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Abstract

Starting with Gilmer et al. (2018), several
works have demonstrated the inevitability of
adversarial examples based on different as-
sumptions about the underlying input prob-
ability space. It remains unclear, however,
whether these results apply to natural image
distributions. In this work, we assume the
underlying data distribution is captured by
some conditional generative model, and prove
intrinsic robustness bounds for a general class
of classifiers, which solves an open problem in
Fawzi et al. (2018). Building upon the state-
of-the-art conditional generative models, we
study the intrinsic robustness of two common
image benchmarks under `2 perturbations,
and show the existence of a large gap between
the robustness limits implied by our theory
and the adversarial robustness achieved by
current state-of-the-art robust models.

1 Introduction

Deep neural networks (DNNs) have achieved remark-
able performance on many visual (Sutskever et al.,
2012; He et al., 2016) and speech (Hinton et al., 2012)
recognition tasks, but recent studies have shown that
state-of-the-art DNNs are surprisingly vulnerable to
adversarial perturbations, small imperceptible input
transformations that are designed to switch the pre-
diction of the classifier (Szegedy et al., 2014; Good-
fellow et al., 2015). This has led to a vigorous arms
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race between heuristic defenses (Papernot et al., 2016;
Madry et al., 2018; Chakraborty et al., 2018; Wang
et al., 2019) that propose ways to defend against ex-
isting attacks and newly-devised attacks (Carlini and
Wagner, 2017; Athalye et al., 2018; Tramer et al., 2020)
that are able to penetrate such defenses. Reliable de-
fenses appear to be elusive, despite progress on prov-
able defenses, including formal verification (Katz et al.,
2017; Tjeng et al., 2019) and relaxation-based certifica-
tion methods (Sinha et al., 2018; Raghunathan et al.,
2018; Wong and Kolter, 2018; Gowal et al., 2019; Wang
et al., 2018). Even the strongest of these defenses leave
large opportunities for adversaries to find adversarial
examples, while suffering from high computation costs
and scalability issues.

Witnessing the difficulties of constructing robust clas-
sifiers, a line of recent works (Gilmer et al., 2018; Fawzi
et al., 2018; Mahloujifar et al., 2019a; Shafahi et al.,
2019) aims to understand the limitations of robust
learning by providing theoretical bounds on adversar-
ial robustness for arbitrary classifiers. By imposing
different assumptions on the underlying data distribu-
tions and allowable perturbations, all of these theoret-
ical works show that no adversarially robust classifiers
exist for an assumed metric probability space, as long
as the perturbation strength is sublinear in the typi-
cal norm of the inputs. Although such impossibility
results seem disheartening to the goal of building ro-
bust classifiers, it remains unknown to what extent real
image distributions satisfy the assumptions needed to
obtain these results.

In this paper, we aim to bridge the gap between the
theoretical robustness analyses on well-behaved data
distributions and the maximum achievable adversar-
ial robustness, which we call intrinsic robustness (for-
mally defined by Definition 3.2), for typical image dis-
tributions. More specifically, we assume the underly-
ing data lie on a separable low-dimensional manifold,
which can be captured using a conditional generative
model, then systematically study the intrinsic robust-
ness based on the conditional generating process from
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both theoretical and experimental perspectives. Our
main contributions are:

• We prove a fundamental bound on intrinsic ro-
bustness (Section 4), provided that the underly-
ing data distribution can be captured by a condi-
tional generative model, solving an open problem
in Fawzi et al. (2018).

• Building upon a trained conditional generative
model that mimics the underlying data generating
process, we empirically evaluate the intrinsic ro-
bustness on image distributions based on MNIST
and ImageNet (Section 5.2). Our estimates of in-
trinsic robustness demonstrate that there is still a
large gap between the limits implied by our the-
ory and the state-of-the-art robustness achieved
by robust training methods (Section 5.3).

• We theoretically characterize the fundamental re-
lationship between the in-distribution adversarial
risk (which restricts adversarial examples to lie
on the image manifold, and is formally defined by
Definition 3.3) and the intrinsic robustness (Re-
mark 4.6), and propose an optimization method
to search for in-distribution adversarial examples
with respect to a given classifier. Our estimated
in-distribution robustness for state-of-the-art ad-
versarially trained classifiers, together with the
derived intrinsic robustness bound, provide a bet-
ter understanding on the intrinsic robustness for
natural image distributions (Section 5.4).

