A Experiments

In this section, we empirically validate the efficiency of the proposed 1-SFW algorithm by comparing it with the baseline methods: Stochastic Frank-Wolfe (SFW) [Hazan and Luo [2016]] and Stochastic Conditional Gradient (SCG) [Mokhtari et al. [2018b]]. Note that SCG is the only existing provably convergent Frank-Wolfe variant that accepts a constant per-iteration mini-batch size (possibly 1). Denote the constant mini-batch size of 1-SFW and SCG by m. The growing mini-batch size of SFW is set to $m \cdot t^2$, where t is the iteration count.

We study three types of problems, i.e., ℓ_1-constrained logistic-regression (convex), robust low rank matrix recovery (nonconvex), and maximization of multilinear extensions of monotone discrete submodular functions (DR-submodular).

A.1 Logistic Regression

In this task, we consider ℓ_1-constrained logistic regression problem. Concretely, denote each data point i by $(a_i, y_i) \in \mathbb{R}^d \times \{-1, +1\}$, where a_i is a feature vector and $y_i \in \{1, \ldots, C\}$ is the corresponding label. Our goal is to minimize the following loss

$$ F(W) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i W^T c a_i)),$$

over the constraint $C = \{W \in \mathbb{R}^{d \times C} : \|W\|_1 \leq r\}$ for some constant $r \in \mathbb{R}_+$, where $\|W\|_1$ is the matrix ℓ_1 norm, i.e., $\|W\|_1 = \max_{1 \leq j \leq C} \sum_{i=1}^{d} |[W]_{ij}|$. We note that the loss function F is convex.

Two datasets are used in our experiments: MNIST (digit 2 and 4 as positive and negative class respectively) and CIFAR10 (cat and dog as positive and negative class respectively). In terms of the parameter setting, we grid search the step size η_t for all three methods over the set $\{\min\{1, c/(t + 1)^a\} | c \in \{0.1, 0.25, 0.5, 1.0, 2.0\}, a \in \{1, 2/3, 1/2\}\}$, set the mixing weights ρ_t of SCG and 1-SFW to $1/(t + 1)^{2/3}$, and set the constant mini-batch parameter $m = 16$. We report the results in Figure 1. We can see the advantage of 1-SFW over its competitors.

A.2 Robust Low-Rank Matrix Recovery

LRMR plays a key role in solving many important learning tasks, such as collaborative filtering [Koren et al., 2009], dimensionality reduction [Weinberger and Saul, 2006], and multi-class learning [Xu et al., 2013]. The loss of LRMR is defined as

$$ \min_{X \in \mathbb{R}^{M \times N}} \sum_{(i,j) \in \Omega} \psi(X_{ij} - Y_{ij}) $$

$$ s.t. \quad \|X\|_* \leq B, \quad (13) $$
where $\psi : \mathbb{R} \rightarrow \mathbb{R}$ is the potentially nonconvex empirical loss function, X_{ij} is the i, jth element of matrix X, and Ω is the set of observed indices in target matrix $Y \in \mathbb{R}^{M \times N}$. Here we focus on a robust version of LRMR with the loss ψ being:

$$\psi(z; \sigma) = 1 - \exp(-z^2/2\sigma),$$

where σ is a tunable parameter. Loss (14) is less sensitive to the discrepancy $X_{ij} - Y_{ij}$, compared to the common least square loss $\psi(z) = z^2/2$, and hence is robust to adversarial outliers [Qu et al., 2017].

In each trial, we first generate an underlying matrix M of size 200×200 and rank $\gamma = 15$. The singular values of M are set as $2^{\gamma}/2^{\gamma} \times 50$ and hence $\|M\|_\infty \leq C = 100$, where $[\gamma] = \{1, \ldots, \gamma\}$. We then inject adversarial noise into M by (1) uniformly sampling 5% of the entries in M and (2) adding random noise uniformly sampled from $[-\rho, \rho]$ to each selected entry, where the noise level ρ equals 10. Denote \hat{M} as the matrix after noise injection. We uniformly sample 10% of the entries in \hat{M} to obtain the observations, i.e., Y_{ij}. Hence $|\Omega|$, the number of observation is $M \times N \times 10\% = 4,000$.

