A Simple Approach for Non-stationary Linear Bandits

A Proof of Lemma 3

Proof of Lemma 3. We first prove the upper bound of A_t. The essential proof is actually due to Cheung et al. [2019a] in analyzing sliding window based approach. For self-containedness, we restate here in the notations of our proposed restart strategy.

$$
\left\| V_{t-1}^{-1} \sum_{s=t_0}^{t-1} X_s X_s^T (\theta_s - \theta_t) \right\|_2

= \left\| V_{t-1}^{-1} \left(\sum_{s=t_0}^{t-1} X_s X_s^T \left(\sum_{p=s}^{t-1} (\theta_p - \theta_{p+1}) \right) \right) \right\|_2

= \left\| V_{t-1}^{-1} \sum_{p=t_0}^{t-1} \left(\sum_{s=t_0}^{p} X_s X_s^T (\theta_p - \theta_{p+1}) \right) \right\|_2

\leq \sum_{p=t_0}^{t-1} \left\| V_{t-1}^{-1} \left(\sum_{s=t_0}^{p} X_s X_s^T \right) (\theta_p - \theta_{p+1}) \right\|_2

\leq \sum_{p=t_0}^{t-1} \lambda_{\text{max}} \left(\sum_{s=t_0}^{p} X_s X_s^T \right) \left\| \theta_p - \theta_{p+1} \right\|_2

\leq \left\| \theta_p - \theta_{p+1} \right\|_2,

\tag{21}

\tag{22}

\tag{23}

\tag{24}

where (21) holds by rearranging over the index pair of (s, p), (22) holds due to the triangle inequality, (23) and (24) can be obtained by the same argument in Appendix B of Cheung et al. [2019b]. We thus prove the upper bound of A_t.

We proceed to prove the upper bound of B_t. From the self-normalized concentration inequality [Abbasi-Yadkori et al., 2011, Theorem 1], restated in Theorem 5 of Appendix C, we know that

$$
\left\| \sum_{s=t_0}^{t-1} \eta_s X_s \right\|_{V_{t-1}^{-1}} \leq \sqrt{2 R^2 \log \left(\frac{\det(V_{t-1})^{1/2} \det(I)'^{-1/2}}{\delta} \right)}

\leq R \sqrt{2 \log \frac{1}{\delta} + d \log \left(1 + \frac{(t-t_0)L^2}{d} \right)},

\tag{32}

$$

where the last inequality is obtained from the analysis of the determinant, as shown in the proof of Lemma 4.

Meanwhile, since $V_{t-1} \succeq I$, we know that

$$
\left\| \lambda \eta V_{t-1}^{-1} \right\|_2 \leq \frac{1}{\lambda \min(V_{t-1})} \left\| \lambda \eta \right\|_2 \leq \frac{1}{\lambda} \left\| \lambda \eta \right\|_2 \leq \lambda S^2.

$$

Therefore, the upper bound of B_t can be immediately obtained by combining the above inequalities. \hfill \Box

B Bandit-over-Bandits Mechanism and Proof of Theorem 4

The RestartUCB algorithm requires prior information of the path-length P_T, which is generally unknown. Such a limitation can be avoided by utilizing the Bandits-over-bandits (BOB) mechanism, proposed by Cheung et al. [2019a] in designing parameter-free algorithm for non-stationary linear bandits based on sliding window least square estimator.

In the following, we first describe how to apply the BOB mechanism to eliminate the requirement of the unknown path-length in RestartUCB. Then, we present the proof of Theorem 4.

B.1 RestartUCB with BOB Mechanism

We name the RestartUCB algorithm with Bandit-over-Bandits mechanism as “RestartUCB-BOB”, whose main idea is illustrated in Figure 4.

From a high-level view, although the exact value of the optimal epoch size (or equivalently, the path-length P_T) is not clear, we can make some random guesses of its possible value, since the P_T is always bounded. Then, we can use a certain meta-algorithm to adaptively track the best epoch size, based on the returned reward returned. Specifically, The RestartUCB-BOB algorithm first sets an update period H_0, and then runs the RestartUCB with a particular epoch size in each period, and the epoch size will be adaptively adjusted by employing EXP3 [Auer et al., 2002] as the meta-algorithm.

We refer the reader to Section 7.3 of Cheung et al. [2019b] for more descriptions of design motivations and algorithmic details.

In the configuration of RestartUCB-BOB, we set $H_0 = [d\sqrt{T}]$ and the pool of epoch sizes J as

$$
J = \{H_i = [(d/(2S))]^{2/3} \cdot 2^{i-1} \mid i = 1, 2, \ldots, N\},

$$

where $N = \left\lfloor \ln(d^{1/3}T^{1/2}(2S)^{2/3}) \right\rfloor + 1$.

