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A.1 Remaining Proofs

We prove the remaining statements in this subsection.

Proof of Theorem 1. We can show for the differences ∆m := ξm − ξm−1:

∆m = P (z1 > 0, . . . , zm > 0)− P (z1 > 0, . . . , zm−1 > 0)

= P (z1 > 0, . . . , zm > 0)−(
P (zm > 0|z1 > 0, . . . , zm−1 > 0) + P (zm ≤ 0|z1 > 0, . . . , zm−1 > 0))

)
P (z1 > 0, . . . , zm−1 > 0)

= −P (zm ≤ 0|z1 > 0, . . . , zm−1 > 0)P (z1 > 0, . . . , zm−1 > 0)

≤ 0.

Therefore, ξm is monotonously decreasing in m. Furthermore, it is bounded by 0 from below as it is a probability. Therefore,
it is convergent.

Proof of Lemma 1.

P (zt ≤ 0|z1 > 0, . . . , zm > 0)P (z1 > 0, . . . , zm > 0)

≥ P (zt ≤ 0 ∧ zm+1 > 0|z1 > 0, . . . , zm > 0)P (z1 > 0, . . . , zm > 0)

= P (zt ≤ 0|z1 > 0, . . . , zm+1 > 0)P (z1 > 0, . . . , zm+1 > 0)

Now, we will prove Corollary 1 establishing the relation between m and ε1 for equidistant design.

Proof of Corollary 1. It holds for an equidistant design

∆ =
1

m− 1
<

δ

L1γ + α (ε1)L2
.

Then, we will prove the two components of Theorem 2. The first part bounds the probability of still seeing an unsafe point
zt ≤ 0 while the neighboring intermediate points are positive and even greater than a δ.

Lemma 2. Using the same notation and setting as in Theorem 2, we can bound the probability

P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0 ∧ (δ < ztm+ ≤ γ ∧ δ < ztm− ≤ γ)) ≤ ε1

if m− 1 is large enough such that

|tm+ − tm− | ≤
δ

L1γ + α (ε1)L2

for an arbitrary but fixed δ > 0 and γ > δ.
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Proof.

P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0 ∧ ztm+ > δ ∧ ztm− > δ))

≤ P (zt ≤ 0 ∧ ztm+ > δ)

=

∫
zt≤0

∫
ztm

+
>δ

p(zt, ztm+ )dztdztm+

≤
∫
zt̂≤0

p(zt̂|ẑtm+ )dzt̂

∫
ztm

+
>δ

p(ztm+ )dztm+

≤ P (zt̂ ≤ 0|ẑtm+ )

where in the second step p denotes a probability density, and we define

(t̂, ẑtm+ ) = argmaxt∈T,δ<ztm
+
≤γ

∫
zt≤0

p(zt|ztm+ )dzt.

As zt|ẑtm+ is a GP, we can denote its mean as µt,tm+ and its standard deviation as σt,tm+ . For t = tm+ we can state
µtm+ ,tm+ − α(ε1)σtm+ ,tm+ = ẑtm+ > δ. We have Lipschitz constants for µt,tm+ and σt,tm+ . As stated in the main text L1 may
linearly depend on ẑtm+ . Therefore, we replace it by its upper bound L1 · γ, where we would assume γ to be greater than 1.
Using these, we obtain µt,tm+ ≥ µtm+ ,tm+ − L1γ|tm+ − t| and σt,tm+ ≥ σtm+ ,tm+ − L1|tm+ − t|. Therefore, it follows that at t̂ the
lower bound of the quantile of the GP zt̂|ẑtm+ is defined by δ − L1γ|tm− − tm+ | − α(ε1)L2|tm− − tm+ | (blue line of Figure A.1).
If this value is greater than zero, it means that the GPs probability of being smaller than zero can be bounded by ε1:

P (zt̂ ≤ 0|ẑtm+ )

≤

{
ε1 if δ − L1γ|tm− − tm+ | − α(ε1)L2|tm− − tm+ | ≥ 0 ( case 1 )
1 otherwise (case 2)

According to the requirement on m, we are always in case 1.

t-
m t+

m

0

zt
-
m zt

+
m

 - |t+
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m | L1  -  |t+
m-t-

m | L2

Figure A.1: Two safe points tm− and tm+ with ztm− > δ and ztm+ > δ. Solid blue line: lower bound of mean minus α
standard deviations of predictive distribution.