Notation. We use lower boldfaced letters such as
x to denote vectors, and [n] to denote the index set
{1, 2, . . . , n}. For any x ∈ X and ε ≥ 0, denote by
B(x, ε,∆) = {x′ ∈ X : ∆(x,x′) ≤ ε} the ε-ball
around x with radius ε in some distance metric ∆.
When the metric is free of context, we simply write
B(x, ε) = B(x, ε,∆). We use N (0, Id) to denote the
d-dimensional standard Gaussian distribution, and let
νd be its probability measure. For the one dimensional
case, we use Φ(x) to denote the cumulative distribu-
tion function (CDF) of N (0, 1), and use Φ−1(x) to de-
note its inverse function. For any function g : Z → X
and probability measure ν defined over Z, g∗(ν) de-
notes the push-forward measure of ν. The `2-norm of
a vector x ∈ Rn is defined as ‖x‖2 = (

∑
i∈[n] x

2
i )

1/2.

2 Related Work

Several recent works (Gilmer et al., 2018; Mahlou-
jifar et al., 2019a; Shafahi et al., 2019; Dohmatob,
2019; Bhagoji et al., 2019) derived theoretical bounds
on maximum achievable adversarial robustness using

isoperimetric inequality under different assumptions of
the input space. For instance, based on the assumption
that the input data are uniformly distributed over two
concentric n-spheres (Gilmer et al., 2018) or the under-
lying metric probability space satisfies a concentrated
property (Mahloujifar et al., 2019a), any classifier with
constant test error was proven to be vulnerable to ad-
versarial perturbations sublinear to the input dimen-
sion. Shafahi et al. (2019) showed that adversarial ex-
amples are inevitable, provided the maximum density
of the underlying input distribution is small relative
to uniform density. However, none of the above the-
oretical works provide any experiments to justify the
imposed assumptions hold for real datasets, thus it
is unclear whether the derived theoretical bounds are
meaningful for typical image distributions. Our work
belongs to this line of research, but encompasses the
practical goal of understanding the robustness limits
for real image distributions.

The most related literature to ours is Fawzi et al.
(2018), which proved a classifier-independent upper
bound on intrinsic robustness, provided the underly-
ing distribution is well captured by a smoothed gen-
erative model with Gaussian latent space and small
Lipschitz parameter. However, their proposed the-
ory cannot be applied to image distributions that lie
on a low-dimensional, non-smooth manifold, as their
framework requires examples from different classes to
be close enough in the latent space. In contrast, our
proposed theoretical bounds on intrinsic robustness
are more general in that they can be applied to non-
smoothed data manifolds, such as image distributions
generated by conditional models. In addition, we pro-
pose an empirical method to estimate the intrinsic ro-
bustness on the generated image distributions under
worst-case `2 perturbations.

Mahloujifar et al. (2019b) proposed to understand the
inherent limitations of robust learning using heuris-
tic methods to measure the concentration of measure
based on a given set of i.i.d. samples. However,
it is unclear to what extent the estimated sample-
based concentration approximates the actual intrinsic
robustness with respect to the underlying data distri-
bution. In comparison, we assume the underlying data
distribution can be captured by a conditional genera-
tive model and directly study the robustness limit on
the generated data distribution.

3 Preliminaries

We focus on the task of image classification. Let
(X , µ,∆) be a metric probability space, where X ⊆ Rn
denotes the input space, µ is a probability distribu-
tion over X and ∆ is some distance metric defined
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on X . Suppose there exists a ground-truth function,
f∗ : X → [K], that gives a label to any image x ∈ X ,
where [K] denotes the set of all possible class labels.
The objective of classification is to learn a function
f : X → [K] that approximates f∗ well. In the con-
text of adversarial examples, f is typically evaluated
based on risk, which captures the classification accu-
racy of f on normal examples, and adversarial risk,
which captures the classifier’s robustness against ad-
versarial perturbations:

Definition 3.1. Let (X , µ,∆) be a metric probability
space and f∗ be the ground-truth classifier. For any
classifier f , the risk of f is defined as:

Riskµ(f) = Pr
x∼µ

[
f(x) 6= f∗(x)

]
.