Denoted by H_{min} (H_{max}) the minimal (maximal) epoch size in the pool J, we know that

$$
H_{\text{min}} = [(d/(2S))]^{2/3}, H_{\text{max}} = [d\sqrt{T}] \leq H_0.

\tag{25}$$
B.2 Proof of Theorem 4

Proof of Theorem 4. We begin with the following decomposition of the dynamic regret.

\[
\sum_{t=1}^{T} \langle X_t^*, \theta_t \rangle - \langle X_t, \theta_t \rangle = \sum_{i=1}^{T} \langle X_t^*(H^\dagger), \theta_t \rangle - \sum_{i=1}^{T} \langle X_t,(H^\dagger)\rangle, \theta_t \rangle,
\]

where \(H^\dagger \) is the best epoch size to approximate the optimal epoch size \(H^* \) in the pool \(J \), and \(H^* = \lfloor dT/(1 + P_T) \rfloor^{2/3} \). Hence, it suffices to bound terms (i) and (ii). In the following, we consider two cases, either \((1 + P_T) \geq d^{-1/2}T^{1/4} \) or \((1 + P_T) < d^{-1/2}T^{1/4} \).

Case 1. \((1 + P_T) \geq d^{-1/2}T^{1/4} \).

In this case, it is easy to verify that \(H^* \leq H_{\text{max}} \) and we thus conclude that \(H^* \) lies in the the range of \([H_{\text{min}}, H_{\text{max}}]\). Furthermore, from the configuration of the pool \(J \), we confirm that there exists an epoch size \(H^\dagger \in J \) such that \(H^\dagger \leq H^* \leq 2H^\dagger \). So term (ii) can be upper bounded by

\[
\text{term (ii)} \leq \sum_{i=1}^{\lfloor dT/H_0 \rfloor} \tilde{O}(H^\dagger P_T + \frac{dH_0}{\sqrt{H^\dagger}}) \leq \tilde{O}(H^\dagger P_T + \frac{d}{\sqrt{H^\dagger}}) \leq \tilde{O}(d^{1/3}T^{1/3}),
\]

where (26) is due to Theorem 2 and \(P_t \) denotes the path-length in the \(i \)-th update period. (27) follows by summing over all update periods, and the last inequality holds since the optimal epoch size \(H^* \) is provably in the range of \([H_{\text{min}}, H_{\text{max}}]\) and satisfies \(H^\dagger \leq H^* \leq 2H^\dagger \).

Next, we bound the term (i),

\[
\text{term (i)} \leq \tilde{O}(\sqrt{H_0 NT}) \leq \tilde{O}(d^{1/2}T^{3/4}) \leq \tilde{O}(d^{2/3}T^{2/3}(1 + P_T)^{1/3}),
\]

where the first inequality follows by the same argument as in the sliding window based approach [Cheung et al., 2019b, Lemma 13], building upon the of EXP3. In addition, the last inequality holds due to the fact that \((1 + P_T) \geq d^{-1/2}T^{1/4} \) implies,

\[
d^{1/2}T^{3/4} = d^{2/3}T^{2/3}d^{-1/3}T^{1/6} \leq d^{2/3}T^{2/3}(1 + P_T)^{1/3}.
\]

Hence, by combining the upper bounds of term (i) and term (ii), we know that the dynamic regret of RestartUCB-BOB is bounded by \(\tilde{O}(d^{2/3}T^{2/3}(1 + P_T)^{1/3}) \) under the condition of \((1 + P_T) \geq d^{-1/2}T^{1/4} \).

Case 2. \((1 + P_T) < d^{-1/2}T^{1/4} \).

In this case, we cannot guarantee that the optimal epoch size \(H^* \) lies in the range of \([H_{\text{min}}, H_{\text{max}}]\), so we set \(H^\dagger = H_0 \),

\[
\text{term (ii)} \leq \tilde{O}(H^\dagger P_T + \frac{dH_0}{\sqrt{H^\dagger}}) \leq \tilde{O}(H_0 P_T + \frac{d}{\sqrt{H_0}}) = \tilde{O}(d\sqrt{T}P_T + d^{1/2}T^{3/4}) \leq \tilde{O}(d^{1/2}T^{3/4})
\]

where the last inequality holds by exploiting the condition of \((1 + P_T) \leq d^{-1/2}T^{1/4} \). The result in conjunction with the upper bound of term (i) in (28) gives the \(\tilde{O}(d^{1/2}T^{3/4}) \) dynamic regret under this condition.