Next, we focus on the probability that one of the neighboring intermediate points of a new point xt are smaller than δ.
We can bound the probability of a Gaussian distribution to be in an interval [0, δ] as follows

Lemma 3. Under Assumption 1, for every ε3 > 0, there exists a δ > 0 such that it holds for any t ∈ T that P (zt ∈
[0, δ]) < ε3.
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Proof. If the GP is degenerated for a point t with σt = 0, then (according to Assumption 1), either µt < −α1 or µt > α1.
In both cases, the inequality holds for any δ < α1 and any ε3. Let us assume σt > α2 from now on.

Define δ = ε3 ·
√

2πβ. Then it holds for all t ∈ T

P (zt ∈ [0, δ]) =

∫ δ

0

1√
2πσt

exp

(
− (z − µt)2

2σt

)
dz

≤ δ
1√

2πσt

< δ
1√

2πα2

≤ δ
1√
2πβ

≤ ε3.

This results enables us to prove the remaining claim, namely that the probability of one of the neighboring points being
smaller than δ

Lemma 4. Assuming, that we have a set of m− 1 points xt1 , . . . ,xm−1 and introduce one new point xtm . We can bound
the probability

P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0 ∧ (ztm+ ≤ δ ∨ ztm− ≤ δ)) < ε2

for arbitrary ε2 > 0.
Set ε3 = ε2/2 and δ = ε3 ·

√
2πβ (as in Lemma 3). β is the bound on GP degeneracy from Assumption 1.

Proof.

P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0 ∧ (0 < ztm+ ≤ δ ∨ 0 < ztm− ≤ δ))
= P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0|(0 < ztm+ ≤ δ ∨ 0 < ztm− ≤ δ)) · P (0 < ztm+ ≤ δ ∨ 0 < ztm− ≤ δ)
≤ 1 · P (0 < ztm+ ≤ δ ∨ 0 < ztm− ≤ δ)
< ε3 + ε3

= ε2

Note that P (ztm+ = 0) = P (ztm− = 0) = 0 as a property of the Gaussian distribution. The last inequality is a consequence
of the Lemma 3.

Lemma 4 holds independently of m.

Lemma 5. For every ε4 > 0, there exists a γ > 0 such that it holds for any t ∈ T that P (zt > γ) < ε4:

γ =
√

2σ̄ log

(
1

ε4

)
+ µ̄

with σ̄ and µ̄ defined in the main text.



Christoph Zimmer1 Danny Driess2 Mona Meister1 Duy Nguyen-Tuong1

Proof.

Pµt,σt(zt > γ) = P(0,1)(x σ2 + µt > γ)

= P(0,1)

(
x >

γ − µt
σ2

)
= 1− Φ

(
γ − µt
σ2

)
= Φ

(
−γ − µt

σ2

)
= 1/2 erfc

(
γ−µt
σ2√

2

)

≤ exp

(
−γ − µt√

2σ2

)
≤ exp

(
−γ − µ̄√

2σ̄

)
≤ ε4.

