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Figure 1: Plots of logarithmic function value gap with respect to CPU time (in seconds) for nonconvex regularized
binary logistic regression on (a) a9a (b) ovtype (c) ijcnn1 and for nonconvex regularized multiclass logistic
regression on (d) mnist (e) cifar10 (f) SVHN. Best viewed in color.

In this section, we present numerical experiments on different nonconvex Empirical Risk Minimization (ERM)
problems and on different datasets to validate the advantage of our proposed SRVRC and SRVRCfree algorithms
for finding approximate local minima.

Baselines: We compare our algorithms with the following algorithms: SPIDER+ (Fang et al., 2018), which is the
local minimum finding version of SPIDER, stochastic trust region (STR1, STR2) (Shen et al., 2019), subsampled
cubic regularization (SCR) (Kohler and Lucchi, 2017), stochastic cubic regularization (STC) (Tripuraneni et al.,
2018), stochastic variance-reduced cubic regularization (SVRC) (Zhou et al., 2018d), sample efficient SVRC
(Lite-SVRC) (Zhou et al., 2018b; Wang et al., 2018b; Zhang et al., 2018a).

Parameter Settings and Subproblem Solver For each algorithm, we set the cubic penalty parameter Mt

adaptively based on how well the model approximates the real objective as suggested in (Cartis et al., 2011a,b;
Kohler and Lucchi, 2017). For SRVRC, we set S(g) = S(h) for the simplicity and set gradient and Hessian batch

sizes B
(g)
t and B

(h)
t as follows:

B
(g)
t = B(g), B

(h)
t = B(h), mod(t, S) = 0,

B
(g)
t = bB(g)/Sc, B(h)

t = bB(h)/Sc, mod(t, S) 6= 0.

For SRVRCfree, we set gradient batch sizes B
(g)
t the same as SRVRC and Hessian batch sizes B

(h)
t = B(h). We tune

S over the grid {5, 10, 20, 50}, B(g) over the grid {n, n/10, n/20, n/100}, and B(h) over the grid {50, 100, 500, 1000}
for the best performance. For SCR, SVRC, Lite-SVRC, and SRVRC, we solve the cubic subproblem using the
cubic subproblem solver discussed in (Nesterov and Polyak, 2006). For STR1 and STR2, we solve the trust-region
subproblem using the exact trust-region subproblem solver discussed in (Conn et al., 2000). For STC and
SRVRCfree, we use Cubic-Subsolver (Algorithm 3 in Appendix H) to approximately solve the cubic subproblem.
All algorithms are carefully tuned for a fair comparison.

Datasets and Optimization Problems We use 6 datasets a9a, covtype, ijcnn1 , mnist, cifar10 and SVHN
from Chang and Lin (2011) . For binary logistic regression problem with a nonconvex regularizer on a9a, covtype,
and ijcnn1, we are given training data {xi, yi}ni=1, where xi ∈ Rd and yi ∈ {0, 1} are feature vector and output
label corresponding to the i-th training example. The nonconvex penalized binary logistic regression is formulated
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as follows

min
w∈Rd

1

n

n∑
i=1

yi log φ(x>i w) + (1− yi) log[1− φ(x>i w)] + λ

d∑
i=1

w2
i

1 + w2
i

,

where φ(x) is the sigmoid function and λ = 10−3. For multiclass logistic regression problem with a nonconvex
regularizer on mnist, cifar10 and SVHN, we are given training data {xi,yi}ni=1, where xi ∈ Rd and yi ∈ Rm are
feature vectors and multilabels corresponding to the i-th data points. The nonconvex penalized multiclass logistic
regression is formulated as follows

min
W∈Rm×d

−
n∑
i=1

1

n
〈yi, log[softmax(Wxi)]〉+ λ

m∑
i=1

d∑
j=1

1 + w2
i,j ,

where softmax(a) = exp(a)/
∑d
i=1 exp(ai) is the softmax function and λ = 10−3.

We plot the logarithmic function value gap with respect to CPU time in Figure 1. From Figure 1(a) to 1(f), we
can see that for the low dimension optimization task on a9a, covtype and ijcnn1, our SRVRC outperforms all
the other algorithms with respect to CPU time. We can also observe that the stochastic trust region method
STR1 is better than STR2, which is well-aligned with our discussion before. The SPIDER+ does not perform as
well as other second-order methods, even though its stochastic gradient and Hessian complexity is comparable
to second-order methods in theory. Meanwhile, we also notice that SRVRCfree always outperforms STC, which
suggests that the variance reduction technique is useful. For high dimension optimization task mnist, cifar10 and
SVHN, only SPIDER+, STC and SRVRCfree are able to make notable progress and SRVRCfree outperforms the
other two. This is again consistent with our theory and discussions in Section 5. Overall, our experiments clearly
validate the advantage of SRVRC and SRVRCfree, and corroborate the theory of both algorithms.

B Proofs in Section 4

We define the filtration Ft = σ(x0, ...,xt) as the σ-algebra of x0 to xt. Recall that vt and Ut are the semi-stochastic
gradient and Hessian respectively, ht is the update parameter, and Mt is the cubic penalty parameter appeared in
Algorithm 1 and Algorithm 2. We denote mt(h) := v>h + h>Uth/2 +Mt‖h‖32/6 and h∗t = argminh∈Rd mt(h).
In this section, we define δ = ξ/(2T ) for the simplicity.

B.1 Proof of Theorem 4.2

To prove Theorem 4.2, we need the following lemma adapted from Zhou et al. (2018d), which characterizes that
µ(xt + h) can be bounded by ‖h‖2 and the norm of difference between semi-stochastic gradient and Hessian.

