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8 Proofs

Proposition 1. Let µ̂ be defined as in Eq.(3). If
Eq.(4) is satisfied for some ζ ∈ (0, 1) and c > 0, then

Pr

[
|µ̂− E[Y ]| > r +

Z(m−k) − Z(1+k)

2

]
≤ ζ. (5)

Proof of Proposition 1. Whenever E[Z] ≤ Z(m−k) + r
and E[Z] ≥ Z(1+k) − r, we have

|µ̂− E[Y ]| =
∣∣∣∣E[Z]−

Z(m−k) + Z(1+k)

2

∣∣∣∣
= max

(
E[Z]−

Z(m−k) + Z(1+k)

2
,

Z(m−k) + Z(1+k)

2
− E[Z]

)
≤ max

(
Z(m−k) + r −

Z(m−k) + Z(1+k)

2
,

Z(m−k) + Z(1+k)

2
− Z(1+k) + r

)
=
Z(m−k) − Z(1+k)

2
+ r

In other words, we cannot have

|µ̂− E[Y ]| >
Z(m−k) − Z(1+k)

2
+ r

unless either E[Z] > Z(m−k) + r or E[Z] < Z(1+k) − r
is true, which implies that

Pr

[
|µ̂− E[Y ]| > r +

Z(m−k) − Z(1+k)

2

]
≤ Pr[E[Z] > Z(m−k) + r or E[Z] < Z(1+k) − r]
≤ Pr[E[Z] > Z(m−k) + r] + Pr[E[Z] < Z(1+k) − r]
≤ ζ

Theorem 1. Let Z(1), . . . , Z(m) denote the order statis-
tics of m independent samples of a random variable Z.
If Z is s-resilient, ∀ζ ∈ (0, 1), T ∈ N and 0 ≤ k < m/2,
then letting r be the output of Algorithm 1, we have

Pr
[
Z(m−k) ≤ E[Z]− r

]
≤ ζ (6)

Pr
[
Z(1+k) ≥ E[Z] + r

]
≤ ζ (7)

If Z is s-resilient from above/below, then only
Eq.(6)/Eq.(7) holds.

Proof of Theorem 1. Before proving Theorem 1, we
first need a Lemma.

Lemma 2. If Z is s-resilient from above, then ∀δ ∈
(0, 1),

Pr

[
Z ≤ E[Z]− s(δ)1− δ

δ

]
≤ δ.

For some r ∈ R, let Br be the event Z ≤ E[Z]− r.

Pr
[
Z(m−k) ≤ E[Z]− r

]
= Pr

 m∑
j=0

I(Zj 6∈ Br) ≤ k


=

k∑
i=0

(
m

i

)
Pr[Br]

m−i(1− Pr[Br])
i (8)

≤

(
k∑
i=0

(
m

i

)
(1− Pr[Br])

i

)
Pr[Br]

m−k

≤

(
k∑
i=0

(m(1− Pr[Br]))
i

)
≤ (m(1− Pr[Br]) + 1)k Pr[Br]

m−k

Now we will show that the algorithm chooses vi, i =
0, . . . , T such that

(m(1− vi) + 1)kvm−ki ≤ ζ (9)

To show this we first show that vi+1 ≥ vi, ∀i =
0, . . . , T − 1. This is obviously true for i = 0 because
0 ≤ v0 ≤ 1 so

v0 =

(
ζ

(m+ 1)k

) 1
m−k

≤
(

ζ

(m(1− v0) + 1)k

) 1
m−k

= v1

and we can proceed to use induction and conclude

vi =

(
ζ

(m(1− vi−1) + 1)k

) 1
m−k

≤
(

ζ

(m(1− vi) + 1)k

) 1
m−k

= vi+1

Now we use induction to show that Eq.(9) is true. First
at iteration 0 this is true because

(m(1− v0) + 1)kvm−k0 ≤ (m+ 1)kvm−k0

which is less than ζ as long as

v0 ≤
(

ζ

(m+ 1)k

) 1
m−k

Suppose Eq.(9) is true at iteration i, then at iteration
i+ 1 it is still true. Denote the values as vi and vi+1.
Because we choose vi+1 such that

(m(1− vi) + 1)kvm−ki+1 = ζ
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Observe that vi+1 ≥ vi it must be true that

(m(1− vi+1) + 1)kvm−ki+1 ≤ ζ

After we have established Eq.(9) we can apply Lemma 2
to achieve Pr[Br] ≤ v it suffices to have

r ≥ s (v)
(
v−1 − 1

)
What remains is to prove Lemma 2

Proof of Lemma 2. Let Br be the event Z ≤ E[Z]− r
for any r ≥ 0. Suppose it is true that Pr[Br] = δr for
some δr ∈ (0, 1), we have

E[Z] = E[Z|Br] Pr[Br] + E[Z|B̄r](1− Pr[Br])

≤ (E[Z]− r)δr + (E[Z] + s(δr))(1− δr)

which implies that

r ≤ s(δr)
1− δr
δr

which implies

Pr

[
Z ≤ E[Z]− s(δ)1− δ

δ

]
≤ δ

Corollary 1. If Z is b1(1− ε)a + b2 resilient for any
constants a ∈ [−1, 0] and b1, b2 ∈ R+, then there exists
λ > 0 such that for sufficiently large m

Pr

[
E[Z] ≤ Z(1+k) − λ

log 1
ζ + k logm

m1+a

]
≤ ζ

Pr

[
E[Z] ≥ Z(m−k) + λ

log 1
ζ + k logm

m1+a

]
≤ ζ.