The adversarial risk of f against perturbations with
strength ε in metric ∆ is defined as:

AdvRiskεµ(f) = Pr
x∼µ

[
∃ x′ ∈ B(x, ε) s.t.f(x′) 6= f∗(x′)

]
.

Other definitions of adversarial risk also exist in litera-
ture, such as the definition used in Madry et al. (2018)
and the one proposed in Fawzi et al. (2018). However,
these definitions are equivalent to each other under the
assumption that small perturbations do not change the
ground-truth labels. Another closely-related definition
for adversarial robustness is the expected distance to
the nearest error (see Diochnos et al. (2018) for the
relation between these definitions). Our results can be
applied to this definition as well.

Under different assumptions of the metric probabil-
ity space, previous works proved model-independent
bounds on adversarial robustness. Intrinsic robust-
ness, defined originally by Mahloujifar et al. (2019b),
captures the maximum adversarial robustness that can
be achieved for a given robust learning problem:

Definition 3.2. Using the same settings as in Defi-
nition 3.1 and let F be some class of classifiers. The
intrinsic robustness with respect to F is defined as:

Robεµ(F) = 1− inf
f∈F

{
AdvRiskεµ(f)

}
.

In this work, we consider the class of imperfect classi-
fiers that have risk at least some α > 0.

Motivated by the great success of producing natural-
looking images using conditional generative adversar-
ial nets (GANs) (Mirza and Osindero, 2014; Odena
et al., 2017; Brock et al., 2019), we assume the un-
derlying data distribution µ can be modeled by some
conditional generative model. A generative model can
be seen as a function g : Z → X that maps some la-
tent distribution, usually assumed to be multivariate
Gaussian, to some generated distribution over X .

Conditional generative models incorporate the addi-
tional class information into the data generating pro-
cess. A conditional generative model can be considered
as a set of generative models {gi}i∈[K], where images
from the i-th class can be generated by transforming
latent Gaussian vectors through gi. More rigorously,
we say a probability distribution µ can be generated
by a conditional generative model {(gi, pi)}i∈[K], if

µ =
∑K
i=1 pi · (gi)∗(νd), where K is the total num-

ber of different class labels, and pi ∈ [0, 1] represents
the probability of sampling an image from class i.

Based on the conditional generative model, we intro-
duce the definition of in-distribution adversarial risk :

Definition 3.3. Consider the same settings as in Defi-
nition 3.1. Suppose µ can be captured by a conditional
generative model {(gi, pi)}i∈[K]. For any given classi-
fier f , the in-distribution adversarial risk of f against
ε-perturbations is defined as:

In-AdvRiskεµ(f) =

Pr
(x,i)∼µ

[
∃ z′ ∈ Z s.t. gi(z

′) ∈ B(x, ε)

and f(gi(z
′)) 6= f∗(gi(z

′))
]
.

Given the fact that the in-distribution adversarial
risk restricts the adversarial examples to be on the
image manifold, it holds that, for any classifier f ,
In-AdvRiskεµ(f) ≤ AdvRiskεµ(f). As will be shown in
the next section, such a notion of in-distribution adver-
sarial risk is closely related to the intrinsic robustness
for the considered class of imperfect classifiers.

4 Main Theoretical Results

In this section, we present our main theoretical results
on intrinsic robustness, provided the underlying dis-
tribution can be modeled by some conditional genera-
tive model (our results and proof techniques could also
be easily applied to unconditional generative models).
Based on the underlying generative process, the follow-
ing local Lipschitz condition connects perturbations in
the image space to the latent space.

Condition 4.1. Let g : Rd → X be a generative
model that maps the latent Gaussian distribution νd
to some generated distribution. Consider Euclidean
distance as the distance metric for Rd, and ∆ as the
metric for X . Given r > 0, g is said to be L(r)-locally
Lipschitz with probability at least 1− δ, if it satisfies

Pr
z∼νd

[
∀z′ ∈ B(z, r),

∆
(
g(z′), g(z)

)
≤ L(r)‖z′ − z‖2

]
≥ 1− δ.