Lemma B.1. Suppose that mt(h) := v>t h + h>Uth/2 +Mt‖h‖32/6 and h∗t = argminh∈Rd mt(h). If Mt/ρ ≥ 2,
then for any h ∈ Rd, we have

µ(xt + h) ≤ 9
[
M3
t ρ
−3/2‖h‖32 +M

3/2
t ρ−3/2

∥∥∇F (xt)− vt
∥∥3/2
2

+ ρ−3/2
∥∥∇2F (xt)−Ut

∥∥3
2

+M
3/2
t ρ−3/2‖∇mt(h)‖3/22 +M3

t ρ
−3/2∣∣‖h‖2 − ‖h∗t ‖2∣∣3].

Next lemma gives bounds on the inner products 〈∇F (xt)− vt,h〉 and 〈
(
∇2F (xt)−Ut

)
h,h〉.

Lemma B.2. For any h ∈ Rd, we have

〈∇F (xt)− vt,h〉 ≤
ρ

8
‖h‖32 +

6‖∇F (xt)− vt‖3/22

5
√
ρ

,

〈(
∇2F (xt)−Ut

)
h,h

〉
≤ ρ

8
‖h‖32 +

10

ρ2
∥∥∇2F (xt)−Ut

∥∥3
2
.

We also need the following two lemmas, which show that semi-stochastic gradient and Hessian vt and Ut

estimators are good approximations to true gradient and Hessian.

Lemma B.3. Suppose that {B(g)
k } satisfies (4.1) and (4.3), then conditioned on Fbt/S(g)c·S(g) , with probability

at least 1− δ · (t− bt/S(g)c · S(g)), we have that for all bt/S(g)c · S(g) ≤ k ≤ t,

‖∇F (xk)− vk‖22 ≤
ε2

30
. (B.1)
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Lemma B.4. Suppose that {B(h)
k } satisfies (4.2) and (4.4), then conditioned on Fbt/S(h)c·S(h) , with probability

at least 1− δ · (t− bt/S(h)c · S(h)), we have that for all bt/S(h)c · S(h) ≤ k ≤ t,

‖∇2F (xk)−Uk‖22 ≤
ρε

20
. (B.2)

Given all the above lemmas, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Suppose that SRVRC terminates at iteration T ∗ − 1, then ‖ht‖2 >
√
ε/ρ for all 0 ≤ t ≤

T ∗ − 1. We have

F (xt+1) ≤ F (xt) + 〈∇F (xt),ht〉+
1

2
〈ht,∇2F (xt)ht〉+

ρ

6
‖ht‖32

= F (xt) +mt(ht) +
ρ−Mt

6
‖ht‖32 + 〈ht,∇F (xt)− vt〉+

1

2
〈ht, (∇2F (xt)−Ut)ht〉

≤ F (xt)−
ρ

2
‖ht‖32 +

ρ

4
‖ht‖32 +

6‖∇F (xt)− vt‖3/22

5
√
ρ

+
10

ρ2
‖∇2F (xt)−Ut‖32

= F (xt)−
ρ

4
‖ht‖32 +

6‖∇F (xt)− vt‖3/22

5
√
ρ

+
10

ρ2
‖∇2F (xt)−Ut‖32, (B.3)

where the second inequality holds due to the fact that mt(ht) ≤ mt(0) = 0, Mt = 4ρ and Lemma B.2. By
Lemmas B.3 and B.4, with probability at least 1− 2Tδ, for all 0 ≤ t ≤ T − 1, we have that

‖∇F (xt)− vt‖3/22 ≤ ε3/2

12
, ‖∇2F (xt)−Ut‖32 ≤

(ρε)3/2

80
(B.4)

for all 0 ≤ t ≤ T − 1. Substituting (B.4) into (B.3), we have

F (xt+1) ≤ F (xt)−
ρ

4
‖ht‖32 +

9ρ−1/2ε3/2

40
. (B.5)

Telescoping (B.5) from t = 0, . . . , T ∗ − 1, we have

∆F ≥ F (x0)− F (xT∗) ≥ ρ · T ∗ · (ε/ρ)3/2/4− 9/40 · ρ−1/2ε3/2 · T ∗ = ρ−1/2ε3/2 · T ∗/40. (B.6)

Recall that we have T ≥ 40∆F
√
ρ/ε3/2 from the condition of Theorem 4.2, then by (B.6), we have T ∗ ≤ T . Thus,

we have ‖hT∗−1‖2 ≤
√
ε/ρ. Denote T̃ = T ∗ − 1, then we have

µ(xT̃+1) = µ(xT̃ + hT̃ )

≤ 9
[
M3
T̃
ρ−3/2‖hT̃ ‖

3
2 +M

3/2

T̃
ρ−3/2

∥∥∇F (xs
T̃

)− vT̃
∥∥3/2
2

+ ρ−3/2
∥∥∇2F (xT̃ )−UT̃

∥∥3
2

]
≤ 600ε3/2,

where the first inequality holds due to Lemma B.1 with ∇mT̃ (hT̃ ) = 0 and ‖hT̃ ‖2 = ‖h∗
T̃
‖2. This completes our

proof.

B.2 Proof of Corollary 4.3

Proof of Corollary 4.3. Suppose that SRVRC terminates at T ∗ − 1 ≤ T − 1 iteration. Telescoping (B.5) from
t = 0 to T ∗ − 1, we have

∆F ≥ F (x0)− F (xT∗) ≥ ρ
T∗−1∑
t=0

‖ht‖32/4− 9ρ−1/2ε3/2/40 · T = ρ

T∗−1∑
t=0

‖ht‖32/4− 9 ·∆F , (B.7)

where the last inequality holds since T is set to be 40∆F
√
ρ/ε3/2 as the conditions of Corollary 4.3 suggests. (B.7)

implies that
∑T∗−1
t=0 ‖ht‖32 ≤ 40∆F /ρ. Thus, we have

T∗−1∑
t=0

‖ht‖22 ≤ (T ∗)1/3
( T∗−1∑

t=0

‖ht‖32
)2/3

≤
(

40∆F ρ
1/2

ε3/2

)1/3

·
(

40∆F

ρ

)2/3

=
40∆F

ρ1/2ε1/2
, (B.8)
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where the first inequality holds due to Hölder’s inequality inequality, and the second inequality is due to