Proof of Corollary 1. Denote ε =
(

ζ
(m+1)k

) 1
m−k

. We
know that

lim
m→∞

log ε =
1

m− k
(log ζ − k log(m+ 1)) = 0

which implies limm→∞ ε = 1, so ∀a < 0 there must
exist a M such that ∀m ≥M , (1− ε)a + b ≤ 2(1− ε)a,
and ε > 1/2

r ≤ 2(1− ε)a(ε−1 − 1) =
2(1− ε)1+a

ε
≤ 4(1− ε)1+a

Observe that ε < 1 so 1− ε < − log ε so we have (for
sufficiently large m)

r ≤ 4(− log ε)1+a

= 4

(
− 1

m− k
log ζ +

k

m− k
log(m+ 1)

)1+a

≤ 5

m1+a

(
log

1

ζ
+ k logm

)1+a

≤ 5

m1+a

(
log

1

ζ
+ k logm

)
Now we only need the special case of a = 0, where

r ≤ (1 + b)(ε−1 − 1) ≤ 2(1 + b)(1− ε)

and the proof will follow as before.

Lemma 1. The following random variables are re-
silient:

1. Bounded: If Z ⊆ [a, b], then Z is (b − E[Z])-
resilient from above and (E[Z]− a)-resilient from
below. It is (b− a)-resilient.

2. Bounded Moments: If E
[
|Z − E[Z]|l

]
≤ σl

for some l > 1, then Z is s-resilient for s(ε) =
σ

(1−ε)1/l .

3. Sub-Gaussian: If Z − E[Z] is σ2 sub-Gaussian,
then Z is s-resilient for s(ε) =

√
2σ log 1

1−ε +
√

2πσ.

Proof of Lemma 1. Part 1 is trivial to prove. Part 2 is
proved in Steinhardt (2018), Example 2.7. Part 3 is
proven here.

Let F denote the CDF of Z. For convenience, let
ε̄ = 1− ε, τ = F−1(ε̄), and without loss of generality
assume E[Z] = 0. We first consider lower bounds on
E[Z | Z ∈ B] where B is any subset of Z such that
Pr[Z ∈ B] ≥ ε̄. It is easy to see that for any such B
we have

E[Z | Z ≤ τ ] ≤ E[Z | Z ∈ B]

so we only have to provide a lower bound for E[Z | Z ≤
τ ]. Without loss of generality we can also assume τ ≤ 0
because suppose τ > 0 then consider an alternative
random variable Z̃ defined by Z̃ = max(Z, 0). Then Z̃
is σ2 sub-Gaussian, and

E[Z | Z ≤ τ ] ≥ E[Z̃ | Z̃ ≤ τ ]

Then we can provide a lower bound for E[Z̃ | Z̃ ≤ τ ]
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instead. Given the above setup we have

ε̄E[Z|Z ≤ τ ]

=

∫ τ

x=−∞
xF ′(x) dx =

∫ τ

x=−∞
F ′(x)

∫ 0

y=x

(−1) dy dx

= −
∫ τ

x=−∞

∫ 0

y=x

F ′(x) dy dx

= −
∫ τ

x=−∞

∫ 0

y=−∞
I(y > x)F ′(x) dy dx

= −
∫ 0

y=−∞

∫ τ

x=−∞
I(y > x)F ′(x) dx dy

= −
∫ 0

y=τ

∫ τ

x=−∞
I(y > x)F ′(x) dx dy

−
∫ τ

y=−∞

∫ τ

x=−∞
I(y > x)F ′(x) dx dy

= −
∫ 0

y=τ

ε̄ dy −
∫ τ

y=−∞

∫ y

x=−∞
F ′(x) dx dy

= ε̄τ −
∫ τ

y=−∞
F (y) dy

= ε̄τ −
∫ τ

x=−∞
F (x) dx

Let F̃ (x) = e−
x2

2σ2 . Since Z is σ2 sub-Gaussian, by
Chernoff bound we know that ∀x < 0. F (x) ≤ F̃ (x),
which also implies that whenever F−1(ε̄) < 0, F̃−1(ε̄) ≤
F−1(ε̄), Then