Taken together, we can prove Theorem 2:

Proof of Theorem 2. We use results from Lemma 2, i.e. P (zt≤0 ∧ z1>0, . . . , zm>0 ∧ (δ<ztm+ ≤γ ∧ δ<ztm− ≤γ)) ≤ ε1
under the conditions above, and Lemma 4, stating P (zt ≤ 0 ∧ z1>0, . . . , zm>0 ∧ (ztm+ ≤δ ∨ ztm− ≤δ))<ε2, and Lemma 5,
stating P (zt>γ)<ε4. When employing the following bound

P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0 ∧ (ztm+ > γ ∨ ztm− > γ))

≤ P (ztm+ > γ ∨ ztm− > γ)

≤ 2 · max
t∈{tm− ,t

m
+ }
P (zt > γ)

< 2ε4

it follows
P (zt ≤ 0|z1 > 0, . . . , zm > 0) · P (z1 > 0, . . . , zm > 0)

= P (zt ≤ 0 ∧ z1 > 0, . . . , zm > 0)

≤P(zt≤0∧z1>0,. . .,zm>0∧(δ<ztm+ ≤γ∧δ<ztm− ≤γ))

+ P (zt≤0∧z1>0,. . .,zm>0∧(ztm+ ≤δ∨ztm− ≤δ))

+ P (zt≤0∧z1>0, . . .,zm>0∧(ztm+ >γ∨ztm− >γ))

< ε1 + ε2 + 2ε4

≤ ε

Now, we have completed the proofs for the claim that we can find an m for any ε and bound the probability in Eq. 5.
Next, we focus on the convergence rate. We will need a few more intermediate results. First, we need to establish a
relation between α(ε1) and ε1.

Corollary 2. Lemma 2 still holds for any α′(ε1) ≥ α(ε1).

Lemma 6. For any ε1 > 0 we can express α′(ε1) in terms of ε1 as

α′(ε1) =
√

2 log

(
1

ε1

)
.

Proof. We need to show that this α′(ε1) fulfills PN(0,1)([µ−α′(ε1)σ, µ+α′(ε1)σ]) ≥ 1−ε1 for a standard normal distribution,
hence PN(0,1)([−α′(ε1), α′(ε1)]) ≥ 1− ε1. This is equivalent to

2Φ(−α′(ε1)) ≤ ε1
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Now, it holds

2Φ(−α′(ε1))

= erfc
(
−−α

′(ε1)√
2

)
≤ exp

(
−α
′(ε1)√

2

)

= exp

−
√

2 log
(

1
ε1

)
√

2


= ε1

Now, we can precisen the relation between m and ε
Corollary 3. It is a consequence of Corollary 1 and Lemma 6, that

m >
L1γ +

√
2 log( 1

ε1
)L2

δ
+ 1

is sufficient for the claim of Corollary 1.

Now, we can finally proof Theorem 3.

Proof of Theorem 3. Let ε > 0 and ε3 = ε/4, ε1 = ε/2, and ε4 = ε/8. Taking together the result from Corollary 3 and
Theorem 2 we obtain

m ≥
L1γ +

√
2 log( 1

ε1
)L2

ε3 ·
√

2πβ
+ 1.

γ can be expressed as γ =
√

2σ̄ log( 1
ε4

) + µ̄ (Theorem 2) and it follows

m ≥ 1

ε3

L1

√
2σ̄ log( 1

ε4
) + µ̄

√
2πβ

+
L2√
πβ

log
(

1
ε1

)
ε3

+ 1 =: m̃0

For any κ > 0, there exists an ε01 (and similar for ε4) such that for every ε1 < ε01, it holds log(1/ε1) < (1/ε1)κ and, therefore,
for every ε1 < ε01

m̃0 <
1

ε3

L1

√
2σ̄( 1

ε4
)κ + µ̄

√
2πβ

+
L2√
πβ

(
1
ε1

)κ
ε3

+ 1

<
4

ε

L1

√
2σ̄( 8

ε
)κ + µ̄ 1

εκ√
2πβ

+
L2√
πβ

(
2
ε

)κ
4

ε
+ 1

≤ 1

ε1+κ
4
L1

√
2σ̄8κ + µ̄√
2πβ

+
L2√
πβ

2κ4

ε1+κ
+ ε−(1+κ)