In terms of algorithmic parameter setting, we set the mini-batch size m to $|\Omega|/20$. The number of epoch T is set to 50 for all cases, and the step size parameter η_t is set to $1/(T \times |\Omega|/m) = 1/1000$ in all cases for all methods.

We present the comparison of listed methods in Figure 2 where we observe that 1-SFW has the best performance in terms of the Frank-Wolfe gap (a), gradient estimation accuracy (b), and the Root Mean Square Error (RMSE) between the prediction matrix and the underlying true matrix.

A.3 Discrete Monotone Submodular Maximization with Matroid Constraint

In this section, we consider the discrete monotone submodular maximization subject to a matroid constraint via the maximizing the corresponding multilinear extension. Let V be a finite set of d elements and \mathcal{I} be a collection of its subsets. It is proved that to maximize a discrete monotone submodular function $f : 2^V \rightarrow \mathbb{R}_+$ subject to the matroid constraint $\mathcal{M} \triangleq \{V, \mathcal{I}\}$ is equivalent to maximize its multilinear extension, defined as

$$F(x) = \sum_{S \subseteq [d]} f(S) \prod_{j \in S} |x_j| \prod_{\ell \notin S} (1 - |x_\ell|),$$

subject to the constraint $x \in \mathcal{C}$, where \mathcal{C} is the base polytope of \mathcal{M}. Further, it is known that F is monotone DR-submodular.

We now focus on a concrete recommendation problem which can be formulated as discrete monotone submodular maximization. We use $r(u, j)$ to denote user u’s rating for item $j \in [d]$ and set $r(u, j) = 0$ if item j is not rated by user u. Our goal is to recommend a set of $k = 10$ items to all users such that they have the highest total rating. Two types of utility functions can be defined for such task: facility location

$$f(S) = \sum_u \max_{j \in S} r(u, j),$$
\[f(S) = \sum_u \left(\sum_j r(u, j) \right)^{1/2}. \] (17)

Here the matroid is \(\{ V, I \} \coloneqq \{ S \subseteq V | |S| = k \} \). Two datasets are used in this experiment, Jester \(1^1 \) and movielens \(1M^2 \) with the results presented in Figure 3 and Figure 4 respectively. We observe that 1-SFW always achieves the highest utility after sufficient function evaluations.

B Proof of Lemma \(^2\)

Proof. Let \(A_t = \| \nabla F(x_t) - d_t \|^2 \). By definition, we have

\[A_t = \| \nabla F(x_{t-1}) - d_{t-1} + \nabla F(x_t) - \nabla F(x_{t-1}) - (d_t - d_{t-1}) \|^2. \]

Note that

\[d_t - d_{t-1} = -\rho_t d_{t-1} + \rho_t \nabla \hat{F}(x_t, z_t) + (1 - \rho_t) \tilde{\Delta}_t, \]

and define \(\Delta_t = \nabla F(x_t) - \nabla F(x_{t-1}) \), we have

\[
A_t = \| \nabla F(x_{t-1}) - d_{t-1} + \Delta_t - \rho_t \nabla \hat{F}(x_t, z_t) + \rho_t d_{t-1} \|^2 \\
= \| \nabla F(x_{t-1}) - d_{t-1} + (1 - \rho_t) (\Delta_t - \tilde{\Delta}_t) + \rho_t (\nabla F(x_t) - \nabla \hat{F}(x_t, z_t) + \rho_t (d_{t-1} - \nabla F(x_{t-1}))) \|^2 \\
= \| (1 - \rho_t) (\nabla F(x_{t-1}) - d_{t-1}) + (1 - \rho_t) (\Delta_t - \tilde{\Delta}_t) + \rho_t (\nabla F(x_t) - \nabla \hat{F}(x_t, z_t)) \|^2.
\]

Since \(\tilde{\Delta}_t \) is an unbiased estimator of \(\Delta_t \), \(\mathbb{E}[A_t] \) can be decomposed as

\[
\mathbb{E}[A_t] = \mathbb{E}\{(1 - \rho_t)^2 \| \nabla F(x_{t-1}) - d_{t-1} \|^2 \} + (1 - \rho_t)^2 \| \Delta_t - \tilde{\Delta}_t \|^2 + \rho_t^2 \| \nabla F(x_t) - \nabla \hat{F}(x_t, z_t) \|^2 \\
+ 2\rho_t(1 - \rho_t) \langle \nabla F(x_{t-1}) - d_{t-1}, \nabla F(x_t) - \nabla \hat{F}(x_t, z_t) \rangle + 2\rho_t(1 - \rho_t) \langle \Delta_t - \tilde{\Delta}_t, \nabla F(x_t) - \nabla \hat{F}(x_t, z_t) \rangle.
\] (18)

