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8 Proofs

Proposition 1. Let fi be defined as in Eq.(3). If
Eq.(4) is satisfied for some ¢ € (0,1) and ¢ > 0, then
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Proof of Proposition 1. Whenever E[Z] < Z(,,,_j) + 7
and E[Z] > Z( 14y — r, we have
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In other words, we cannot have
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unless either E[Z] > Z(,,,_i) + 7 or E[Z] < Z(144) — 7
is true, which implies that

Zn—k) = Z(1+k)
2
<Pr[E[Z] > Z(m—k) +rorE[Z] < Z(1+k) -]
< Pr[E[Z] > Z(m,k) + 7]+ Pr[E[Z] < Z(1+k) — 7]

<<

Pr||a— E[Y]| >+

O
Theorem 1. Let Z(yy, ..., Z(y,) denote the order statis-

tics of m independent samples of a random variable Z.

If Z is s-resilient, V¢ € (0,1),T € N and 0 < k <m/2,

then letting v be the output of Algorithm 1, we have
Pr [Z(m-ry <E[Z] —r] <¢ (6)
Pr[Zar 2 E[Z] +1] <¢ (7)

If Z is s-resilient from above/below,
Eq.(6)/Eq.(7) holds.

then only

Proof of Theorem 1. Before proving Theorem 1, we
first need a Lemma.

Lemma 2. If Z is s-resilient from above, then V§ €
(0,1),
1-96

s(6)——| <.

Pr|Z <E[Z] - 5

For some r € R, let B, be the event Z < E[Z] —

Pr([Zn—r) <E[Z] —r]
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< < m(1 — Pr[B,]))" )
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Now we will show that the algorithm chooses v;, i =
0,...,T such that

(m(1 —v;) + Dk < ¢ (9)

To show this we first show that v,11 > v;, Vi =
0,...,7 — 1. This is obviously true for i = 0 because
0<wvy<1so0

=)
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and we can proceed to use induction and conclude
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Now we use induction to show that Eq.(9) is true. First
at iteration O this is true because

(m(1 — o) + D*u=F < (m + 1)k "

which is less than ( as long as

Suppose Eq.(9) is true at iteration 4, then at iteration
t+ 1 it is still true. Denote the values as v; and v;4.
Because we choose v;41 such that

(m(1 —v;) + Do Zil’“ZC
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Observe that v;11 > v; it must be true that
(m(1 —wip1) + DFo1 " <¢

After we have established Eq.(9) we can apply Lemma 2
to achieve Pr[B,] < v it suffices to have

r>s() (v =1)
What remains is to prove Lemma 2

Proof of Lemma 2. Let B, be the event Z < E[Z] —

for any r > 0. Suppose it is true that Pr[B,] = 4, for
some 4, € (0,1), we have
E[Z] = E[Z|B,] Pt(B,] + E[Z| B,](1 - Pr[B,])
< (E[Z] = r)dr + (E[Z] + s(67)) (1 — 6r)
which implies that
1-6,
r < s(d,) 5.
which implies
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Pr|Z <E[Z] - s(0)——| <9
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Corollary 1. If Z is b1 (1 — €)* + by resilient for any
constants a € [—1,0] and by, by € RT, then there exists
A > 0 such that for sufficiently large m
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Proof of Corollary 1. Denote € = (W)
know that

lim loge = ﬁ (log¢ — klog(m+1)) =0

m—r oo

which implies lim;, o0 € = 1, so VYa < 0 there must

exist a M such that Vm > M, (1 —€)*+b < 2(1 — €)%,

and € > 1/2
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Observe that e < 1s01—€ <
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—log e so we have (for
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Now we only need the special case of a = 0, where
r<(1+b)(et=1)<2(1+b)(1—¢)

and the proof will follow as before. O

Lemma 1. The following random wvariables are re-
silient:

1. Bounded: If Z C [a,b], then Z is (b — E[Z])-
resilient from above and (E[Z] — a)-resilient from
below. It is (b — a)-resilient.

2. Bounded Moments: If E|[|Z-E[Z]]'] <

< gt
for some l > 1, then Z is s-resilient for s(e) =

3. Sub-Gaussian: If Z — E[Z] is 02 sub-Gaussian,
20 log 1= +

then Z is s-resilient for s(e) =

V2ro.

Proof of Lemma 1. Part 1 is trivial to prove. Part 2 is
proved in Steinhardt (2018), Example 2.7. Part 3 is
proven here.

