1 ≤ k ≤ pi

5: Each worker m computes local gradient gmi,k
by gmi,1 = ∇fSm

i,1
(xi,k) = ∇fSm

i,1
(xt) for k =

1, or gmi,k , ∇fSm
i,k

(xi,k) − ∇fSm
i,k

(xi,k−1) =

∇fSm
i,k

(xt)−∇fSm
i,k

(xt−1) for k ≥ 2

6: Each worker m encodes gmi,k as Φ1,i,k(gmi,k) and
pushes it to the master

7: Master decodes Φ1,i,k(gmi,k) as Φ′1,i,k(gmi,k), and
computes g̃i,k ← 1

M

∑M
m=1 Φ′1,i,k(gmi,k)

8: Master encodes g̃i,k as Φ2,i,k(g̃i,k), and broad-
casts it to all workers

9: Workers decode Φ2,i,k(g̃i,k) as Φ′2,i,k(g̃i,k)
10: if k = 1 then
11: Workers update ḡi,k ← Φ′2,i,k(g̃i,k)
12: else
13: Workers update ḡi,k ← Φ′2,i,k(g̃i,k) + ḡi,k−1
14: end if
15: Each worker updates xt+1 ← xt + ηt(vt −

xt) = xi,k + ηi,k(vi,k − xi,k) where vi,k ←
argminv∈K〈v, ḡi,k〉

16: end for

as Smi,k, of size Si,k uniformly at random, and computes
the difference of averages of these gradients

gmi,k , ∇fSm
i,k

(xt)−∇fSm
i,k

(xt−1), (6)

and sends it to master. Then master node calculates
the average of theM signals and broadcasts it to all the
workers. The workers update their gradient estimation
gt as

ḡt = ḡt−1 +
1

M

M∑
m=1

gmi,k. (7)

So ḡt is still identical for all the workers. In order to in-
corporate quantization, each worker simply pushes the
quantized version of the average gradients. Then the
master decodes the quantizations, encodes the average
of decoded signals in a quantized fashion, and broad-
casts the quantization. Finally, each worker decodes
the quantized signal and updates xt locally. To be more
specific, in the quantized setting, in each iteration t
such that t =

∑i−1
j=1 pj + k where 1 ≤ k ≤ pi, each

worker m sends the quantized version of its local gradi-
ent information Φ1,t(g

m
i,k) to the master. Once master

collects all the quantized information, it decodes them,
i.e., finds {Φ′1,t(gmi,k)}Mm=1, computes their average g̃t,
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and sends its quantized version Φ2,t(g̃t) to all workers.
Then, all the workers decode the received quantized
signal and use it as their new gradient approximation
ḡt and update their variable according to the update
of Frank-Wolfe, i.e.,

xt+1 = xt + ηt(vt − xt), (8)

where vt ← argminv∈K〈v, ḡt〉. The description of our
proposed Quantized Frank-Wolfe (QFW) method is
shown in Figure 1 and outlined in Algorithm 1.

Remark 2 The model update (Line 15 in Algorithm 1)
should be performed at each worker. Since all the linear
programming problems (to obtain vt) are solved simul-
taneously, the total running time is the same with that
where the model updating is performed in the master
node. However, additional variance would be introduced
if the master node updates the model and broadcasts
it in quantized manners. Thus the master-updating
method lacks theoretical justification regarding conver-
gence, and we adopt the worker-updating approach.

3.1 Finite-Sum Setting

Now we proceed to establish the convergence properties
of our proposed QFW in the finite-sum setting. Recall
that we assume that there are N functions and M
workers in total, and each worker m has access to
n = N/M functions fm,j for j ∈ [n]. We first make
two assumptions on the constraint set and component
functions. Let ‖·‖ denote the l2 norm in the Euclidean
space through out the paper.

Assumption 1 The constraint set K is convex and
compact, with diameter D = supx,y∈K‖x− y‖.