\(^1\)http://eigentaste.berkeley.edu/dataset/
\(^2\)https://grouplens.org/datasets/movielens/
Then we turn to upper bound the items above. First, by Lemma 1, we have

\[\mathbb{E}[\|\tilde{\Delta}_t - \Delta_t\|^2] = \mathbb{E}[\|\nabla^2_t(x_t - x_{t-1}) - (\nabla F(x_t) - \nabla F(x_{t-1}))\|^2] \leq \mathbb{E}[\|\nabla^2_t(x_t - x_{t-1})\|^2] = \mathbb{E}[\|\nabla^2_t(\eta_{t-1}(v_{t-1} - x_{t-1}))\|^2] \leq \eta^2_{t-1}D^2 \mathbb{E}[\|\nabla^2_t\|^2] \leq \eta^2_{t-1}D^2 \bar{L}^2. \]

(19)

By Jensen’s inequality, we have

\[\mathbb{E}[\|\tilde{\Delta}_t - \Delta_t\|] \leq \sqrt{\mathbb{E}[\|\tilde{\Delta}_t - \Delta_t\|^2]} \leq \eta_{t-1}D\bar{L}, \]

(20)

and

\[\mathbb{E}[\|\nabla F(x_t) - d_t\|] = \sqrt{\mathbb{E}[\|\nabla F(x_t) - d_t\|^2]} = \sqrt{\mathbb{E}[A_t]]. \]

(21)

Note that \(z_t \) is sampled according to \(p(z|x_t(a)) \), where \(x_t(a) = ax_t + (1-a)x_{t-1} \). Thus \(\bar{F}(x_t, z_t) \) is NOT an unbiased estimator of \(\nabla F(x_t) \) when \(a \neq 1 \), which occurs with probability 1. However, we will show that \(\bar{F}(x_t, z_t) \) is still a good estimator. Let \(\mathcal{F}_{t-1} \) be the \(\sigma \)-field generated by all the randomness before round \(t \), then by Law of Total Expectation, we have

\[\mathbb{E}[2\rho_t(1 - \rho_t)\langle \nabla F(x_{t-1}) - d_{t-1}, \nabla F(x_t) - \nabla \bar{F}(x_t, z_t) \rangle] = \mathbb{E}[2\rho_t(1 - \rho_t)\langle \nabla F(x_{t-1}) - d_{t-1}, \nabla F(x_t) - \nabla \bar{F}(x_t, z_t) \rangle|\mathcal{F}_{t-1}, x_t(a)] \]

(22)

where

\[\mathbb{E}[\nabla F(x_t) - \nabla \bar{F}(x_t, z_t)|\mathcal{F}_{t-1}] = \nabla F(x_t) - \nabla F(x_t(a)) + \nabla F(x_t(a)) - \mathbb{E}[\nabla \bar{F}(x_t, z_t)|\mathcal{F}_{t-1}, x_t(a)]. \]

By Lemma 1 \(F \) is \(\bar{L} \)-smooth, thus

\[\|\nabla F(x_t) - \nabla F(x_t(a))\| \leq \bar{L}\|x_t - x_t(a)\| = \bar{L}(1 - a)\|\eta_{t-1}(v_{t-1} - x_{t-1})\| \leq \eta_{t-1}D\bar{L}. \]
We also have

\[
\|\nabla F(x_t(a)) - E[\nabla \tilde{F}(x_t, z_t)|\mathcal{F}_{t-1}, x_t(a)]\| = \| \int [\nabla \tilde{F}(x_t(a); z) - \nabla \tilde{F}(x_t; z)]p(z; x_t(a))dz \|
\]

\[
\leq \int \|\nabla \tilde{F}(x_t(a); z) - \nabla \tilde{F}(x_t; z)\|p(z; x_t(a))dz
\]

\[
\leq \int L\|x_t(a) - x_t\|p(z; x_t(a))dz
\]