Let F' denote the CDF of Z. For convenience, let
€=1—¢ 7= F!(€), and without loss of generality
assume E[ ] = 0. We first consider lower bounds on
E[Z | Z € B] where B is any subset of Z such that
Pr[Z € B] > €. It is easy to see that for any such B
we have

E[Z|Z <7]<E[Z|Z € B]

so we only have to provide a lower bound for E[Z | Z <
7]. Without loss of generality we can also assume 7 < 0
because suppose 7 > 0 then consider an alternative
random variable Z defined by Z = max(Z,0). Then Z
is 02 sub-Gaussian, and

E[Z|Z<7|>R[Z|Z<7]

Then we can provide a lower bound for E[Z | Z < 7]
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instead. Given the above setup we have O
eE[Z|Z < 7] Corollary 2. Let Zy,...,Zuy,) denote the order
T T 0 statistics of m independent samples of a random vari-
:/ oF'(z) dx —/ F’(x)/ (—1)dy dx able Z. If Z is bounded in [a,b], V¢ € (0,1),T € N
T=700 y=z and 0 < k < m/2, then letting vy be computed as in
0 Algorithm 1, we have
= / / F'(z)dydz ’
=—o0 Jy=x
0 [E[Z} < a+ UT(Z(lJrk — a)] S C
=—/ / I(y > )F'(z) dy dw Pr[E[Z] > b—vr(b— Zm_1)] <.
r=—00 Jy=—00
0
= / / I(y > z)F'(z) dv dy Proof of Corollary 2. By Theorem 1 we have
—0o0 Tr=—00
0 ¢ =Pr (Zsn > EIZ] + (B[Z] - a)(vp! — 1)
I(y > 2)F'(z) dx d _ _
y=r Jz=—00 v JF'(z) Y =Pr (Z(l-i-k) > leE[Z] - lea + a)
/ / I(y > z)F'(x) dx dy =Pr (vrZ(14k) > vra —a +E[Z])
y=—o0 Jr=—0c0 =Pr (E[Z] < a+vr(Za4k) — a))
Yy
== / edy — / / F'(z)dx dy Similarly we can conclude
Yy=T y=—o00 Jx=—00
:77'—/ F(y)dy CZPI‘ (E[Z]Zb_UT(b_Z(mfk)))
Yy=—00
T O
=ér — / F(x)dx
z=—00 Theorem 2. Let Zy),...,Zn) be independent sam-

ples of Z ordered such that || Z|| < --- < || Zyll. If
Z is s-resilient, then for any r output by Algorithm 1

. 22
Let F(z) = e 2.%. Since Z is 0? sub-Gaussian, by
and for any ¢ € (0,1), we have

Chernoff bound we know that Vo < 0. F(z) < F(x)
which also implies that whenever F~1(€) < 0, F~1(¢) <

)

F_l(E), Then Pr [HZ(m—k)” < H]E[Z]” - T] < C
eE[Z|Z < F~1(&)] Proof of Theorem 2. Let
Y@ *
—eF1(e) —/ F(z)dz v = aﬁgl‘sg(v,E[ZD

F~1(e) - -
—eF1(e) — / F(x)dx — F(z)dx then ||E[Z]|| = (v*,E[Z]). Let Z1), ..., Z(m) be ranked

=00 /m ’—1(€) such that

Y@ -
>eFl(e) — / F(x)dx — édx (W, Zay) < .oo S0 Zimy)-
T=—00 z=F~1(¢)
. Fl e _ Denote the event B C Z as {Z, (v*, Z) < (v*,E[Z])—r}
=eF (e - / F(x)dx as before we have

x 7 * k m—k
Finally, denote é, (z) as the PDF of '(0,0%) and &,  PT [(t"s Zen-t)) < (v, EZ]) = 7| < (m + 1)* Pr(B]

be its CDF, we have
and we set the RHS < (. It suffices to have

N0 e
F(z)dz = V270 o (2)dz e
- _ maq{i@wl(e)) < Vanoe Pio) < (i)

Combining these results we get

E[Z|Z < F~'(&)] (v*,E[Z]) = E[{v", Z)]

Similar to Lemma 2, denote § = Pr[B]

> F ) — V2o = — QUlog% — V270 < ((v*,E[Z]
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which implies that Pr[B] < § when r > s(6)352 =
s(8)(671 — 1). When this is true we have

Pr((v", Zn-1)) < |E[Z]]| = 7] < ¢
If we also rank Z(y),..., Z(m) by
1Zayll < -+ < 12l
we have Vi > m — k
(0%, Zm—ky) < (v, Zay) < | Zwl

so there are at least k samples Z(;) with norm at least

(v*, Z(m,k)), and we can conclude that (v*, Z(m,k)> <
| Z (m—r) || which implies

Pr(| Zgn—w |l < IE[Z]]| —r] <¢
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