Assumption 2 The functions fm,i are convex, L-
smooth on K, and satisfy that ‖∇fm,i(x)‖∞≤
G∞, for all m ∈ [M ], i ∈ [n], x, y ∈ K.

Theorem 1 (Finite-Sum Convex) Consider QFW
outlined in Algorithm 1. Under Assumptions 1 and 2,
if we set pi = 2i−1,Smi,1 = {fm,j : j ∈ [n]} ( i.e.,
each worker m samples all its n component func-
tions), Si,k = pi/M = 2i−1/M, for all i ≥ 1, k ≥
2, and ηi,k = 2/(pi + k) = 2/(2i−1 + k), and

use the s1,i,1 = (

√
dp2i
M )-Partition Encoding Scheme,

s2,i,1 = (
√
dp2i )-Partition Encoding Scheme for k =

1, and s1,i,k = (
√

dpi
M )-Partition Encoding Scheme,

s2,i,k = (
√
dpi)-Partition Encoding Scheme for k ≥

2 as Φ1,i,k and Φ2,i,k in Algorithm 1, then the output
xT+1 ∈ K satisfies

E[f(xT+1)]− f(x∗) ≤ 4D
√

2(G2
∞ + 6L2D2) + 2LD2

T
,

where x∗ is a minimizer of f on K.

Corollary 1 To obtain an ε-suboptimal solution, we
need to run the QFW method for at most O(1/ε) itera-
tions. The IFO complexity per worker in this case is
O(N ln(1/ε)+1/ε2

M ).

Corollary 1 shows IFO complexity per worker is linear
in 1/M , which implicates that increasing the number of
workersM will decrease the IFO complexity per worker
effectively, thus accelerate the optimization procedure.
Also, our numerical experiments in Section 5 showed
that our proposed method requires significantly fewer
bits than the unquantized version to achieve a specific
accuracy.

3.2 Stochastic Setting

QFW can also be applied to the stochastic case. Re-
call that in the stochastic setting we assume that the
objective function is f(x) = Ez∼P [f̃(x, z)] and each
worker has access to independent samples f̃(x, z). Be-
fore proving the convergence properties of QFW for the
stochastic setting, we first make a standard assumption
on f̃(x, z).

Assumption 3 The stochastic function f̃(x, z) is con-
vex, L-smooth on K. The gradient ∇f̃(x, z) is an unbi-
ased estimate of ∇f(x) with bounded variance σ2, and
satisfies that ‖∇f̃(x, z)‖∞≤ G∞, for all x ∈ K, z ∈ Rq.

Theorem 2 (Stochastic Convex) Consider QFW
outlined in Algorithm 1. Under Assumptions 1
and 3, if we set pi = 2i−1, Si,1 =

σ2p2i
ML2D2 ,

Si,k = pi/M = 2i−1/M, for all i ≥ 1, k ≥ 2,
and ηi,k = 2/(pi + k) = 2/(2i−1 + k), and use

the s1,i,1 = (

√
dp2i
M )-Partition Encoding Scheme,

s2,i,1 = (
√
dp2i )-Partition Encoding Scheme for k =

1, and s1,i,k = (
√

dpi
M )-Partition Encoding Scheme,

s2,i,k = (
√
dpi)-Partition Encoding Scheme for k ≥

2 as Φ1,i,k and Φ2,i,k in Algorithm 1, then the output
xT+1 ∈ K satisfies

E[f(xT+1)]− f(x∗) ≤ 4D
√

13L2D2 + 2G2
∞ + 2LD2

T
,

where x∗ is a minimizer of f on K.

Corollary 2 To obtain an ε-suboptimal solution, we
need to run the QFW method outlined in Algorithm 1
for at most O(1/ε) iterations. The SFO complexity per
worker in this case is O(1/(Mε2))

Corollary 2 shows SFO complexity per worker is lin-
ear in 1/M , which implies a speed-up for distributed
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settings. It also shows that the dependency of QFW’s
complexity on ε for convex settings is optimal.