\[
\leq \eta_{t-1}DL,
\]

where the second inequality holds because of Assumption 4. Combine the analysis above with Eq. (22), we have

\[
E[2\rho_t(1 - \rho_t)[\nabla F(x_{t-1}) - d_{t-1}, \nabla F(x_t) - \nabla \tilde{F}(x_t, z_t)]]
\]

\[
\leq E[2\rho_t(1 - \rho_t)\|\nabla F(x_{t-1}) - d_{t-1}\|.E[\|\nabla F(x_t) - \nabla \tilde{F}(x_t, z_t)|\mathcal{F}_{t-1}]]
\]

\[
\leq 2\rho_t(1 - \rho_t)E[\|\nabla F(x_{t-1}) - d_{t-1}\|. (\eta_{t-1}DL + \eta_{t-1}DL)
\]

\[
\leq 2\eta_{t-1}\rho_t(1 - \rho_t)\sqrt{E[A_{t-1}]D(\bar{L} + L)}.
\]

Finally, by Assumption 3 we have \(\|\nabla F(x_t) - \nabla \tilde{F}(x_t, z_t)\| \leq 2G\). Thus

\[
\rho_t^2\|\nabla F(x_t) - \nabla \tilde{F}(x_t, z_t)\|^2 \leq 4\rho_t^2G^2,
\]

and

\[
E[2\rho_t(1 - \rho_t)[\Delta_t - \tilde{\Delta}_t, \nabla F(x_t) - \nabla \tilde{F}(x_t, z_t)]] \leq E[2\rho_t(1 - \rho_t)\|\Delta_t - \tilde{\Delta}_t\|.\|\nabla F(x_t) - \nabla \tilde{F}(x_t, z_t)\|]
\]

\[
\leq 4\eta_{t-1}\rho_t(1 - \rho_t)GD\bar{L}.
\]

Combine Eqs. (18), (19) and (23) to (25), we have

\[
E[A_t] \leq (1 - \rho_t)^2E[A_{t-1}] + (1 - \rho_t)^2\eta_{t-1}^2D^2\bar{L}^2 + \rho_t^24G^2 + 2\eta_{t-1}\rho_t(1 - \rho_t)\sqrt{E[A_{t-1}]D(\bar{L} + L)} + 4\eta_{t-1}\rho_t(1 - \rho_t)GD\bar{L}
\]

For the simplicity of analysis, we replace \(t\) by \(t + 1\), and have

\[
E[A_{t+1}]
\]

\[
\leq (1 - \rho_{t+1})^2E[A_t] + (1 - \rho_{t+1})^2\eta_{t+1}^2D^2\bar{L}^2 + \rho_{t+1}^24G^2 + 2\eta_{t+1}\rho_{t+1}(1 - \rho_{t+1})\sqrt{E[A_{t}]D(\bar{L} + L)} + 4\eta_{t+1}\rho_{t+1}(1 - \rho_{t+1})GD\bar{L}
\]

\[
\leq (1 - \frac{1}{t^\alpha})^2E[A_t] + \frac{D^2\bar{L}^2 + 4G^2 + 4GD\bar{L}}{t^{2\alpha}} + \frac{2D(\bar{L} + L)}{t^{2\alpha}}\sqrt{E[A_t]}.
\]

(26)

We claim that \(E[A_t]\leq Ct^{-\alpha}\), and prove it by induction. Before the proof, we first analyze one item in the definition of \(C\). Define \(h(\alpha) = 2 - 2^{-\alpha} - \alpha\). Since \(h'(\alpha) = 2^{-\alpha} ln(2) - 1 \leq 0\) for \(\alpha \in (0, 1]\), so \(1 = h(0) \geq h(\alpha) \geq h(1) = 1/2 > 0\), \(\forall \alpha \in (0, 1]\). As a result, \(2 \leq \frac{2}{2^{-\alpha} - \alpha} \leq 4\).