ε̄E[Z|Z ≤ F−1(ε̄)]

= ε̄F−1(ε̄)−
∫ F−1(ε̄)

x=−∞
F (x)dx

= ε̄F−1(ε̄)−
∫ F̃−1(ε̄)

x=−∞
F (x)dx−

∫ F−1(ε̄)

x=F̃−1(ε̄)

F (x)dx

≥ ε̄F−1(ε̄)−
∫ F̃−1(ε̄)

x=−∞
F̃ (x)dx−

∫ F−1(ε̄)

x=F̃−1(ε̄)

ε̄dx

= ε̄F̃−1(ε̄)−
∫ F̃−1(ε̄)

x=−∞
F̃ (x)dx

Finally, denote φσ(x) as the PDF of N (0, σ2) and Φσ
be its CDF, we have∫ F̃−1(ε̄)

x=−∞
F̃ (x)dx =

√
2πσ

∫ F̃−1(ε̄)

x=−∞
φσ(x)dx

=
√

2πσΦσ(F̃−1(ε̄)) ≤
√

2πσε̄

Combining these results we get

E[Z|Z ≤ F−1(ε̄)]

≥ F̃−1(ε̄)−
√

2πσ = −
√

2σ log
1

ε̄
−
√

2πσ

Corollary 2. Let Z(1), . . . , Z(m) denote the order
statistics of m independent samples of a random vari-
able Z. If Z is bounded in [a, b], ∀ζ ∈ (0, 1), T ∈ N
and 0 ≤ k < m/2, then letting vT be computed as in
Algorithm 1, we have

Pr
[
E[Z] ≤ a+ vT (Z(1+k) − a)

]
≤ ζ

Pr
[
E[Z] ≥ b− vT (b− Z(m−k))

]
≤ ζ.

Proof of Corollary 2. By Theorem 1 we have

ζ ≥Pr
(
Z(1+k) ≥ E[Z] + (E[Z]− a)(v−1

T − 1)
)

= Pr
(
Z(1+k) ≥ v−1

T E[Z]− v−1
T a+ a

)
= Pr

(
vTZ(1+k) ≥ vTa− a+ E[Z]

)
= Pr

(
E[Z] ≤ a+ vT (Z(1+k) − a)

)
Similarly we can conclude

ζ ≥ Pr
(
E[Z] ≥ b− vT (b− Z(m−k))

)

Theorem 2. Let Z(1), . . . , Z(m) be independent sam-
ples of Z ordered such that ‖Z(1)‖ ≤ · · · ≤ ‖Z(m)‖. If
Z is s-resilient, then for any r output by Algorithm 1
and for any ζ ∈ (0, 1), we have

Pr
[
‖Z(m−k)‖ ≤ ‖E[Z]‖ − r

]
≤ ζ.

Proof of Theorem 2. Let

v∗ = arg sup
v,‖v‖∗=1

〈v,E[Z]〉

then ‖E[Z]‖ = 〈v∗,E[Z]〉. Let Z̃(1), . . . , Z̃(m) be ranked
such that

〈v∗, Z̃(1)〉 ≤ . . . ≤ 〈v∗, Z(m)〉.

Denote the eventB ⊂ Z as {Z, 〈v∗, Z〉 ≤ 〈v∗,E[Z]〉−r}
as before we have

Pr
[
〈v∗, Z̃(m−k)〉 ≤ 〈v∗,E[Z]〉 − r

]
≤ (m+ 1)k Pr[B]m−k

and we set the RHS ≤ ζ. It suffices to have

Pr[B] ≤
(

ζ

(m+ 1)k

) 1
m−k

Similar to Lemma 2, denote δ = Pr[B]

〈v∗,E[Z]〉 = E[〈v∗, Z〉]
= E[〈v∗, Z〉 | B] Pr[B] + E[〈v∗, Z〉 | B̄](1− Pr[B])

≤ (〈v∗,E[Z]〉 − r)δ + (〈v∗,E[Z]〉+ s(δ))(1− δ)
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which implies that Pr[B] ≤ δ when r ≥ s(δ) 1−δ
δ =

s(δ)(δ−1 − 1). When this is true we have

Pr[〈v∗, Z̃(m−k)〉 ≤ ‖E[Z]‖ − r] ≤ ζ

If we also rank Z(1), . . . , Z(m) by

‖Z(1)‖ ≤ · · · ≤ ‖Z(m)‖

we have ∀i ≥ m− k

〈v∗, Z̃(m−k)〉 ≤ 〈v∗, Z̃(i)〉 ≤ ‖Z̃(i)‖

so there are at least k samples Z(i) with norm at least
〈v∗, Z̃(m−k)〉, and we can conclude that 〈v∗, Z̃(m−k)〉 ≤
‖Z(m−k)‖ which implies

Pr[‖Z(m−k)‖ ≤ ‖E[Z]‖ − r] ≤ ζ
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