T ∗ ≤ T = 40∆F
√
ρ/ε3/2. We first consider the total gradient sample complexity

∑T∗−1
t=0 B

(g)
t , which can be

bounded as

T∗−1∑
t=0

B
(g)
t

=
∑

mod(t,S(g))=0

B
(g)
t +

∑
mod(t,S(g)) 6=0

B
(g)
t

=
∑

mod(t,S(g))=0

min

{
n, 1440

M2 log2(d/δ)

ε2

}
+

∑
mod(t,S(g))6=0

min

{
n, 1440L2 log2(d/δ)

S(g)‖ht−1‖22
ε2

}

≤ C1

[
n ∧ M

2

ε2
+

T ∗

S(g)

(
n ∧ M

2

ε2

)
+

(
L2S(g)

ε2

T∗−1∑
t=0

‖ht‖22
)
∧ nT ∗

]
≤ 40C1

[
n ∧ M

2

ε2
+

∆F ρ
1/2

ε3/2S(g)

(
n ∧ M

2

ε2

)
+

(
∆FL

2S(g)

ρ1/2ε5/2

)
∧ n∆F ρ

1/2

ε3/2

]
= Õ

(
n ∧ M

2

ε2
+

∆F

ε3/2

[
√
ρn ∧ L

√
n√
ε
∧ LM
ε3/2

])
,

where C1 = 1440 log2(d/δ), the second inequality holds due to (B.8), and the last equality holds due to the choice

of S(g) =
√
ρε/L ·

√
n ∧M2/ε2. We then consider the total Hessian sample complexity

∑T∗−1
t=0 B

(h)
t , which can

be bounded as

T∗−1∑
t=0

B
(h)
t

=
∑

mod(t,S(h))=0

B
(h)
t +

∑
mod(t,S(h))6=0

B
(h)
t

=
∑

mod(t,S(h))=0

min

{
n, 800

L2 log2(d/δ)

ρε

}
+

∑
mod(t,S(h))6=0

min

{
n, 800ρ log2(d/δ)

S(h)‖ht−1‖22
ε

}

≤ C2

[
n ∧ L

2

ρε
+

T ∗

S(h)

(
n ∧ L

2

ρε

)
+
ρS(h)

ε

T∗−1∑
t=0

‖ht‖22
]

≤ 40C2

[
n ∧ L

2

ρε
+

∆F ρ
1/2

ε3/2S(h)

(
n ∧ L

2

ρε

)
+

∆F ρ
1/2S(h)

ε3/2

]
= Õ

[
n ∧ L

2

ρε
+

∆F ρ
1/2

ε3/2

√
n ∧ L

2

ρε

]
,

where C2 = 800 log2(d/δ), the second inequality holds due to (B.8), and the last equality holds due to the choice
of S(h) =

√
n ∧ L/(ρε).

C Proofs in Section 5

In this section, we denote δ = ξ/(3T ) for simplicity.

C.1 Proof of Theorem 5.1

We need the following two lemmas, which bound the variance of semi-stochastic gradient and Hessian estimators.

Lemma C.1. Suppose that {B(g)
k } satisfies (5.2) and (5.3), then conditioned on Fbt/Sc·S , with probability at

least 1− δ · (t− bt/Sc · S), we have that for all bt/Sc · S ≤ k ≤ t,

‖∇F (xk)− vk‖22 ≤
ε2

55
.
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Proof of Lemma C.1. The proof is very similar to that of Lemma B.3, hence we omit it.

Lemma C.2. Suppose that {B(h)
k } satisfies (5.1), then conditioned on Fk, with probability at least 1− δ, we

have that

‖∇2F (xk)−Uk‖22 ≤
ρε

30
.

Proof of Lemma C.2. The proof is very similar to that of Lemma B.4, hence we omit it.

We have the following lemma to guarantee that by Algorithm 3 Cubic-Subsolver, the output ht satisfies that
sufficient decrease of function value will be made and the total number of iterations is bounded by T ′.

Lemma C.3. For any t ≥ 0, suppose that ‖h∗t ‖2 ≥
√
ε/ρ or ‖vt‖2 ≥ max{Mtε/(2ρ),

√
LMt/2(ε/ρ)3/4}. We set

η = 1/(16L). Then for ε < 16L2ρ/M2
t , with probability at least 1− δ, Cubic-Subsolver(Ut,vt,Mt, η,

√
ε/ρ, 0.5, δ)

will return ht satisfying mt(ht) ≤ −Mtρ
−3/2ε3/2/24. within

T ′ = CS
L

Mt

√
ε/ρ

iterations, where CS > 0 is a constant.

We have the following lemma which provides the guarantee for the dynamic of gradient steps in Cubic-Finalsolver.

Lemma C.4. (Carmon and Duchi, 2016) For b,A, τ , suppose that ‖A‖2 ≤ L. We denote that g(h) =
b>h + h>Ah/2 + τ/6 · ‖h‖32, s = argminh∈Rd g(h), and let R be

R =
L

2τ
+

√(
L

2τ

)2

+
‖b‖2
τ

.

Then for Cubic-Finalsolver, suppose that η < (4(L+ τR))−1, then each iterate ∆ in Cubic-Finalsolver satisfies
that ‖∆‖2 ≤ ‖s‖2, and g(h) is (L+ 2τR)-smooth.