When \(t = 1\), we have

\[
E[A_1] = E[\|\nabla F(x_1) - \nabla \tilde{F}(x_1; z_1)\|^2] \leq (2G)^2 \leq \frac{2(2G + DL)^2}{2 - 2^{-\alpha} - \alpha}/1 \leq C \cdot 1^{\alpha}
\]

When \(t = 2\), since \(\rho_2 = 1\), we have

\[
E[A_2] = E[\|\nabla \tilde{F}(x_2, z_2) - \nabla F(x_2)\|^2] \leq (2G)^2 \leq \frac{2(2G + DL)^2}{2 - 2^{-\alpha} - \alpha}/2 \leq C \cdot 2^{-\alpha}.
\]
Now assume for $t \geq 2$, we have $\mathbb{E}[A_t] \leq Ct^{-\alpha}$, by Eq. (26) and the definition of C, we have

$$
\mathbb{E}[A_{t+1}] \leq (1 - \frac{1}{t^\alpha})^2 \cdot Ct^{-\alpha} + \frac{(2G + 2D\bar{L})^2}{t^{2\alpha}} + \frac{2D(\bar{L} + L)}{t^{(5/2)\alpha}} \sqrt{C}
$$

$$
\leq Ct^{-\alpha} - 2Ct^{-2\alpha} + Ct^{-3\alpha} + \frac{(2 - 2^{-\alpha} - \alpha)C}{2t^{2\alpha}} + \frac{C^{3/4}}{t^{(5/2)\alpha}}
$$

$$
\leq \frac{C}{t^\alpha} - \frac{2C + Ct^{-\alpha} + (2 - 2^{-\alpha} - \alpha)C/2 + (2 - 2^{-\alpha} - \alpha)/2}{t^{2\alpha}}
$$

Define $g(t) = t^{-\alpha}$, then $g(t)$ is a convex function for $\alpha \in (0, 1]$. Thus we have $g(t + 1) - g(t) \geq g'(t)$, i.e., $(t + 1)^{-\alpha} - t^{-\alpha} \geq -\alpha t^{-(\alpha + 1)}$. So we have

$$
\frac{C}{t^\alpha} - \frac{\alpha C}{t^{2\alpha}} \leq C(t^{-\alpha} - \alpha t^{-(\alpha + 1)}) \leq C(t + 1)^{-\alpha}.
$$

Combine with Eq. (27), we have $\mathbb{E}[A_{t+1}] \leq C(t + 1)^{-\alpha}$. Thus by induction, we have $\mathbb{E}[A_t] \leq Ct^{-\alpha}, \forall t \geq 1$.

C Proof of Lemma 3

The only difference with the proof of Lemma 2 is the bound for $\mathbb{E}[\|\tilde{\Delta}_t - \Delta_t\|]$. Specifically, we have

$$
\mathbb{E}[\|\tilde{\Delta}_t - \Delta_t\|^2] = \mathbb{E}[\|\tilde{\Delta}_t - \tilde{\nabla}_t^2(x_t - x_{t-1}) + \tilde{\nabla}_t^2(x_t - x_{t-1}) - (\nabla F(x_t) - \nabla F(x_{t-1}))\|^2]
$$

$$
= \mathbb{E}[\|\tilde{\Delta}_t - \tilde{\nabla}_t^2(x_t - x_{t-1})\|^2] + \mathbb{E}[\|\tilde{\nabla}_t^2(x_t - x_{t-1}) - (\nabla F(x_t) - \nabla F(x_{t-1}))\|^2]
$$

$$
\leq [D^2L_2\delta_t(1 + \bar{F}(x_t(a), z_t))]^2 + \eta_{t-1}^2D^2L^2
$$

$$
\leq (1 + B)^2L_2^2D^4\delta_t^2 + \eta_{t-1}^2D^2L^2
$$

Then by the analysis same to the proof of Lemma 2, we have

$$
\mathbb{E}[A_{t+1}] \leq (1 - \frac{1}{t^\alpha})^2\mathbb{E}[A_t] + \frac{4(D^2\bar{L}^2 + G^2 + GD\bar{L})}{t^{2\alpha}} + \frac{4D(\bar{L} + L)}{t^{(5/2)\alpha}} \sqrt{\mathbb{E}[A_t]},
$$

and thus $\mathbb{E}[A_{t+1}] \leq C(t + 1)^{-\alpha}$, where $C = \max\left\{\frac{8(D^2\bar{L}^2 + G^2 + GD\bar{L})}{2\cdot 2^{-\alpha} - \alpha}, \left[\frac{2}{2\cdot 2^{-\alpha} - \alpha}\right]^4, 4D(\bar{L} + L)\right\}^4$.