Remark 3 In theory, the partitioning levels of quan-
tization do depend on the number of iterations. Thus
more transmission bits are required over the optimiza-
tion procedure. But it will not render our QFW method
communication-expensive. We set the partitioning lev-
els conservatively to achieve the theoretical guarantees.
However, as shown in the experiments (Section 5),
much smaller quantization levels (which are actually
constants) are usually preferred in practice.

4 Non-Convex Optimization

With slightly different parameters, QFW can be applied
to non-convex settings as well. In unconstrained non-
convex optimization problems, the gradient norm ‖∇f‖
is usually a good measure of convergence as ‖∇f‖→ 0
implies convergence to a stationary point. However, in
the constrained setting we study the Frank-Wolfe Gap
[Jaggi, 2013, Lacoste-Julien, 2016] defined as

G(x) = max
v∈K
〈v − x,−∇f(x)〉. (9)

For constrained optimization problem, if a point x
satisfies G(x) = 0, then it is a first-order stationary
point. Also, by definition, we have G(x) ≥ 0, for all x ∈
K. We first analyze the finite-sum setting and then the
more general stochastic setting.

4.1 Finite-Sum Setting

To extend our results to the nonconvex setting we first
assume that the following condition is satisfied.

Assumption 4 The component functions fm,i are
L-smooth on K and uniformly bounded, i.e.,
supx∈K|fm,i(x)|≤ M0. Further, ‖∇fm,i(x)‖∞≤
G∞, for all m ∈ [M ], i ∈ [n], x, y ∈ K.

Theorem 3 (Finite-Sum Non-Convex) Under
Assumptions 1 and 4, if we set pi =

√
n,

Smi,1 = {fm,j : j ∈ [n]} ( i.e., each worker
m samples all its n component functions),
Si,k =

√
n/M for all i ≥ 1, k ≥ 2, ηt = T−1/2 for all t,

and use the s1,i,1 = (
√

Td
M )-Partition Encoding

Scheme, s2,i,1 = (
√
Td)-Partition Encoding Scheme

for k = 1, and s1,i,k = (d
1/2n1/4
√
M

)-Partition
Encoding Scheme, s2,i,k = (d1/2n1/4)-Partition
Encoding Scheme for k ≥ 2 as Φ1,i,k and Φ2,i,k in
Algorithm 1, then the output xo ∈ K satisfies

E[G(xo)] ≤
2M0 +D

√
3L2D2 + 2G2

∞ + LD2

2√
T

.

Algorithm 2 Stochastic Non-Convex Quantized
Frank-Wolfe (SNC-QFW)
1: Input: constraint set K, iteration number T , No.

of workers M , initial point x1 ∈ K
2: Obtain T independent samples of zi, and define

finite-sum f̂(x) = 1
T

∑T
i=1 f̃(x, zi)

3: Apply Algorithm 1 on f̂ with N = T and all other
parameters being the same as in Theorem 3

4: Output: xo, where xo is chosen from
{x1, x2, · · · , xT } uniformly at random

Corollary 3 Algorithm 1 finds an ε-first order sta-
tionary point after at most O(1/ε2) iterations. The
IFO complexity per worker is O(

√
N/(ε2

√
M)).

Corollary 3 shows IFO complexity per worker is linear
in 1/

√
M , implicating that increasing the number of

workersM will decrease the IFO complexity per worker
effectively, thus accelerate the optimization procedure.

4.2 Stochastic Setting

For non-convex objective function, the stochastic opti-
mization problem in (1) can be solved approximately
by the QFW method described in Algorithm 1. Specif-
ically, the objective function f(x) = Ez∼P [f̃(x, z)] can
be approximated by a finite-sum problems with B
samples where the samples {z1, . . . , zB} are indepen-
dently drawn according to the probability distribution
P . Thus we define the surrogate function f̂

f̂(x) =
1

B

B∑
i=1

f̃(x, zi), (10)

as the finite-sum approximation of f(x). As a result, we
can apply QFW on f̂ , thus optimize f approximately.
The algorithm is outlined in Algorithm 2