As the main tool for bounding the intrinsic robust-
ness, we present the Gaussian Isoperimetric inequality
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for the sake of completeness. This inequality, proved
by Borell (1975) and Sudakov and Tsirelson (1978),
bounds the minimum expansion of any subset with re-
spect to the standard Gaussian measure.

Lemma 4.2 (Gaussian Isoperimetric Inequality).
Consider metric probability space (Rd, νd, ‖·‖2), where
νd is the probability measure for d-dimensional stan-
dard Gaussian distribution N (0, Id), and ‖·‖2 denotes
the Euclidean distance. For any subset E ⊆ Rd and
r ≥ 0, let Er =

{
z ∈ Rd : ∃z′ ∈ E , s.t. ‖z − z′‖2 ≤ r

}
be the r-expansion of E , then it holds that

νd(Er) ≥ Φ
(
Φ−1

(
νd(E)

)
+ r
)
, (4.1)

where Φ(x) = 1√
2π

∫ x
−∞ exp(−u2/2) · du is the CDF of

N (0, 1), and Φ−1(x) denotes its inverse function.

In particular, when E belongs to the set of half-spaces,
the equality is achieved in (4.1).

Making use of the Gaussian Isoperimetric Inequality
and the local Lipschitz condition of the conditional
generator, the following theorem proves a lower bound
on the (in-distribution) adversarial risk for any given
classifier, provided the underlying distribution can be
captured by a conditional generative model.

Theorem 4.3. Let (X , µ,∆) be a metric probability
space and f∗ : X → [K] be the underlying ground-
truth. Suppose µ can be generated by a conditional
generative model {(gi, pi)}i∈[K]. Given ε > 0, suppose
there exist constants r > 0 and δ ∈ (0, 1] such that for
any i ∈ [K], gi satisfies Li(r)-local Lipschitz property
with probability at least 1− δ and r ·Li(r) ≥ ε. Then
for any classifier f , it holds that

AdvRiskεµ(f) ≥ In-AdvRiskεµ(f)

≥
K∑
i=1

pi · Φ
(

Φ−1
(
Riskµi(f)

)
+

ε

Li(r)

)
− δ,

where µi = (gi)∗(νd) is the pushforward measure of νd
though gi, for any i ∈ [K].

We provide a proof in Appendix A.1. Theorem 4.3
suggests the (in-distribution) adversarial risk is related
to the risk on each data manifold and the ratio between
the perturbation strength and the Lipschitz constant.

The following theorem, proved in Appendix A.2, gives
a theoretical upper bound on the intrinsic robustness
with respect to the class of imperfect classifiers.

Theorem 4.4. Under the same setting as in Theorem
4.3, let Lmax(r) = maxi∈[K] Li(r). Consider the class
of imperfect classifiers Fα = {f : Riskµ(f) ≥ α} with
α > 0, then the intrinsic robustness with respect to

Fα can be bounded as,

Robεµ(Fα)

≤ 1 + δ − min
i∈[K]

{
pi · Φ

(
Φ−1

(
α

pi

)
+

ε

Lmax(r)

)}
,

provided that α/pi ≤ 1 for any i ∈ [K]. In ad-
dition, if we consider the family of classifiers that
have conditional risk at least α for each class, namely
F̃α = {f : Riskµi(f) ≥ α,∀i ∈ [K]}, then the intrinsic

robustness with respect to F̃α can be bounded by

Robεµ(F̃α) ≤ 1 + δ −
K∑
i=1

pi · Φ
(

Φ−1
(
α
)

+
ε

Lmax(r)

)
.

Remark 4.5. Theorem 4.4 shows that if the data
distribution can be captured by a conditional gener-
ative model, the intrinsic robustness bound with re-
spect to imperfect classifiers will largely depend on
the ratio ε/Lmax. For instance, if we assume the ratio
ε/Lmax = 1, then Theorem 4.4 suggests that no classi-
fier with initial risk at least 5% can achieve robust ac-
curacy exceeding 75% for the assumed data generating
process. In addition, if we assume the local Lipschitz
parameter Lmax is some constant, then adversarial ro-
bustness is indeed not achievable for high-dimensional
data distributions, provided the perturbation strength
ε is sublinear to the input dimension, which is the typ-
ical setting considered.