Finally, note that the dynamic regret of above two cases can be rewritten in the following unified form,

\[
\text{term (i)} + \text{term (ii)} \leq \tilde{O}(d^{2/3}T^{2/3}(\max\{P_T, d^{-1/2}T^{1/4}\})^{\frac{1}{3}}).
\]

Hence, we complete the proof of Theorem 4. \(\square \)

C Technical Lemmas

In this section, we provide several technical lemmas that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued Martingales [Abbasi-Yadkori et al., 2011, Theorem 1]). Let \(\{F_t\}_{t=0}^{\infty} \) be a filtration. Let \(\{\eta_t\}_{t=0}^{\infty} \) be a real-valued stochastic process such that \(\eta_t \) is \(F_t \)-measurable and conditionally \(R \)-sub-Gaussian for some \(R > 0 \), namely,

\[
\forall \lambda \in \mathbb{R}, \quad \mathbb{E}[\exp(\lambda \eta_t | F_{t-1})] \leq \exp\left(\frac{\lambda^2 R^2}{2}\right). \tag{29}
\]

Let \(\{X_t\}_{t=1}^{\infty} \) be an \(\mathbb{R}^d \)-valued stochastic process such that \(X_t \) is \(F_{t-1} \)-measurable. Assume that \(V \) is a \(d \times d \) positive definite matrix. For any \(t \geq 0 \), define

\[
\bar{V}_t = V + \sum_{\tau=1}^{t} X_{\tau}X_{\tau}^T, \quad S_t = \sum_{\tau=1}^{t} \eta_{\tau}X_{\tau}. \tag{30}
\]
Then, for any $\delta > 0$, with probability at least $1 - \delta$, for all $t \geq 0$,
\[
\|S_t\|_{\tilde{V}^{-1}_t}^2 \leq 2R^2 \log \left(\frac{\det(\tilde{V}_t)^{1/2} \det(V)^{-1/2}}{\delta} \right). \tag{31}
\]

Lemma 4 (Elliptical Potential Lemma). Suppose $U_0 = \lambda I$, $U_t = U_{t-1} + X_tX_t^T$, and $\|X_t\|_2 \leq L$, then
\[
\sum_{t=1}^T \|U_{t-1}^{-\frac{1}{2}}X_t\|_2 \leq \sqrt{2dT \log \left(1 + \frac{L^2 T}{\lambda d} \right)} \tag{32}
\]

Proof. First, we have the following decomposition,
\[
U_t = U_{t-1} + X_tX_t^T = U_{t-1}^\frac{1}{2}(I + U_{t-1}^{-\frac{1}{2}}X_tX_t^TU_{t-1}^{-\frac{1}{2}})U_{t-1}^\frac{1}{2}.
\]
Taking the determinant on both sides, we get
\[
det(U_t) = det(U_{t-1}) det(I + U_{t-1}^{-\frac{1}{2}}X_tX_t^TU_{t-1}^{-\frac{1}{2}}),
\]
which in conjunction with Lemma 5 yields
\[
det(U_t) = det(U_{t-1})(1 + \|U_{t-1}^{-\frac{1}{2}}X_t\|_2^2)
\]
\[
\geq det(U_{t-1}) \exp(\|U_{t-1}^{-\frac{1}{2}}X_t\|_2^2/2).
\]
Note that in the first inequality, we utilize the fact that $1 + x \geq \exp(x/2)$ holds for any $x \in [0, 1]$. By taking advantage of the telescope structure, we have
\[
\sum_{t=1}^T \|U_{t-1}^{-\frac{1}{2}}X_t\|_2^2 \leq 2 \log \frac{det(U_T)}{det(U_0)} \leq 2d \log \left(1 + \frac{L^2 T}{\lambda d} \right),
\]
where the last inequality follows from the fact that $\text{Tr}(U_T) \leq \text{Tr}(U_0) + L^2 T = \lambda d + L^2 T$, and thus $\det(U_T) \leq (\lambda + L^2 T/d)^d$.

Therefore, Cauchy-Schwartz inequality gives,
\[
\sum_{t=1}^T \|U_{t-1}^{-\frac{1}{2}}X_t\|_2 \leq \sqrt{T \sum_{t=1}^T \|U_{t-1}^{-\frac{1}{2}}X_t\|_2^2}
\]
\[
\leq \sqrt{2dT \log \left(1 + \frac{L^2 T}{\lambda d} \right)}.
\]

Lemma 5.
\[
det(I + vv^T) = 1 + \|v\|_2^2. \tag{33}
\]

Proof. Notice that

(i) $(I + vv^T)v = (1 + \|v\|_2^2)v$, therefore, v is its eigenvector with $(1 + \|v\|_2^2)$ as the eigenvalue;

(ii) $(I + vv^T)v^\perp = v^\perp$, therefore, $v^\perp \perp v$ is its eigenvector with 1 as the eigenvalue.

Consequently, $\det(I + vv^T) = 1 + \|v\|_2^2$. \qed