= C ε−(1+κ) =: m0

and defining C as

C := 4
L1

√
2σ̄8κ + µ̄√
2πβ

+
L2√
πβ

2κ4 + 1

Now, we can rephrase to

ε = m
− 1

1+κ
0 C

and further to

dm0e−
1

1+κC =: ε̃ ≤ ε = m
− 1

1+κ
0 C
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Figure A.2: Illustration of computation scheme: Upper part showing previous iteration 4 and four points
xt1 , . . . , xt4 and corresponding local optima in the intervals denoted as topt[·] . The best of those local optima
denoted as t∗. In the next iteration (lower part of Figure), we add the new point (from the previous) iteration and
recompute the local optima on the adjacent intervals (red). We use the previous values for the other intervals. As
we expect the impact of a new point to become less for more distant intervals, this is a reasonable approximation.
The number of neighboring intervals in which the local optima is recomputed depends on the user’s choice.

Now, for each ε > 0 there exists a 0 < ε̃ ≤ ε and Eq. (5) of Theorem 2 let us obtain

P (zt ≤ 0|z1 > 0, . . . , zdm0e > 0) · P (z1 > 0, . . . , zdm0e > 0) < ε̃ = dm0e−
1

1+κC ≤ ε

for any t ∈ T , leading to a convergence rate of 1
1+κ

.

This can be rephrased to

P (zt ≤ 0|z1 > 0, . . . , zm > 0) · ξm = O
(
m−

1
1+κ

)
.

A.2 Further Remarks on Main Text

A.2.1 How to compute the solution of the optimization problem in Eq. 4

The optimization problem in Eq. (4) has m−1 local optima, as the objective function P (zt≤0|z1>0, . . . , zm>0)·P (z1>
0, . . . , zm>0) is greater than zero for t 6= ti, i=1, . . . ,m but zero at t= ti, i = 1, . . . ,m. In practice, we use the following
scheme for speeding up the computation. We save the results of the m−1 local optima in iteration m as t∗1, . . . , t∗m−1. In
iteration m+1, we use m−2 of them, namely all those for which it holds t∗ /∈ [t∗m− , t

∗m
+ ], where t∗m− is the preceding point

of t∗ and t∗m+ is the following point of t∗. Thus, it is only required to solve two optimization problems: one on [t∗m− , t
∗]

and one on [t∗, t∗m+ ] as illustrated in Figure A.2.

A.2.2 Remarks on related work on excursion sets
[Azzimonti et al., 2016, Azzimonti et al., 2019]

The references [Azzimonti et al., 2016, Azzimonti et al., 2019] use a fundamentally different approach than our work:
Given a function f and a (safety) threshold u > 0, they focus on the probability of the set Γ = {x ∈ X : f(x) > u}. This is
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the probability of the set Γ of safe points. We focus on P (x1 > 0, . . . , xm > 0). This is the probability to be safe at all m
discretization points. These two definitions of cost/loss/safety are fundamentally different: for example, let x to vary in
[0, T ] and

f(x) =

{
2u x < t2
−u x = xt2

so f is larger than u for almost all x except x = xt2 . Failure occurs only for x = xt2 . Their criterion would return 1 (if
uniform distribution over [t1, t2]), indicating safety. Our criterion would return zero, indicating failure.

Another difference between their work and ours is the following: they focus on finding a smaller set of sample point best
representing a bigger set of sample points (with respect ot the above mentioned criterion). We, however, try to adaptively
find a set of good points (reducing the remaining risk for safety valuation). We do not start from a bigger set, however.

A.3 Algorithms of GP-PRM of Section 6

Here we state the pseudo code of the algorithms for the GP-PRM from Sec. 6. Algorithm 2 is the creation of the
probabilistic roadmap, where in step 11 the safety of an edge is evaluated with our proposed adaptive discretization
algorithm.