With these lemmas, we begin our proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose that SRVRCfree terminates at iteration T ∗ − 1. Then T ∗ ≤ T . We first claim
that T ∗ < T . Otherwise, suppose T ∗ = T , then we have that for all 0 ≤ t < T ∗,

F (xt+1) ≤ F (xt) + 〈∇F (xt),ht〉+
1

2
〈ht,∇2F (xt)ht〉+

ρ

6
‖ht‖32

= F (xt) +mt(ht) +
ρ−Mt

6
‖ht‖32 + 〈ht,∇F (xt)− vt〉+

1

2
〈ht, (∇2F (xt)−Ut)ht〉

≤ F (xt)−
ρ

4
‖ht‖32 +mt(ht) +

6‖∇F (xt)− vt‖3/22

5
√
ρ

+
10

ρ2
‖∇2F (xt)−Ut‖32, (C.1)

where the second inequality holds due to Mt = 4ρ and Lemma B.2. By Lemma C.3 and union bound, we know
that with probability at least 1− Tδ, we have

mt(ht) ≤ −Mtρ
−3/2ε3/2/24 = −ρ−1/2ε3/2/6, (C.2)

where we use the fact that Mt = 4ρ. By Lemmas C.1 and C.2, we know that with probability at least 1− 2Tδ,
for all 0 ≤ t ≤ T ∗ − 1, we have

‖∇F (xt)− vt‖3/22 ≤ ε3/2/20, ‖∇2F (xt)−Ut‖32 ≤ (ρε)3/2/160. (C.3)

Substituting (C.2) and (C.3) into (C.1), we have

F (xt+1)− F (xt) ≤ −ρ−1/2ε3/2/6− ρ‖ht‖32/4 + ρ−1/2ε3/2/8 ≤ −ρ‖ht‖32/4− ρ−1/2ε3/2/24. (C.4)
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Telescoping (C.4) from t = 0 to T ∗ − 1, we have

∆F ≥ F (x0)− F (xT∗) ≥ ρ
T∗−1∑
t=0

‖ht‖32/4 + ρ−1/2ε3/2 · T ∗/24 > ρ

T∗−1∑
t=0

‖ht‖32/4 + ∆F , (C.5)

where the last inequality holds since we assume T ∗ = T ≥ 25∆F ρ
1/2ε−3/2 from the condition of Theorem

5.1. (C.5) leads to a contradiction, thus we have T ∗ < T . Therefore, by union bound, with probability at
least 1 − 3Tδ, Cubic-Finalsolver is executed by SRVRCfree at T ∗ − 1 iteration. We have that ‖vT∗−1‖2 <
max{MT∗−1ε/(2ρ),

√
LMT∗−1/2(ε/ρ)3/4} and ‖h∗T∗−1‖2 <

√
ε/ρ by Lemma C.3.

The only thing left is to check that we indeed find a second-order stationary point, xT∗ , by Cubic-Finalsolver.
We first need to check that the choice of η = 1/(16L) satisfies that 1/η > 4(L+MtR) by Lemma C.4, where

R =
L

2MT∗−1
+

√(
L

2MT∗−1

)2

+
‖vT∗−1‖2
MT∗−1

,

We can check that with the assumption that ‖vT∗−1‖2 < max{MT∗−1ε/(2ρ),
√
LMT∗−1/2(ε/ρ)3/4}, if ε <

4L2ρ/M2
T∗−1, then 1/η > 4(L+MT∗−1R) holds.

For simplicity, we denote T̃ = T ∗ − 1. Then we have

µ(xT̃ + hT̃ ) ≤ 9
[
M3
T̃
ρ−3/2‖hT̃ ‖

3
2 +M

3/2

T̃
ρ−3/2

∥∥∇F (xT̃ )− vT̃
∥∥3/2
2

+ ρ−3/2
∥∥∇2F (xT̃ )−UT̃

∥∥3
2

+M
3/2

T̃
ρ−3/2‖∇mT̃ (hT̃ )‖3/22 +M3

T̃
ρ−3/2

∣∣‖hT̃ ‖2 − ‖h∗T̃ ‖2∣∣3]
≤ 9
[
2M3

T̃
ρ−3/2‖h∗

T̃
‖32 +M

3/2

T̃
ρ−3/2

∥∥∇F (xT̃ )− vT̃
∥∥3/2
2

+ ρ−3/2
∥∥∇2F (xT̃ )−UT̃

∥∥3
2

+M
3/2

T̃
ρ−3/2‖∇mT̃ (hT̃ )‖3/22

]
≤ 1300ε3/2,

where the first inequality holds due to Lemma B.1, the second inequality holds due to the fact that ‖hT̃ ‖2 ≤ ‖h
∗
T̃
‖2

from Lemma C.4, the last inequality holds due to the facts that ‖∇mT̃ (hT̃ )‖2 ≤ ε from Cubic-Finalsolver and

‖h∗
T̃
‖2 ≤

√
ε/ρ by Lemma C.3.

C.2 Proof of Corollary 5.2

We have the following lemma to bound the total number of iterations T ′′ of Algorithm 4 Cubic-Finalsolver.

Lemma C.5. If ε < 4L2ρ/M2
t , then Cubic-Finalsolver will terminate within T ′′ = CFL/

√
ρε iterations, where

CF > 0 is a constant.