D Proof of Theorem 1

First, since $x_{t+1} = (1 - \eta_t)x_t + \eta_t v_t$ is a convex combination of x_t, v_t, and $x_t \in K, v_t \in K, \forall t$, we can prove $x_t \in K, \forall t$ by induction. So $x_{t+1} \in K$.

Then we present an auxiliary lemma.

Lemma 4. Under the condition of Theorem 7 in Algorithm 3, we have

$$
F(x_{t+1}) - F(x^*) \leq (1 - \eta_t)(F(x_t) - F(x^*)) + \eta_tD\|\nabla F(x_t) - d_t\| + \frac{LD^2\eta_t^2}{2}.
$$

By Jensen’s inequality and Lemma 2 with $\alpha = 1$, we have

$$
\mathbb{E}[\|\nabla F(x_t) - d_t\|] \leq \mathbb{E}[\|\nabla F(x_t) - d_t\|^2] \leq \frac{\sqrt{C}}{\sqrt{t}}.
$$
where $C = \max\{4(2G + 2L)^2, 256, [2D(L + 2L)]^2\}$. Then by Lemma 4 we have
\[
\begin{align*}
&E[F(x_{t+1}) - F(x^*)] \\
\leq & (1 - \eta_t)E[F(x_t) - F(x^*)] + \eta_t D^2 \|\nabla F(x_t) - d_t\| + \frac{\bar{L}^2 \eta_t^2}{2} \\
= & \prod_{i=1}^{T} (1 - \eta_i)E[F(x_i) - F(x^*)] + D \sum_{k=1}^{T} \eta_k \|\nabla F(x_k) - d_k\| \prod_{i=k+1}^{T} (1 - \eta_i) + \frac{\bar{L}^2 D^2}{2} \sum_{k=1}^{T} \eta_k^2 \prod_{i=k+1}^{T} (1 - \eta_i) \\
\leq & 0 + D \sum_{k=1}^{T} \frac{1}{k!} + \frac{\bar{L}^2 D^2}{2} \sum_{k=1}^{T} k^{-1}.
\end{align*}
\] (29)

Since
\[
\sum_{k=1}^{T} \frac{1}{k!} \leq \int_{0}^{T} x^{-1/2} dx = 2\sqrt{T},
\]
and
\[
\sum_{k=1}^{T} k^{-1} \leq 1 + \int_{1}^{T} x^{-1} dx = 1 + \ln T,
\]
by Eq. (29), we have
\[
E[F(x_{t+1}) - F(x^*)] \leq \frac{2\sqrt{C}D}{\sqrt{T}} + \frac{\bar{L}^2 D^2}{2T}(1 + \ln T).
\]

E Proof of Theorem 2

First, since $x_{t+1} = (1 - \eta_t)x_t + \eta_t v_t$ is a convex combination of $x_t, v_t,$ and $x_1 \in K, v_t \in K, \forall t,$ we can prove $x_t \in K, \forall t$ by induction. So $x_0 \in K.$

Note that if we define $v'_t = \arg\min_{v \in K} \langle v, \nabla F(x_t) \rangle,$ then $G(x_t) = \langle v'_t - x_t, -\nabla F(x_t) \rangle = -\langle v'_t - x_t, \nabla F(x_t) \rangle.$ So we have
\[
\begin{align*}
F(x_{t+1}) & \overset{(a)}{\leq} F(x_t) + \langle \nabla F(x_t), x_{t+1} - x_t \rangle + \frac{\bar{L}}{2} \|x_{t+1} - x_t\|^2 \\
& = F(x_t) + \langle \nabla F(x_t), \eta_t(v_t - x_t) \rangle + \frac{\bar{L}}{2} \|\eta_t(v_t - x_t)\|^2 \\
& \overset{(b)}{\leq} F(x_t) + \eta_t \langle \nabla F(x_t), v_t - x_t \rangle + \frac{\bar{L} \eta_t^2 D^2}{2} \\
& = F(x_t) + \eta_t \langle d_t, v_t - x_t \rangle + \eta_t \langle \nabla F(x_t) - d_t, v_t - x_t \rangle + \frac{\bar{L} \eta_t^2 D^2}{2} \\
& \overset{(c)}{\leq} F(x_t) + \eta_t \langle d_t, v'_t - x_t \rangle + \eta_t \langle \nabla F(x_t) - d_t, v_t - x_t \rangle + \frac{\bar{L} \eta_t^2 D^2}{2} \\
& = F(x_t) + \eta_t \langle \nabla F(x_t), v'_t - x_t \rangle + \eta_t \langle d_t - \nabla F(x_t), v'_t - x_t \rangle \\
& \quad + \eta_t \langle \nabla F(x_t) - d_t, v_t - x_t \rangle + \frac{\bar{L} \eta_t^2 D^2}{2} \\
& \overset{(d)}{\leq} F(x_t) - \eta_t G(x_t) + \eta_t \|\nabla F(x_t) - d_t\| \|v_t - v'_t\| + \frac{\bar{L} \eta_t^2 D^2}{2} \\
& \overset{(e)}{\leq} F(x_t) - \eta_t G(x_t) + \eta_t D \|\nabla F(x_t) - d_t\| + \frac{\bar{L} \eta_t^2 D^2}{2},
\end{align*}
\]
where we used the fact that F is \hat{L}-smooth in inequality (a). Inequalities (b), (e) hold because of Assumption 1. Inequality (c) is due to the optimality of v_t, and in (d), we applied the Cauchy-Schwarz inequality.