For sampling from Xfree itself (step 5), many strategies have been proposed in the literature, e.g. uniform sampling. In
the experiments of this work, a new configuration is drawn from Xfree such that it has maximum distance to the already
sampled configurations in V .

As mentioned in the main text, Sec. 6, given the constructed probabilistic roadmap (V,E), planning a path from a target
configuration to a goal configuration reduces to a graph search problem. Next we describe the two approaches we followed
in this work, the weighting approach and the waypoint approach in more detail.

To generate a variety of candidate paths on the roadmap, one idea is to first sample a waypoint xw∈V . The candidate
path then consists of the shortest path from the start, over the way-point, to the target configuration (see Algorithm
3). After checking whether the path contains no vertex twice, the resulting safety probability of the complete path is
determined adaptively with our proposed algorithm. Optionally, testing candidate paths could be terminated if a desired
safety is reached. However, in the experiments we calculate every possible candidate path over all way-points.

The other approach is to compute a weighted shortest path problem on the PRM (V,E), where the weight of each edge
(x,x′) ∈ E is given by wx,x′ = d(x,x′) + ρ (1− p(x,x′)), where d(x,x′) is the euclidean distance between x and x′,
ρ ∈ R+ a scaling parameter and p(x,x′) the safety probability of the path connecting x and x′, which is calculated during
the construction of the roadmap.

Algorithm 2 GP-PRM Construction
1: Input: number of sampled states nV , number of nearest

neighbors kNN, pmin.
2: Output: PRM (V,E)
3: Initialization: V = ∅, E = ∅
4: while |V | < nV do
5: x = Sample(Xfree)
6: V ← V ∪ {x}
7: end while
8: for all x ∈ V do
9: Nnear = NearestNeighbors(x, kNN, V )
10: for all x′ do
11: p = EvaluateSafety((x,x′), ε)
12: if p > pmin then
13: E ← E ∪ {(x,x′)}
14: end if
15: end for
16: end for
17: remove all unconnected x ∈ V from V

Algorithm 3 GP-PRM Waypoint Planning
1: Input: Start xs, goal xg, ε>0, GP cost function
g, PRM (V,E)

2: x′s = NearestNeighbor(xs, V )
3: x′g = NearestNeighbor(xg, V )
4: Output: Path τ sg with safety indicator pbest
5: Initialization: pbest = 0, τ best = ()
6: for all xw ∈ Shuffle(V ) do
7: τ sw = ShortestPath(x′s,x

′
w)

8: τwg = ShortestPath(x′w,x
′
g)

9: τ = Concatenate(τ sw, τwg)
10: if SimplePath(τ ) then
11: p = EvaluateSafety(τ , ε)
12: if p > pbest then
13: pbest ← p
14: τ best ← τ
15: end if
16: end if
17: end for

A.4 Further Evaluations & Experimental Details

A.4.1 Experimental Details

Here we state all hyperparameters of the experiments performed in Section 7.
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Adaptive Equidistant
Creation Planning Creation Planning

Fig. 2b 7.8 ± 0.1 51 ± 4 14 ± 2.7 66 ± 6
Fig. 2c 8.2 ± 0.2 53 ± 3 16 ± 2.0 74 ± 2
Fig. 2d 7.3 ± 0.7 48 ± 1 16 ± 2.1 85 ± 7
Fig. 2e 7.7 ± 0.2 48 ± 3 13 ± 2.0 70 ± 3

Table A.1: Runtime in seconds for creation and planning of scenarios considered in section 7.2.

Figure A.3: Data points of the GP for the experiment with the thin obstacle (Section 7.1). Red are on-surface
observations, green collision free and pink observations inside an object.