Proof of Corollary 5.2. We have that

T∗−1∑
t=0

‖ht‖22 ≤ (T ∗)1/3
( T∗−1∑

t=0

‖ht‖32
)2/3

≤
(

25∆F ρ
1/2

ε3/2

)1/3

·
(

4∆F

ρ

)2/3

≤ ∆F

8ρ1/2ε1/2
, (C.6)

where the first inequality holds due to Hölder’s inequality, the second inequality holds due to the facts that

T ∗ ≤ T = 25∆F ρ
1/2/ε3/2 and ∆F ≥ ρ

∑T∗−1
t=0 ‖ht‖32/4 by (C.5). We first consider the total stochastic gradient
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computations,
∑T∗−1
t=0 B

(g)
t , which can be bounded as

T∗−1∑
t=0

B
(g)
t

=
∑

mod(t,S(g))=0

B
(g)
t +

∑
mod(t,S(g)) 6=0

B
(g)
t

=
∑

mod(t,S(g))=0

min

{
n, 2640

M2 log2(d/δ)

ε2

}
+

∑
mod(t,S(g))6=0

min

{
n, 2640L2 log2(d/δ)

S(g)‖ht−1‖22
ε2

}

≤ C1

[
n ∧ M

2

ε2
+

T ∗

S(g)

(
n ∧ M

2

ε2

)
+

(
L2S(g)

ε2

T∗−1∑
t=0

‖ht‖22
)
∧ nT ∗

]
≤ 8C1

[
n ∧ M

2

ε2
+

∆F ρ
1/2

ε3/2S(g)

(
n ∧ M

2

ε2

)
+

(
∆FL

2S(g)

ρ1/2ε5/2

)
∧ n∆F ρ

1/2

ε3/2

]
= 8C1

[
n ∧ M

2

ε2
+

∆F ρ
1/2

ε3/2

(
1

S(g)

(
n ∧ M

2

ε2

)
+

(
L2S(g)

ρε

)
∧ n
)]

= 8C1

[
n ∧ M

2

ε2
+

∆F ρ
1/2

ε3/2

(
n ∧ L

√
n

√
ρε
∧ LM

ρ1/2ε3/2

)]
, (C.7)

where C1 = 2640 log2(d/δ), the second inequality holds due to (C.6), the last equality holds due to the fact
S(g) =

√
ρε/L ·

√
n ∧M2/ε2. We now consider the total amount of Hessian-vector product computations T ,

which includes T1 from Cubic-Subsolver and T2 from Cubic-Finalsolver. By Lemma C.3, we know that at k-th

iteration of SRVRCfree, Cubic-Subsolver has T ′ iterations, which needs B
(h)
k Hessian-vector product computations

each time. Thus, we have

T1 =

T∗−1∑
k=0

T ′ ·B(h)
k ≤ C2

(
T · T ′ ·

[
n ∧ L

2

ρε

])
≤ 25C2

(
T ′

∆F ρ
1/2

ε3/2

[
n ∧ L

2

ρε

])
≤ 7C2CS

(
L∆F

ε2
·
[
n ∧ L

2

ρε

])
,

(C.8)

where C2 = 1200 log2(d/δ), the first inequality holds due to the fact that B
(h)
k = C2n ∧ (L2/ρε), the second

inequality holds due to the fact that T = 25∆F ρ
1/2/ε3/2, the last inequality holds due to the fact that T ′ =

CSL/Mt ·
√
ρ/ε = CSL/(4

√
ρε). For T2, we have

T2 = B
(h)
T∗−1 · T

′′ ≤ C2T
′′
[
n ∧ L

2

ρε

]
≤ C2CF

(
L
√
ρε
·
[
n ∧ L

2

ρε

])
, (C.9)

where the first inequality holds due to the fact that B
(h)
T∗−1 = C2n ∧ (L2/ρε), the second inequality holds due to

the fact that T ′′ = CFL/
√
ρε by Lemma C.5. Since at each iteration we need B

(h)
T∗−1 Hessian-vector computations.

Combining (C.7), (C.8) and (C.9), we know that the total stochastic gradient and Hessian-vector product
computations are bounded as

T∗−1∑
t=0

B
(g)
t + T1 + T2

= Õ

[
n ∧ M

2

ε2
+

∆F ρ
1/2

ε3/2

(
n ∧ L

√
n

√
ρε
∧ LM

ρ1/2ε3/2

)
+

(
L∆F

ε2
+

L
√
ρε

)
·
(
n ∧ L

2

ρε

)]
. (C.10)

D Proofs of Technical Lemmas in Appendix B

D.1 Proof of Lemma B.1

We have the following lemmas from Zhou et al. (2018d)
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Lemma D.1. (Zhou et al., 2018d) If Mt ≥ 2ρ, then we have

‖∇F (xt + h)‖2 ≤Mt‖h‖22 +
∥∥∇F (xt)− vt

∥∥
2

+
1

Mt

∥∥∇2F (xt)−Ut

∥∥2
2

+ ‖∇mt(h)‖2.

Lemma D.2. (Zhou et al., 2018d) If Mt ≥ 2ρ, then we have

−λmin(∇2F (xt + h)) ≤Mt‖h‖2 +
∥∥∇2F (xt)−Ut

∥∥
2

+Mt

∣∣‖h‖2 − ‖h∗t ‖2∣∣.
Proof of Lemma B.1. By Lemma D.1, we have

‖∇F (xt + h)‖3/22 ≤
[
Mt‖h‖22 +

∥∥∇F (xt)− vt
∥∥
2

+
1

Mt

∥∥∇2F (xt)−Ut

∥∥2
2

+ ‖∇mt(h)‖2
]3/2

≤ 2
[
M

3/2
t ‖h‖32 +

∥∥∇F (xt)− vt
∥∥3/2
2

+M
−3/2
t

∥∥∇2F (xt)−Ut

∥∥3
2

+ ‖∇mt(h)‖3/22

]
, (D.1)

where the second inequality holds due to the fact that for any a, b, c ≥ 0, we have (a+b+c)3/2 ≤ 2(a3/2+b3/2+c3/2).
By Lemma D.2, we have

−ρ−3/2λmin(∇2F (xt + h))3 ≤ ρ−3/2
[
Mt‖h‖2 +

∥∥∇2F (xt)−Ut

∥∥
2

+Mt

∣∣‖h‖2 − ‖h∗t ‖2∣∣]3
≤ 9ρ−3/2

[
M3
t ‖h‖32 +

∥∥∇2F (xt)−Ut

∥∥3
2

+M3
t

∣∣‖h‖2 − ‖h∗t ‖2∣∣3], (D.2)

where the second inequality holds due to the fact that for any a, b, c ≥ 0, we have (a+ b+ c)3 ≤ 9(a3 + b3 + c3).
Thus we have