Rearrange the inequality above, we have

$$\eta_t G(x_t) \leq F(x_t) - F(x_{t+1}) + \eta_t D \|\nabla F(x_t) - d_t\| + \frac{\hat{L} \eta_t^2 D^2}{2}. \quad (30)$$

Apply Eq. (30) recursively for $t = 1, 2, \cdots, T$, and take expectations, we attain the following inequality:

$$\sum_{t=1}^{T} \eta_t E[G(x_t)] \leq F(x_1) - F(x_{T+1}) + D \sum_{t=1}^{T} \eta_t E[\|\nabla F(x_t) - d_t\|] + \frac{\hat{L} D^2}{2} \sum_{t=1}^{T} \eta_t^2.$$

By Jensen’s inequality Lemma 2 with $\alpha = 2/3$, we have

$$E[\|\nabla F(x_t) - d_t\|] \leq \sqrt{E[\|\nabla F(x_t) - d_t\|^2]} \leq \sqrt{C_{\frac{1}{T}^{1/3}}},$$

where $C = \max\{\frac{2(2G + D \hat{L})^2}{4/3 - 2/3 - \alpha}, \left(\frac{2}{4/3 - 2/3 - \alpha}\right)^4, [2D(\hat{L} + L)]^4\}$. Since $\eta_t = T^{-2/3}$, we have

$$E[G(x_0)] = \frac{\sum_{t=1}^{T} E[G(x_t)]}{T} \leq \frac{1}{T \cdot T^{-2/3}} [F(x_1) - F(x_{T+1}) + D \sum_{t=1}^{T} T^{-2/3} \sqrt{C_{\frac{1}{T}^{1/3}}} + \frac{\hat{L} D^2}{2} \sum_{t=1}^{T} T^{-4/3}]$$

$$\leq \frac{1}{T^{1/3}} [2B + D\sqrt{C} T^{-2/3} \frac{3}{2} T^{2/3} + \frac{\hat{L} D^2}{2T^{1/3}}]$$

$$= \frac{2B + 3\sqrt{C} D/2}{T^{1/3}} + \frac{\hat{L} D^2}{2T^{2/3}},$$

where the second inequality holds because $\sum_{t=1}^{T} t^{-1/3} \leq \int_{0}^{T} x^{-1/3} dx = \frac{3}{2} T^{2/3}$.

F Proof of Theorem 3

First, since $x_{t+1} = x_t + \eta_t v_t = x_t + T^{-1} v_t$, we have $x_{T+1} = \frac{\sum_{t=1}^{T} v_t}{T} \in K$. Also, because now $\|x_{t+1} - x_t\| = \|\eta_t v_t\| \leq \eta_t R$, (rather than $\eta_t D$), Lemma 2 holds with new constant $C = \max\{\frac{2(2G + R \hat{L})^2}{4/3 - 2/3 - \alpha}, \left(\frac{2}{4/3 - 2/3 - \alpha}\right)^4, [2R(\hat{L} + L)]^4\}$. Since $\alpha = 1$, we have $C = \max\{4(2G + R \hat{L})^2, 256, [2R(\hat{L} + L)]^4\}$. Then by Jensen’s inequality, we have