Remark 4.6. The intrinsic robustness is closely re-
lated to the in-distribution adversarial risk. For the
class of classifiers Fα, one can prove that the intrinsic
robustness is equivalent to the maximum achievable
in-distribution adversarial robustness:

Robεµ(Fα) = 1− inf
f∈Fα

{In-AdvRiskεµ(f)}. (4.2)

Trivially, AdvRiskεµ(f) ≥ In-AdvRiskεµ(f) holds for
any f . For a given f ∈ Fα, one can construct an
hf ∈ Fα such that hf (x) = f(x) if x ∈ Ef ∩ M
and hf (x) = f∗(x) otherwise, where Ef = {x ∈ X :
f(x) 6= f∗(x)} denotes the error region of f andM is
the considered image manifold. The construction im-
mediately suggests In-AdvRiskεµ(f) = AdvRiskεµ(hf ),
which implies,

inf
f∈Fα

{In-AdvRiskεµ(f)} = inf
f∈Fα

{AdvRiskεµ(hf )}

≥ inf
f∈Fα

{AdvRiskεµ(f)}.

Combining both directions proves the soundness of
(4.2). This equivalence suggests the in-distribution
adversarial robustness of any classifier in Fα can be
viewed as a lower bound on the actual intrinsic robust-
ness, which motivates us to study the intrinsic robust-
ness by estimating the in-distribution adversarial ro-
bustness of trained robust models in our experiments.
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(a) ACGAN Generated MNIST (b) BigGAN Generated ImageNet

Figure 1: Illustration of the generated images using different conditional models. For BigGAN generated images,
we select 10 specific classes from the 1000 ImageNet classes (corresponding to the 10 image classes in CIFAR-10).

5 Experiments

This section provides our empirical evaluations of the
intrinsic robustness on real image distributions to eval-
uate the tightness of our bound. We test our bound on
two image distributions generated using MNIST (Le-
Cun et al., 1998) and ImageNet (Deng et al., 2009)
datasets. Code for all our experiments is available at
https://github.com/xiaozhanguva/Intrinsic-Rob.

5.1 Conditional GAN Models

Instead of directly evaluating the robustness on real
datasets, we make use of conditional GAN models to
generate datasets from the learned data distributions
and evaluate the robustness of several state-of-the-art
robust models trained on the generated dataset for a
fair comparison with the theoretical robustness limits.
Note that this approach is only feasible with condi-
tional generative models as unconditional models can-
not provide the corresponding labels for the generated
data samples. For MNIST, we adopt ACGAN (Odena
et al., 2017) which features an additional auxiliary
classifier for better conditional image generation. The
ACGAN model generates 28 × 28 images from a 100-
dimension latent space concatenated with an addition
10-dimension one-hot encoding of the conditional class
labels. For ImageNet, we adopt the BigGAN model
(Brock et al., 2019) which is the state-of-the-art GAN
model in conditional image generation. It generates
128 × 128 images from a 120-dimension latent space.
We down-sampled the generated images to 32× 32 for
efficiency propose. We consider a standard Gaussian1

1The original BigGAN model uses truncated Gaussian.
We adapted it to standard Gaussian distribution.

as the latent distribution for both conditional gener-
ative models. Figure 1 shows examples of the gener-
ated MNIST and ImageNet images. For both figures,
each column of images corresponds to a particular la-
bel class of the considered dataset.

5.2 Local Lipschitz Constant Estimation

From Theorem 4.4, we observe that given a class of
classifiers with risk at least α, the derived intrinsic ro-
bustness upper bound is mainly decided by the pertur-
bation strength ε and the local Lipschitz constant L(r).
While ε is usually predesignated in common robustness
evaluation settings, the local Lipschitz constant L(r)
is unknown for most real world tasks. Computing an
exact Lipschitz constant of a deep neural network is
a difficult open problem. Thus, instead of obtaining
the exact value, we approximate L(r) using a sample-
based approach with respect to the generative models.