µ(xt + h) = max{‖∇F (xt + h)‖3/22 ,−ρ−3/2λmin(∇2F (xt + h))3}

≤ 9
[
M3
t ρ
−3/2‖h‖32 +M

3/2
t ρ−3/2

∥∥∇F (xt)− vt
∥∥3/2
2

+ ρ−3/2
∥∥∇2F (xt)−Ut

∥∥3
2

+M
3/2
t ρ−3/2‖∇mt(h)‖3/22 +M3

t ρ
−3/2∣∣‖h‖2 − ‖h∗t ‖2∣∣3],

where the inequality holds due to (D.1), (D.2) and the fact that Mt ≥ 4ρ.

D.2 Proof of Lemma B.2

Proof of Lemma B.2. We have

〈∇F (xt)− vt,h〉 ≤
∥∥∇F (xt)− vt

∥∥
2
‖h‖2 ≤

ρ

8
‖h‖32 +

6‖∇F (xt)− vt‖3/22

5
√
ρ

,

where the first inequality holds due to CauchySchwarz inequality, the second inequality holds due to Young’s
inequality. We also have〈(

∇2F (xt)−Ut

)
h,h

〉
≤
∥∥∇2F (xt)−Ut

∥∥
2
‖h‖22 ≤

ρ

8
‖h‖32 +

10

ρ2
∥∥∇2F (xt)−Ut

∥∥3
2
,

where the first inequality holds due to CauchySchwarz inequality, the second inequality holds due to Young’s
inequality.

D.3 Proof of Lemma B.3

We need the following lemma:

Lemma D.3. Conditioned on Fk, with probability at least 1− δ , we have

∥∥∇fJk
(xk)−∇fJk

(xk−1)−∇F (xk) +∇F (xk−1)
∥∥
2
≤ 6L

√
log(1/δ)

B
(g)
k

‖xk − xk−1‖2. (D.3)

We also have

‖∇fJk
(xk)−∇F (xk)‖2 ≤ 6M

√
log(1/δ)

B
(g)
k

. (D.4)
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Proof of Lemma B.3. First, we have vt −∇F (xt) =
∑t
k=bt/S(g)c·S(g) uk, where

uk = ∇fJk
(xk)−∇fJk

(xk−1)−∇F (xk) +∇F (xk−1), k > bt/S(g)c · S(g),

uk = ∇fJk
(xk)−∇F (xk), k = bt/S(g)c · S(g)

Meanwhile, we have E[uk|Fk−1] = 0. Conditioned on Fk−1, for mod(k, S(g)) 6= 0, from Lemma D.3, we have that
with probability at least 1− δ the following inequality holds :

‖uk‖2 ≤ 6L

√
log(1/δ)

B
(g)
k

‖xk − xk−1‖2 ≤

√
ε2

540S(g) log(1/δ)
, (D.5)

where the second inequality holds due to (4.1). For mod(k, S(g)) = 0, with probability at least 1− δ, we have

‖uk‖2 ≤ 6M

√
log(1/δ)

B
(g)
k

≤ ε√
540 log(1/δ)

, (D.6)

where the second inequality holds due to (4.3). Conditioned on Fbt/S(g)c·S(g) , by union bound, with probability

at least 1− δ · (t− bt/S(g)c · S(g)) (D.5) or (D.6) holds for all bt/S(g)c · S(g) ≤ k ≤ t. Then for given k, by vector
Azuma-Hoeffding inequality in Lemma G.1, conditioned onFk, with probability at least 1− δ we have

‖vk −∇F (xk)‖22 =

∥∥∥∥ t∑
k=bt/S(g)c·S(g)

uk

∥∥∥∥2
2

≤ 9 log(d/δ)
[
(t− bt/S(g)c · S(g)) · ε2

540S(g) log(d/δ)
+

ε2

540 log(1/δ)

]
≤ 9 log(1/δ) · ε2

270 log(1/δ)

≤ ε2/30. (D.7)

Finally, by union bound, we have that with probability at least 1−2δ·(t−bt/S(g)c·S(g)), for all bt/S(g)c·S(g) ≤ k ≤ t,
we have (D.7) holds.

D.4 Proof of Lemma B.4

We need the following lemma:

Lemma D.4. Conditioned on Fk, with probability at least 1− δ , we have the following concentration inequality

∥∥∇2fIk(xk)−∇2fIk(xk−1)−∇2F (xk) +∇2F (xk−1)
∥∥
2
≤ 6ρ

√
log(d/δ)

B
(h)
k

‖xk − xk−1‖2. (D.8)

We also have

‖∇2fIk(xk)−∇2F (xk)‖2 ≤ 6L

√
log(d/δ)

B
(h)
k

. (D.9)

Proof of Lemma B.4. First, we have Ut −∇2F (xt) =
∑t
k=bt/S(h)c·S(h) Vk, where

Vk = ∇2fIk(xk)−∇2fIk(xk−1)−∇2F (xk) +∇2F (xk−1), k > bt/S(h)c · S(h),

Vk = ∇fIk(xk)−∇F (xk), k = bt/S(h)c · S(h)

Meanwhile, we have E[Vk|σ(Vk−1, ...,V0)] = 0. Conditioned on Fk−1, for mod(k, S(h)) 6= 0, from Lemma D.4,
we have that with probability at least 1− δ, the following inequality holds :

‖Vk‖2 ≤ 6ρ

√
log(d/δ)

B
(h)
k

‖xk − xk−1‖2 ≤
√

ρε

360S(h) log(d/δ)
, (D.10)
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where the second inequality holds due to (4.1). For mod(k, S(h)) = 0, with probability at least 1− δ, we have