In Section 7.1 and 7.2, the number of Monte-Carlo samples to evaluate ξm(τ ) was 3000, in Section 7.3 1000, the precision
to terminate the adaptive evaluation algorithm was ε = 0.01 in Section 7.1 and 7.2 and ε = 0.02 in Section 7.3. The
number of samples for constructing the roadmap was nV = |V | = 100 in Section 7.1 and 7.2 and nV = |V | = 230 in
Section 7.3. The minimum safety probability to add an edge to the graph was pmin = 0.7 in Section 7.1 and 7.2. For the
workspace exploration experiment in Section 7.3, the construction of the roadmap for exploration used pmin = 0.7 and
pmin = 0.8 for the roadmap for planning the evaluation paths between the targets. All experiments utilized a Gaussian
kernel. Its hyperparameters was σ2

g = 0.5 in 7.1 and 7.2, the length-scale Λg = diag(1/l, . . . , 1/l), where l = 0.05 in Section
7.1, l = 0.08 in Section 7.2 and l = 0.07 in Section 7.3. Furthermore, σ = 0.1 in Section 7.2, σ = 0.01 in Section 7.1 and
σ = 0.05 in Section 7.3. The number of nearest neighbors was kNN = 5 in Sections 7.2, 7.3 and kNN = 10 in Section 7.1. In
Sections 7.1 and 7.2, given the constructed roadmap, the paths are planned using the waypoint approach, in Section 7.3,
the weighting approach is used with ρ = 10.0.

The target values in the dataset for the GP implicit surface model are as follows: In Sections 7.1 and 7.2, the values are
z(x) = 0 for points directly on the surface and z(x) = 1 in free space. The experiment in Section 7.1 also has observations
inside an object (to generate such a thin obstacle) with z(x) = −1. In Section 7.3, it is z(x) = 0.3 for a free space
observation and z(x) = −0.2 if the robot has touched the surface. This means that in this case, the training points are
independent from the distance to the object, i.e. that there are either on-surface observations or free-space observations,
each with the same value of z(x). In implicit surface modeling with GPs, this is a common technique [Driess et al., 2017].
However, one could also interpret the GP as a signed distance function if the observations are actual distances to the
obstacles, if such sensor information is available.

We use our own GP implementation, because we have to calculate the full covariance matrix prediction efficiently, which
most GP packages do not allow. In order to do so, we save the Cholesky decomposition of the kernel matrix Kn+λ2I,
such that at prediction time, only triangular systems have to be solved.

In Table 1, equidistant coarse means that the maximum distance between two discretization points before the algorithm
terminates was 0.012, equidistant fine means a maximum distance of 0.006.

Figure A.3 shows the datapoints for the experiment in Section 7.1. As one can see, relatively many points are necessary to
generate the thin obstacle.

The runtimes given in Tables A.1 and 1 are determined on a laptop with an Intel c© CoreTM i7-6500U CPU 2.50GHz x 4.
All experiments have been implemented in Python 3.5.2 using NumPy for calculations.

For the scenario considered in Section 7.2 that do not contain thin obstacles, the equidistant evaluation leads to the
similar paths without any violation of the obstacles. However, as summarized in Table A.1, the runtime for the equidistant
evaluation is considerably higher compared to our proposed adaptive scheme. Here the equidistant algorithm iterates until
the predictive covariance matrix becomes numerically indefinite.

A.4.2 Exploration and Safe Path Planning for Autonomous Robot – Further Runs

Here, in Figures A.4 - A.12, we show 9 further runs of the workspace exploration experiment from Section 7.3 with the
same hyperparameters, but different random seeds. Please note that the runs that contain collision paths even at later
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stages of the exploration does not mean that our proposed algorithm falsely calculates unsafe paths. Instead, the GP does
not contain the right information (yet) about the obstacles in the environment (both in terms of collected data and chosen
kernel hyperparameters). This particularly happens if many free space data points haven been observed which are very
close to an obstacle, but no obstacle data is observed in the same region. Nevertheless, as can be seen, in all cases in the
end of the exploration, all 36 path between the 9 evaluation targets are collision free.