Recalling Definition 4.1, we consider ∆ as the `2 dis-
tance and g(z) and g(z′) are easy to compute via the
generator network. Computing L(r), however, is much
more complicated as it requires obtaining a maximum
value within a radius-r ball. To deal with this, our ap-
proach approximates L(r) by sampling N points in the
neighborhood around z and takes the maximum value
as the estimation of the true maximum value within
the ball. Since the definition of local Lipschitz is prob-
abilistic, we take multiple samples of the latent vectors
z to estimate the local Lipschitz constant L(r). The
estimation procedure is summarized in Algorithm 1,
which gives an underestimate of the underlying truth.
Developing better Lipschitz estimation methods is an
active area in machine learning research, but is not the
main focus of this work.
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Table 1: Local Lipschitz constants of ACGAN model on MNIST classes with r = 0.5 and δ = 0.001.

Class digit 0 digit 1 digit 2 digit 3 digit 4 digit 5 digit 6 digit 7 digit 8 digit 9

L(r) 7.9 8.6 8.3 7.8 10.3 11.0 9.5 7.8 9.3 10.9

Table 2: Local Lipschitz constants of BigGAN on 10 selected ImageNet classes with r = 0.5 and δ = 0.001.

Class airliner jeep goldfinch tabby cat hartebeest Maltese dog bullfrog sorrel pirate ship pickup

L(r) 13.1 14.5 11.7 12.4 10.4 11.3 9.4 13.0 13.1 14.9

Algorithm 1 Local Lipschitz Estimation

Input: number of samples S, number of local neigh-
bors per sample N , r, δ
for i = 1, . . . , S do

Generate a latent space sample zi
Generate N samples {ẑji }Nj=1 within Br(zi)
Li = maxj

‖g(ẑji )−g(zi)‖2
‖ẑji−zi‖2

end for
Output: (1− δ)-percentile of {Li}Si=1

Tables 1 and 2 summarize the local Lipschitz constants
estimated for the trained ACGAN and BigGAN gener-
ators conditioned on each class. For both conditional
generators, we set S = 1000, N = 2000, r = 0.5
and δ = 0.001 in Algorithm 1 for Lipschitz estima-
tion. For BigGAN, the specifically selected 10 classes
from ImageNet are reported in Table 2. In addition,
the reported estimates are averaged over 10 repeated
trials, where the standard deviation varies from 0.2 to
0.6 for ACGAN and varies from 0.3 to 1.1 for BigGAN.

Compared with unconditional generative models, con-
ditional ones generate each class using a separate gen-
erator. Thus, the local Lipschitz constant of each class-
conditioned generator is expected to be smaller than
that of unconditional ones, as the within-class varia-
tion is usually much smaller than the between-class
variation for a given classification dataset. For in-
stance, we trained an unconditional GAN generator
(Goodfellow et al., 2014) on MNIST dataset, which
yields an overall local Lipschitz constant of 27.01 from
Algorithm 1 under the same parameter settings. If
we plug in this estimated Lipschitz constant into the
theoretical results in Fawzi et al. (2018), the implied
intrinsic robustness bound is in fact vacuous (above 1)
with perturbations strength ε ≤ 3.0 in `2 distance.

5.3 Comparisons with Robust Classifiers

We compare our derived intrinsic robustness up-
per bound with the empirical adversarial robustness
achieved by the current state-of-the-art defense meth-

ods under `2 perturbations. Specifically, we con-
sider three robust training methods: LP-Certify :
optimization-based certified robust defense (Wong
et al., 2018); Adv-Train: PGD attack based adversar-
ial training (Madry et al., 2018); and TRADES : ad-
versarial training by accuracy and robustness trade-off
(Zhang et al., 2019). We adopt these robust training
methods to train robust classifiers over a set of gener-
ated training images and evaluate their robustness on
the corresponding generated test set.

For MNIST, we use our trained ACGAN model to
generate 10 classes of hand-written digits with 60, 000
training images and 10, 000 testing images. For Image-
Net, we use the BigGAN model to generate 10 selected
classes of images, which contains 50, 000 images for
training set and 10, 000 images for test set. We refer
to the 10-class BigGAN generated dataset as ‘Image-
Net10’. We set ε = 3.0 for training robust models using
Adv-Train and TRADES for both generated datasets,
whereas we only train the LP-based certified robust
classifier with ε = 2.0 on generated MNIST data, as it
is not able to scale with ImageNet10 as well as gener-
ated MNIST with larger ε (see Appendix B.1 for all the
selected hyper-parameters and network architectures).