‖Vk‖2 ≤ 6L

√
log(d/δ)

B
(h)
k

≤
√

ρε

360 log(d/δ)
, (D.11)

where the second inequality holds due to (4.3). Conditioned on Fbt/S(h)c·S(h) , by union bound, with probability

at least 1 − δ · (t − bt/S(h)c · S(h)) (D.10) or (D.11) holds for all bt/S(h)c · S(h) ≤ k ≤ t. Then for given k, by
Matrix Azuma inequality Lemma G.2, conditioned onFk, with probability at least 1− δ we have

‖Uk −∇2F (xk)‖22 =

∥∥∥∥ t∑
k=bt/S(h)c·S(h)

Vk

∥∥∥∥2
2

≤ 9 log(d/δ)
[
(t− bt/S(h)c · S(h)) · ρε

360S(h) log(d/δ)
+

ρε

360 log(d/δ)

]
≤ 9 log(d/δ) · ρε

180 log(d/δ)

≤ ρε/20. (D.12)

Finally, by union bound, we have that with probability at least 1− 2δ · (t−bt/S(h)c ·S(h)), for all bt/S(h)c ·S(h) ≤
k ≤ t, we have (D.12) holds.

E Proofs of Technical Lemmas in Appendix C

E.1 Proof of Lemma C.3

We have the following lemma which guarantees the effectiveness of Cubic-Subsolver in Algorithm 3.

Lemma E.1. (Carmon and Duchi, 2016) Let A ∈ Rd×d and ‖A‖2 ≤ β, b ∈ Rd, τ > 0, ζ > 0, ε′ ∈ (0, 1), δ′ ∈ (0, 1)
and η < 1/(8β + 2τζ). We denote that g(h) = b>h + h>Ah/2 + τ/6 · ‖h‖32 and s = argminh∈Rd g(h). Then with
probability at least 1− δ′, if

‖s‖2 ≥ ζ or ‖b‖2 ≥ max{
√
βτ/2ζ3/2, τζ2/2}, (E.1)

then x = Cubic-Subsolver(A,b, τ, η, ζ, ε′, δ′) satisfies that g(x) ≤ −(1− ε′)τζ3/12.

Proof of Lemma C.3. We simply set A = Ut, b = vt, τ = Mt, η = (16L)−1, ζ =
√
ε/ρ, ε′ = 0.5 and δ′ = δ.

We have ‖Ut‖2 ≤ L, then we set β = L. With the choice of Mt where Mt = 4ρ and the assumption that
ε < 4L2ρ/M2

t , we can check that η < 1/(8β + 2τζ). We also have that s = h∗t and (E.1) holds. Thus, by Lemma
E.1, we have

mt(ht) ≤ −(1− ε′)τζ3/12 ≤ −Mtρ
−3/2ε3/2/24.

By the choice of T ′ in Cubic-Subsolver, we have

T ′ =
480

ητζε′

[
6 log

(
1 +
√
d/δ′

)
+ 32 log

(
12

ητζε′

))]
= Õ

(
L

Mt

√
ε/ρ

)
.

E.2 Proof of Lemma C.5

We have the following lemma which provides the guarantee for the function value in Cubic-Finalsolver.

Lemma E.2. (Carmon and Duchi, 2016) We denote that g(h) = b>h+h>Ah/2+τ/6·‖h‖32, s = argminh∈Rd g(h),
then g(s) ≥ ‖b‖2‖s‖2/2− τ‖s‖32/6.
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Proof of Lemma C.5. In Cubic-Finalsolver we are focusing on minimizing mT∗−1(h). We have that ‖vt‖2 <
max{Mtε/(2ρ),

√
LMt/2(ε/ρ)3/4} and ‖h∗T∗−1‖2 ≤

√
ε/ρ by Lemma C.3. We can check that η = (16L)−1 satisfies

that η < (4(L+ τR))−1, where R is defined in Lemma C.4, when ε < 4L2ρ/M2
t . From Lemma C.4 we also know

that mT∗−1 is (L+ 2MT∗−1R)-smooth, which satisfies that 1/η > 2(L+ 2MT∗−1R). Thus, by standard gradient
descent analysis, to get a point ∆ where ‖∇mT∗−1(∆)‖2 ≤ ε, Cubic-Finalsolver needs to run

T ′′ = O

(
mT∗−1(∆0)−mT∗−1(h∗T∗−1)

ηε2

)
= O

(
L
mT∗−1(∆0)−mT∗−1(h∗T∗−1)

ε2

)
(E.2)

iterations, where we denote by ∆0 the starting point of Cubic-Finalsolver. By directly computing, we have
mT∗−1(∆0) ≤ 0. By Lemma E.2, we have

−mT∗−1(h∗T∗−1) ≤Mt‖h∗T∗−1‖32/6− ‖vT∗−1‖2‖h∗T∗−1‖2/2 ≤Mt‖h∗T∗−1‖32/6 = O
(
ρ(ε/ρ)3/2

)
= O(ε3/2/

√
ρ).

Thus, (E.2) can be further bounded as T ′′ = O(L/
√
ρε).