In the non-convex setting, if we further assume that
f̃(x, z) is G-Lipschitz for all z ∈ Rq, then we have the
following lemma:

Lemma 3 (Theorem 5 of [Reddi et al., 2016])
If we define Ĝ(x) = maxv∈K〈v − x,−∇f̂(x)〉,
then E[G(x) − Ĝ(x)] ≤ GD√

B
. Recall that D is

the diameter of K as defined in Assumption 1,
G(x) = maxv∈K〈v − x,−∇f(x)〉. Thus for the output
xo, we have

E[G(xo)] ≤ E[Ĝ(xo)] +
GD√
B
. (11)

Baesd on Theorem 3 and Lemma 3, we have the fol-
lowing theoretical guarantee for stochastic non-convex
minimization.



Mingrui Zhang1, Lin Chen1, Aryan Mokhtari2, Hamed Hassani3, Amin Karbasi1

Theorem 4 (Stochastic Non-Convex) Assuming
that for all z ∈ Rq, f̃(x, z) is G-Lipschitz, L-smooth,
and satisfies |f̃(x, z)|≤M0 for all x ∈ K. If we obtain
T independent samples of zi, and apply Algorithm 1
on f̂(x) = 1

T

∑T
i=1 f̃(x, zi) with N = T, n = T/M , and

all the other parameters set the same as in Theorem 3,
then after T iterations, the output xo ∈ K satisfies

E[G(xo)] ≤
2M0 +D

√
3L2D2 + 2G2 + LD2

2√
T

+
GD√
T
.

We note that the algorithm finds an ε-first order sta-
tionary point with at most O(1/ε2) rounds. The SFO
complexity per worker is O(

√
N/(
√
Mε2)) = O( 1

ε3
√
M

).
Thus the SFO complexity per worker is linear in 1/

√
M ,

which implicates that increasing the number of workers
M will decrease the SFO complexity per worker.

5 Experiments

We evaluate the performance of algorithms by visual-
izing their loss f(xt) vs. the number of transmitted
bits. The experiments were performed on 20 Intel Xeon
E5-2660 cores and thus the number of workers is 20.
For each curve in the figures below, we ran at least 50
repeated experiments, and the height of shaded regions
represents two standard deviations.

In our first setup, we consider a multinomial logistic re-
gression problem. Consider the dataset {(xi, yi)}Ni=1 ⊆
Rd × {1, . . . , C} with N samples that have C different
labels. We aim to find a model w to classify these
sample points under the condition that the solution
has a small `1-norm. Therefore, we aim to solve the
following convex problem

min
w
f(w) := −

N∑
i=1

C∑
c=1

1{yi = c} log
exp(w>c xi)∑C
j=1 exp(w>j xi)

,

subject to ‖w‖1≤ 1. (12)

In our experiments, we use the MNIST dataset and
assume that each worker stores 3000 images. Therefore,
the overall number of samples in the training set is
N = 60000.

In our second setup, our goal is to minimize the loss of
a three-layer neural network under some conditions on
the norm of the solution. Before stating the problem
precisely, let us define the log-loss function as h(y, p) ,
−∑C

c=1 1{y = c} log pc for y ∈ {1, . . . , C} and a C-
dimensional probability vector p := (p1, · · · , pC). We
aim to solve the following non-convex problem

min
W1,W2

N∑
i=1

h(yi, φ(W2 relu(W1xi+b)+b2)),

subject to ‖Wi‖1≤ a1, ‖bi‖1≤ a2, (13)

where relu(x) , max{0, x} is the ReLU function and
φ is the softmax function. The imposed `1 constraint
on the weights leads to a sparse network. We further
remark that Frank-Wolfe methods are suitable for train-
ing a neural network subject to an `1 constraint as they
are equivalent to a dropout regularization [Ravi et al.,
2018]. In our setup, the size of matricesW1 andW2 are
784× 50 and 50× 10, respectively, and the constraints
parameters are a1 = a2 = 5.