A commonly-used method to evaluate the robustness
of a given model is by performing carefully-designed
adversarial attacks. Here we adopt the PGD attack
(Madry et al., 2018), and report the robust accuracy
(classification accuracy on inputs generated using the
PGD attack) as the empirically measured model ro-
bustness. We test both the natural classification accu-
racy and the robustness of the aforementioned adver-
sarially trained classifiers under `2 perturbations with
perturbation strength ε selected from {1.0, 2.0, 3.0}.
See Appendix B.1 for PGD parameter settings.

Table 3 compares the empirically measured robustness
of the trained robust classifiers and the derived the-
oretical upper bound on intrinsic robustness. More
specifically, ε = 0 corresponds to the standard clas-
sification. For empirically measured robust accuracy
when ε > 0, we report both the mean and the stan-
dard deviation over 10 repeated trials. For computing
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Table 3: Comparisons between the empirically measured robustness of adversarially trained classifiers and the
implied theoretical intrinsic robustness bound on the conditional generated datasets.

ACGAN generated MNIST BigGAN generated ImageNet10

ε = 0.0 ε = 1.0 ε = 2.0 ε = 3.0 ε = 0.0 ε = 1.0 ε = 2.0 ε = 3.0

LP-Certify 88.3% 74.0 ± 0.4% 51.1 ± 0.6% 23.5 ± 0.3% - - - -
Adv-Train 97.2% 93.1 ± 0.2% 83.5 ± 0.3% 58.9 ± 0.4% 82.1% 67.8 ± 0.3% 47.1 ± 0.4% 23.4 ± 0.4%
TRADES 98.3% 94.8 ± 0.2% 81.8 ± 0.4% 57.7 ± 0.4% 83.4% 68.5 ± 0.3% 49.1 ± 0.5% 27.8 ± 0.5%

Our Bound - 98.2% 97.8% 97.2% - 83.5% 81.8% 80.0%

our theoretical robust bounds, we set the risk thresh-
old α = 0.015 for generated MNIST and α = 0.15
for ImageNet10, to reflect the best natural accuracy
achieved by the considered robust classifiers.

Under most settings, there exists a large gap between
the robust limit implied by our theory and the best
adversarial robustness achieved by state-of-the-art ro-
bust classifiers. For instance, Adv-Train and TRADES
only achieve less than 50% robust accuracy on the gen-
erated ImageNet10 data with ε = 2.0, whereas the esti-
mated robustness bound is as high as 81.8%. The gap
becomes even larger when we increase the perturbation
strength ε. In contrast to the previous theoretical re-
sults on artificial distributions, for these image classi-
fication problems we cannot simply conclude from the
intrinsic robustness bound that adversarial examples
are inevitable. This huge gap between the empirical
robustness of the best current image classifiers and the
estimated theoretical bound suggests that either there
is a way to train better robust models or that there
exist other explanations for the inherent limitations of
robust learning against adversarial examples.

5.4 In-distribution Adversarial Robustness

In Section 5.3, we empirically show the unconstrained
robustness of existing robust classifiers is far below the
intrinsic robustness upper bound implied by our theory
for real distributions. However, it is not clear whether
the reason is that current robust training methods are
far from perfect, or that our derived upper bound is
not tight enough due to the Lipschitz relaxation step
used for proving such bound. In this section, we em-
pirically study the in-distribution adversarial risk for
a better characterization of the actual intrinsic robust-
ness. As shown in Remark 4.6, the in-distribution ad-
versarial robustness of any classifier with risk at least
α can be regarded as a lower bound for the intrinsic ro-
bustness Robεµ(Fα). This provides us a more accurate
characterization of the intrinsic robustness bound and
enables better understanding of intrinsic robustness.