$$E[\|\nabla F(x_t) - d_t\|] \leq \sqrt{E[\|\nabla F(x_t) - d_t\|^2]} \leq \sqrt{C_{\frac{1}{\sqrt{t}}}}.$$
We observe that

\[
F(x_{t+1}) \overset{(a)}{=} F(x_t) + \langle \nabla F(x_t), x_{t+1} - x_t \rangle - \frac{L}{2} \| x_{t+1} - x_t \|
\]

\[
= F(x_t) + \frac{1}{T} \langle \nabla F(x_t), v_t \rangle - \frac{L}{2T^2} \| v_t \|
\]

\[
\overset{(b)}{\geq} F(x_t) + \frac{1}{T} \langle d_t, v_t \rangle + \frac{1}{T} \langle \nabla F(x_t) - d_t, v_t \rangle - \frac{LR^2}{2T^2}
\]

\[
\overset{(c)}{\geq} F(x_t) + \frac{1}{T} \langle d_t, x^* \rangle + \frac{1}{T} \langle \nabla F(x_t) - d_t, v_t \rangle - \frac{LR^2}{2T^2}
\]

\[
\overset{(d)}{=} F(x_t) + \frac{1}{T} \langle \nabla F(x_t), x^* \rangle + \frac{1}{T} \langle \nabla F(x_t) - d_t, v_t - x^* \rangle - \frac{LR^2}{2T^2}
\]

\[
\overset{(e)}{\geq} F(x_t) + \frac{F(x^*) - F(x_t)}{T} - \frac{1}{T} \langle \nabla F(x_t) - d_t, v_t - x^* \rangle - \frac{LR^2}{2T^2}
\]

\[
\overset{(f)}{\geq} F(x_t) + \frac{F(x^*) - F(x_t)}{T} - \frac{1}{T} \langle \nabla F(x_t) - d_t, v_t - x^* \rangle - \frac{LR^2}{2T^2}
\]

where inequality (a) holds because of the \bar{L}-smoothness of F, inequalities (b), (c) comes from Assumption \[.\] We used the optimality of v_t in inequality (c), and applied the Cauchy-Schwarz inequality in (e). Inequality (d) is a little involved, since F is monotone and concave in positive directions, we have

\[
F(x^*) - F(x_t) \leq F(x^* \lor x_t) - F(x_t) \leq \langle \nabla F(x_t), x^* \lor x_t - x_t \rangle = \langle \nabla F(x_t), (x^* - x_t) \lor 0 \rangle \leq \langle \nabla F(x_t), x^* \rangle.
\]

Taking expectations on both sides of Eq. (31),

\[
\mathbb{E}[F(x_{t+1})] \geq \mathbb{E}[F(x_t)] + \frac{F(x^*) - \mathbb{E}[F(x_t)]}{T} - \frac{2R \sqrt{C}}{T} \sqrt{t} - \frac{LR^2}{2T^2}.
\]

Or

\[
F(x^*) - \mathbb{E}[F(x_{t+1})] \leq (1 - \frac{1}{T})[F(x^*) - \mathbb{E}[F(x_t)]] + \frac{2R \sqrt{C}}{T} \sqrt{t} + \frac{LR^2}{2T^2}
\]

Apply the inequality above recursively for $t = 1, 2, \cdots, T$, we have

\[
F(x^*) - \mathbb{E}[F(x_{T+1})] \leq (1 - \frac{1}{T})^T [F(x^*) - F(x_1)] + \frac{2R \sqrt{C}}{T} \sum_{t=1}^{T} t^{-1/2} + \frac{LR^2}{2T}
\]

\[
\leq e^{-1} F(x^*) + \frac{4R \sqrt{C}}{T^{1/2}} + \frac{LR^2}{2T},
\]

where the second inequality holds since $\sum_{t=1}^{T} t^{-1/2} \leq \int_0^{T} x^{-1/2}dx = 2T^{1/2}$. Thus we have

\[
\mathbb{E}[F(x_{T+1})] \geq (1 - e^{-1}) F(x^*) - \frac{4R \sqrt{C}}{T^{1/2}} - \frac{LR^2}{2T}.
\]