F Proofs of Additional Lemmas in Appendix D

F.1 Proof of Lemma D.3

Proof of Lemma D.3. We only need to consider the case where B
(g)
k = |Jk| < n. For each i ∈ Jk, let

ai = ∇fi(xk)−∇fi(xk−1)−∇F (xk) +∇F (xk−1), (F.1)

then we have Eiai = 0, ai i.i.d., and

‖ai‖2 ≤ ‖∇fi(xk)−∇fi(xk−1)‖2 + ‖∇F (xk)−∇F (xk−1)‖2 ≤ 2L‖xk − xk−1‖2,

where the second inequality holds due to the L-smoothness of fi and F . Thus by vector Azuma-Hoeffding
inequality in Lemma G.1, we have that with probability at least 1− δ,∥∥∇fJk

(xk)−∇fJk
(xk−1)−∇F (xk) +∇F (xk−1)

∥∥
2

=
1

B
(g)
k

∥∥∥∥ ∑
i∈Jk

[
∇fi(xk)−∇fi(xk−1)−∇F (xk) +∇F (xk−1)

]∥∥∥∥
2

≤ 6L

√
log(d/δ)

B
(g)
k

‖xk − xk−1‖2. (F.2)

For each i ∈ Jk, let

bi = ∇fi(xk)−∇F (xk),

then we have Eibi = 0 and ‖bi‖2 ≤M . Thus by vector Azuma-Hoeffding inequality in Lemma G.1, we have that
with probability at least 1− δ,

‖∇fJk
(xk)−∇F (xk)‖2 =

1

B
(g)
k

∥∥∥∥ ∑
i∈Jk

[
∇fi(xk)−∇F (xk)

]∥∥∥∥
2

≤ 6M

√
log(d/δ)

B
(g)
k

. (F.3)

F.2 Proof of Lemma D.4

Proof of Lemma D.4. We only need to consider the case where B
(h)
k = |Ik| < n. For each i ∈ Ik, let

Ai = ∇2fi(xk)−∇2fi(xk−1)−∇2F (xk) +∇2F (xk−1),

then we have EiAi = 0,A>i = Ai, Ai i.i.d. and

‖Ai‖2 ≤
∥∥∇2fi(xk)−∇2fi(xk−1)

∥∥
2

+
∥∥∇2F (xk)−∇2F (xk−1)

∥∥
2
≤ 2ρ‖xk − xk−1‖2,
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where the second inequality holds due to ρ-Hessian Lipschitz continuous of fi and F . Then by Matrix Azuma
inequality Lemma G.2, we have that with probability at least 1− δ,∥∥∇2fIk(xk)−∇2fIk(xk−1)−∇2F (xk) +∇2F (xk−1)

∥∥
2

=
1

B
(h)
k

∥∥∥∥ ∑
i∈Ik

[
∇2fi(xk)−∇2fi(xk−1)−∇2F (xk) +∇2F (xk−1)

]∥∥∥∥
2

≤ 6ρ

√
log(d/δ)

B
(h)
k

‖xk − xk−1‖2.

For each i ∈ Ik, let

Bi = ∇2fi(xk)−∇2F (xk),

then we have EiBi = 0, B>i = Bi, and ‖Bi‖2 ≤ 2L. Then by Matrix Azuma inequality in Lemma G.2, we have
that with probability at least 1− δ,

‖∇2fJk
(xk)−∇2F (xk)‖2 =

1

B
(h)
k

∥∥∥∥ ∑
i∈Ik

[
∇2fi(xk)−∇2F (xk)

]∥∥∥∥
2

≤ 6L

√
log(d/δ)

B
(h)
k

,

which completes the proof.

G Auxiliary Lemmas

We have the following vector Azuma-Hoeffding inequality:

Lemma G.1. (Pinelis, 1994) Consider {vk} be a vector-valued martingale difference, where
E[vk|σ(v1, ...,vk−1)] = 0 and ‖vk‖2 ≤ Ak, then we have that with probability at least 1− δ,∥∥∥∥∑

k

vk

∥∥∥∥
2

≤ 3

√
log(1/δ)

∑
k

A2
k (G.1)

We have the following Matrix Azuma inequality :

Lemma G.2. (Tropp, 2012) Consider a finite adapted sequence {Xk} of self-adjoint matrices in dimension d,
and a fixed sequence {Ak} of self-adjoint matrices that satisfy

E[Xk|σ(Xk−1, ...,X1)] = 0 and X2
k � A2

k almost surely.

Then we have that with probability at least 1− δ,∥∥∥∥∑
k

Xk

∥∥∥∥
2

≤ 3

√
log(d/δ)

∑
k

‖Ak‖22. (G.2)

H Additional Algorithms and Functions

Due to space limit, we include the approximate solvers (Carmon and Duchi, 2016) for the cubic subproblem in
this section for the purpose of self-containedness.
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Algorithm 3 Cubic-Subsolver(A[·],b, τ, η, ζ, ε′, δ′)
1: x = CauchyPoint(A[·],b, τ)
2: if CubicFunction(A[·],b, τ,x) ≤ −(1− ε′)τζ3/12 then
3: return x
4: end if
5: Set

T ′ =
480

ητζε′

[
6 log

(
1 +
√
d/δ′

)
+ 32 log

(
12

ητζε′

))]

6: Draw q uniformly from the unit sphere, set b̃ = b + σq where σ = τ2ζ3ε′/(β + τζ)/576
7: x = CauchyPoint(A[·],b, τ)
8: for t = 1, . . . , T − 1 do
9: x← x− η · CubicGradient(A[·], b̃, τ,x)

10: if CubicFunction(A[·], b̃, τ,x) ≤ −(1− ε′)τζ3/12 then
11: return x
12: end if
13: end for
14: return x

Algorithm 4 Cubic-Finalsolver(A[·],b, τ, η, εg)
1: ∆←CauchyPoint(A[·],b, τ)
2: while ‖Gradient(A[·],b, τ,∆)‖2 > εg do
3: ∆← ∆− η ·Gradient(A[·],b, τ,∆)
4: end while
5: return ∆

1: Function: CauchyPoint(A[·],b, τ)
2: return −Rcb/‖b‖2, where

Rc =
−b>A[b]

τ‖b‖22
+

√(
−b>A[b]

τ‖b‖22

)2

+
2‖b‖2
τ

3: Function: CubicFunction(A[·],b, τ,x)
4: return b>x + x>A[x]/2 + τ‖x‖32/6

5: Function: CubicGradient(A[·],b, τ,x)
6: return b> + A[x] + τ‖x‖2x/2
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