(a) Collected data (b) Planning roadmap
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Figure A.4: Workspace exploration result after 51 iterations. Violet are the true obstacles, orange in (a) the obstacle
estimations based on the GP data. Green points in (a), (b) are collision free observations, red obstacle observations. The
yellow stars in (b) are the 9 desired targets with the planned paths in blue. (c) shows the number of planned collision free
paths between the 9 targets (36 are possible in total), (d) the safety probabilities of these paths.
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Figure A.5: Workspace exploration result after 51 iterations.
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Figure A.6: Workspace exploration result after 51 iterations.
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Figure A.7: Workspace exploration result after 51 iterations.

(a) Collected data (b) Planning roadmap

20 40
0

10

20

30

Number of iterations

#
of

co
lli

si
on

fr
ee

pa
th

s

(c) Planning success

20 40
0

0.5

1

Number of iterations

Sa
fe

ty
pr

ob
.o

fp
at

hs

no collision on path
collision on path

(d) Safety prob. of planned
paths

Figure A.8: Workspace exploration result after 51 iterations.
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Figure A.9: Workspace exploration result after 51 iterations.
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Figure A.10: Workspace exploration result after 51 iterations.
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Figure A.11: Workspace exploration result after 51 iterations.
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Figure A.12: Workspace exploration result after 51 iterations.

A.4.3 Additional Toy Example

Use a toy function as ground truth safety model: g : [5, 25]→ R

g(x) = 0.3 + 1/80(x− 5) + 1/4 sin(1000/x2)

and z = g(x) + ε with ε ∼ N(0, 0.05). This is a function with two minima and three maxima two of which occur at the
boundaries. Sample 1000 noisy training points and train a GP and use this GP as current safety model to evaluate the cost
of a trajectory τ from t1 = 8 to t2 = 17. We let the Algorithm 1 run until ε ≤ 0.001. For comparison we use an algorithm
that places the points according to a grid: this benchmark also starts with t1 = 8 and t2 = 17 and places the third point in
the middle, t3 = 1/2(t1 + t2). Then, the fourth and fifth point are set as t4 = 1/2(t1 + t3) and t5 = 1/2(t3 + t2).

Results are shown in Figure A.13, comparing the Algorithm 1 with a benchmark with 1000 iterations. The Algorithm 1
converges much faster in terms of iterations and also reaches a better final result as Figure A.14 shows. As MC sampling
introduces an uncertainty for the evaluation of our termination criterion, we display this effect in Figure A.15 showing
the precise termination of our algorithm. A video (see Appendix File) illustrates how the adaptive Algorithm 1 works
compared to an equidistant benchmark for the first 50 iterations on this example.

A.5 Appendix - Files

Adaptive Cost Evaluation algorithm – video. File: Adapt-Cost-Eval-in-action.avi
Upper panel: Path cost estimate; lower panel: An equidistant benchmark placing points in green colored circels and our
Adaptive Cost Evaluation algorithm optimally placing point in red asteriscs. The optimally placed points lead much
quicker to a good cost safety estimate.

Robot Exploration Experiment – video. File: robotExploration.mov
Video on experiment of exploration and path planning of a vacuum cleaner robot
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Figure A.13: Left panel: The adaptive Algorithm 1 in red, and an equidistant benchmark in green in dependence
of number of iterations. Right panel: zoom-in.
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Comparing the final values. Wilcoxon test:  0.002

Figure A.14: Final results of the adaptive Algorithm 1 (left) and the equidistant benchmark (right). A Wilcoxon
text yields a p-value of 0.002 indicating an improved outcome. This means that the adaptive Algorithm 1, even
though using a lot less iterations and intermediate points, achieves an even better final results as the equidistant
benchmark using much more intermediate points.
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Figure A.15: Termination criterion of Algorithm 1 and the uncertainty from MC sampling: Red color displays
the safety value as in Figure A.13 and blue color the safety value plus two standard deviations from the MC
sampling in a logarithmic plot. Black line is the termination criterion.