For all of the considered settings, we vary the quan-
tization level, use the s1-partition encoding scheme
when workers send encoded tensors to the master and
use the s2-partition encoding scheme when the master
broadcasts encoded tensors to the workers (si = uq
indicates FW without quantization and si = thm in-
dicates QFW with the quantization level recommended
by our theorems, where i = 1, 2). We also propose the
federated learning approach FL, an effective heuristic
based on QFW, where each worker performs its local
Frank-Wolfe update autonomously without communi-
cating with each other and synchronizes the model only
at the end of each round. This method may not enjoy
the strong theoretical guarantees of QFW and we observe
in our experiments that it is even prone to divergence.
In stochastic minimization, each worker samples 1000
images uniformly at random and without replacement.

In Figure 2, we observe the performance of FL, FW
without quantization, and different variants of QFW
for solving the multinomial logistic regression problem
in (12). The stochastic minimization is presented in
Figure 2a and the finite-sum minimization is shown
in Figure 2b. We observe that QFW with Partition
Encoding Scheme (s1 = 1, s2 = 3) has the best perfor-
mance in terms of the amount of transmitted bits.
Specifically, QFW with Partition Encoding Scheme
(s1 = 1, s2 = 3) requires 3 × 108 bits to hit the low-
est loss in Figures 2a and 2b, while FL with the same
level of quantization only achieves a suboptimal loss
(approximately 2.24) with the same amount of com-
munication. Furthermore, FW without quantization
requires more than 3.8 × 109 bits to reach the same
error, i.e., quantization reduces communication load
by at least an order of magnitude.

Figure 3 demonstrates the performance of FL, FW
without quantization, and different variants of QFW for
solving the three-layer neural network in (13). Again
we show the stochastic minimization on the left (Fig-
ure 3a) and the finite-sum minimization on the right
(Figure 3b). We observe four divergent curves of the
federated learning method FL (s1 = 3, s2 = 1; s1 =
thm, s2 = 1; s1 = 1, s2 = thm; and s1 = 1, s2 = uq),
while all QFW curves converge. This observation is in
accordance with the fact that FL has no theoretical guar-
antee, in contrast to the proposed QFW method. FW
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(a) Stochastic convex minimization
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(b) Finite-sum convex minimization.

Figure 2: Comparison in terms of the loss versus the number of transmitted bits for a multinomial logistic
regression problem. The best performance belongs to QFW with Partition Encoding Scheme (s1 = 1, s2 = 3),
and FW without quantization has the worst performance.
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(a) Stochastic non-convex minimization
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(b) Finite-sum non-convex minimization.

Figure 3: Comparison of algorithms in terms of the loss versus the number of transmitted bits for a three-layer
neural network. FW without quantization (s = uq) significantly underperforms the quantized FW methods.
We observe four divergent curves of the federated learning method FL (s1 = 3, s2 = 1; s1 = thm, s2 = 1;
s1 = 1, s2 = thm; and s1 = 1, s2 = uq).

without quantization consumes approximately 6.5×109

bits to achieve the lowest loss. Its amount of communi-
cation is twice that of QFW with the quantization levels
recommended by Theorems 3 and 4.

In both convex and non-convex setups, the theoretically
guaranteed quantization levels recommended by our
theorems may be conservative. In fact, a Partition
Encoding Scheme with partitions much fewer than our
theorems recommend achieves a similar loss level and
saves even more communication bits. For example, QFW
with s1 = 1, s2 = 3 and s1 = 1, s2 = thm exhibits a
higher communication efficiency than QFW with s1 =
thm, s2 = thm in Figures 2a and 2b.

We provide more experimental results in the longer
version of this paper [Zhang et al., 2019a].