While there are many types of attack algorithms in
the literature that can be used to evaluate the uncon-

strained robustness of a given classifier in the image
space, little has been done in terms of how to evaluate
the in-distribution robustness. In order to empirically
evaluate the in-distribution robustness, we straightfor-
wardly formulate the following optimization problem
to find adversarial examples on the image manifold:

min
z
L(f(G(z, y)), y) s.t. ‖G(z, y)− x‖2 ≤ ε, (5.1)

where z ∈ Rd, x is the data sample in the image space
to be attacked, f is the given classifier, and L denotes
the adversarial loss function. The goal of (5.1) is to
optimize the latent vector to lower the adversarial loss
(make the robust classifier mis-classify some generated
images) while keeping the distance between the gener-
ated image and the test image within ε perturbation
limit. The key difficulty in solving (5.1) lies in the fact
that we cannot perform any type of projection opera-
tions as we are optimizing over z but the constraints
are imposed on the generated image space G(z, y).
This prohibits the use of common attack algorithms
such as PGD. In order to solve (5.1), we transform
(5.1) into the following Lagrangian formulation:

min
z
‖G(z, y)− x‖2 + λ · L(f(G(z, y)), y). (5.2)

This formulation ignores the perturbation constraint
of ε and tries to find the in-distribution adversarial ex-
amples with the smallest possible perturbation. In or-
der to evaluate the intrinsic robustness under a given
ε perturbation budget, we need to further check all
in-distribution adversarial examples found and only
count those with perturbations within the ε constraint.
Note that even though (5.2) provides us a feasible way
to compute the in-distribution robustness of a classi-
fier, equation (5.2) itself could be hard to solve in gen-
eral. First, it is not obvious how to initialize z. Ran-
dom initialization of z could lead to bad local optima
which prevent the optimizer from efficiently solving
(5.2) or even finding a z that could make G(z, y) close
enough to x. Second, the hyper-parameter λ could
be quite sensitive to different test examples. Failing
to choose a proper λ could also lead to failures in
finding in-distribution adversarial examples within ε
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Figure 2: Comparisons between the theoretical intrinsic robustness bound and the empirically estimated
unconstrained/in-distribution adversarial robustness, denoted as “unc” and “in” in the legend, of models pro-
duced during robust training on the generated data under `2. In each subfigure, the dotted curve line represents
the theoretical bound on intrinsic robustness with horizontal axis denoting the different choice of α.

constraint. In order to the tackle the aforementioned
challenges, we propose to solve another optimization
problem for the initialization of z and adopt binary
search for the best choice of λ (see Appendix B.2 for
more details of our implementation).

Figure 2 summarizes results from our empirical evalu-
ations on intrinsic robustness of the generated MNIST
and ImageNet10 data. We evaluate the empirical ro-
bustness of three types of robust training methods at
different time points during the training procedure.
To be more specific, we evaluate the robustness of
the intermediate models produced every 5 training
epochs. For each method, we plot both the uncon-
strained robustness measured by PGD attacks and the
in-distribution robustness measured using the afore-
mentioned strategies. In addition, based on the local
Lipschitz constants estimated in Section 5.2, we plot
the implied theoretical bound on intrinsic robustness
as the dotted line curve for direct comparison.

Compared with the intrinsic robustness upper bound
(dotted curve line), the unconstrained robustness of
various robustly-trained models is much smaller, and
the gap between them becomes more obvious as we
increase ε. This aligns with our observations in Sec-
tion 5.3. However under all the considered settings,
the estimated in-distribution adversarial robustness is
much higher than the unconstrained one and closer to

the theoretical upper bound, especially for the Image-
Net10 data. Note that according to Remark 4.6, the
actual intrinsic robustness Robεµ(Fα) should lie be-
tween the in-distribution robustness of any given clas-
sifier with risk at least α and the derived intrinsic ro-
bustness upper bound. Observing the big gap between
the estimated in-distribution and unconstrained ro-
bustness of various robustly trained models, one would
expect the current state-of-the-art robust models are
still far from approaching the actual intrinsic robust-
ness limit for real image distributions.

6 Conclusions

We studied the intrinsic robustness of typical image
distributions using conditional generative models. By
deriving theoretical upper bounds on intrinsic robust-
ness and providing empirical estimates on the gener-
ated image distributions, we observed a large gap be-
tween the theoretical intrinsic robust limit and the best
robustness achieved by state-of-the-art robust classi-
fiers. Our results imply that the inevitability of adver-
sarial examples claimed in recent theoretical studies,
such as Fawzi et al. (2018), do not apply to real im-
age distributions, and suggest that there is a need for
deeper understanding on the intrinsic robustness lim-
itations for real data distributions.
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