6 Conclusion

In this paper, we developed Quantized Frank-Wolfe
(QFW), the first general-purpose projection-free and
communication-efficient framework for constrained op-
timization. Along with proposing various quantiza-
tion schemes, QFW can address both convex and non-
convex optimization settings in stochastic and finite-
sum cases. We provided theoretical guarantees on the
convergence rate of QFW and validated its efficiency
empirically on training multinomial logistic regression
and neural networks. Our theoretical results high-
lighted the importance of variance reduction techniques
to stabalize FW and achieve a sweet trade-off between
the communication complexity and convergence rate
in distributed settings. We also note that it might
be possible to design simpler Quantized FW methods
based on the new developments [Zhang et al., 2019b].



Mingrui Zhang1, Lin Chen1, Aryan Mokhtari2, Hamed Hassani3, Amin Karbasi1

Acknowledgements

Lin Chen is supported by Google PhD Fellowship.
Hamed Hassani is supported by AFOSR Award
19RT0726, NSF HDR TRIPODS award 1934876, NSF
award CPS-1837253, NSF award CIF-1910056, and
NSF CAREER award CIF-1943064. Amin Karbasi
is partially supported by NSF (IIS-1845032), ONR
(N00014-19-1-2406), and AFOSR (FA9550-18-1-0160).

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. In Ad-
vances in Neural Information Processing Systems,
pages 1709–1720, 2017.

Aurélien Bellet, Yingyu Liang, Alireza Bagheri
Garakani, Maria-Florina Balcan, and Fei Sha. A
distributed frank-wolfe algorithm for communication-
efficient sparse learning. In Proceedings of the 2015
SIAM International Conference on Data Mining,
pages 478–486. SIAM, 2015.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd: com-
pressed optimisation for non-convex problems. arXiv
preprint arXiv:1802.04434, 2018.

Leonard Berrada, Andrew Zisserman, and M Pawan
Kumar. Deep frank-wolfe for neural network opti-
mization. arXiv preprint arXiv:1811.07591, 2018.

Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible,
and Karthik Kalyanaraman. Project adam: Build-
ing an efficient and scalable deep learning training
system. In OSDI, volume 14, pages 571–582, 2014.

Christopher M De Sa, Ce Zhang, Kunle Olukotun, and
Christopher Ré. Taming the wild: A unified analysis
of hogwild-style algorithms. In Advances in neural
information processing systems, pages 2674–2682,
2015.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong
Zhang. Spider: Near-optimal non-convex optimiza-
tion via stochastic path-integrated differential estima-
tor. In Advances in Neural Information Processing
Systems, pages 687–697, 2018.

Marguerite Frank and Philip Wolfe. An algorithm for
quadratic programming. Naval Research Logistics
(NRL), 3(1-2):95–110, 1956.

Dan Garber and Elad Hazan. Faster rates for the
frank-wolfe method over strongly-convex sets. arXiv
preprint arXiv:1406.1305, 2014.

Dan Garber and Elad Hazan. Faster rates for the frank-
wolfe method over strongly-convex sets. In ICML,
volume 15, pages 541–549, 2015.

Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and
Zebang Shen. Stochastic continuous greedy++:
When upper and lower bounds match. In Advances
in Neural Information Processing Systems, pages
13066–13076, 2019.

Elad Hazan and Haipeng Luo. Variance-reduced and
projection-free stochastic optimization. In ICML,
pages 1263–1271, 2016.

Martin Jaggi. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In ICML, pages 427–435,
2013.

Simon Lacoste-Julien. Convergence rate of frank-
wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345, 2016.

Simon Lacoste-Julien and Martin Jaggi. On the global
linear convergence of frank-wolfe optimization vari-
ants. In Advances in Neural Information Processing
Systems, pages 496–504, 2015.

Jean Lafond, Hoi-To Wai, and Eric Moulines. D-fw:
Communication efficient distributed algorithms for
high-dimensional sparse optimization. In Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on, pages 4144–4148. IEEE,
2016.

Aryan Mokhtari, Hamed Hassani, and Amin Kar-
basi. Stochastic conditional gradient methods: From
convex minimization to submodular maximization.
arXiv preprint arXiv:1804.09554, 2018a.

Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie.
Escaping saddle points in constrained optimization.
In Advances in Neural Information Processing Sys-
tems, pages 3629–3639, 2018b.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin
Takáč. Sarah: A novel method for machine learning
problems using stochastic recursive gradient. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pages 2613–2621. JMLR.
org, 2017a.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and
Martin Takáč. Stochastic recursive gradient algo-
rithm for nonconvex optimization. arXiv preprint
arXiv:1705.07261, 2017b.

Lam M Nguyen, Marten van Dijk, Dzung T Phan,
Phuong Ha Nguyen, Tsui-Wei Weng, and Jayant R
Kalagnanam. Optimal finite-sum smooth non-
convex optimization with sarah. arXiv preprint
arXiv:1901.07648, 2019.



Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free

Wei Ping, Qiang Liu, and Alexander T Ihler. Learning
infinite rbms with frank-wolfe. In Advances in Neural
Information Processing Systems, pages 3063–3071,
2016.

Sathya N Ravi, Tuan Dinh, Vishnu Sai Rao Lokhande,
and Vikas Singh. Constrained deep learning using
conditional gradient and applications in computer
vision. arXiv preprint arXiv:1803.06453, 2018.

Sashank J Reddi, Suvrit Sra, Barnabás Póczos,
and Alex Smola. Stochastic frank-wolfe meth-
ods for nonconvex optimization. arXiv preprint
arXiv:1607.08254, 2016.

Patrick Schramowski, Christian Bauckhage, and Kris-
tian Kersting. Neural conditional gradients. arXiv
preprint arXiv:1803.04300, 2018.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of
speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Association,
2014.

Zebang Shen, Cong Fang, Peilin Zhao, Junzhou Huang,
and Hui Qian. Complexities in projection-free
stochastic non-convex minimization. In The 22nd
International Conference on Artificial Intelligence
and Statistics, pages 2868–2876, 2019a.

Zebang Shen, Cong Fang, Peilin Zhao, Junzhou Huang,
and Hui Qian. Complexities in projection-free
stochastic non-convex minimization. In The 22nd
International Conference on Artificial Intelligence
and Statistics, pages 2868–2876, 2019b.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Mar-
tin Jaggi. Sparsified sgd with memory. In Advances
in Neural Information Processing Systems, pages
4452–4463, 2018.

Nikko Strom. Scalable distributed dnn training us-
ing commodity gpu cloud computing. In Sixteenth

Annual Conference of the International Speech Com-
munication Association, 2015.

Yu-Xiang Wang, Veeranjaneyulu Sadhanala, Wei Dai,
Willie Neiswanger, Suvrit Sra, and Eric Xing. Par-
allel and distributed block-coordinate frank-wolfe
algorithms. In International Conference on Machine
Learning, pages 1548–1557, 2016.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed
deep learning. In Advances in neural information
processing systems, pages 1509–1519, 2017.

Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Con-
ditional gradient methods via stochastic path-
integrated differential estimator. In International
Conference on Machine Learning, pages 7282–7291,
2019.

Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed
Hassani, and Amin Karbasi. Quantized frank-wolfe:
Faster optimization, lower communication, and pro-
jection free. arXiv preprint arXiv:1902.06332, 2019a.

Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed
Hassani, and Amin Karbasi. One sample stochastic
frank-wolfe. arXiv preprint arXiv:1910.04322, 2019b.

Wenpeng Zhang, Peilin Zhao, Wenwu Zhu, Steven CH
Hoi, and Tong Zhang. Projection-free distributed
online learning in networks. In Proceedings of the
34th International Conference on Machine Learning-
Volume 70, pages 4054–4062. JMLR. org, 2017.

Wenjie Zheng, Aurélien Bellet, and Patrick Gallinari.
A distributed frank–wolfe framework for learning
low-rank matrices with the trace norm. Machine
Learning, 107(8-10):1457–1475, 2018.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic
nested variance reduction for nonconvex optimization.
In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages
3925–3936. Curran Associates Inc., 2018.


