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Abstract

We propose a new algorithm for adversar-
ial multi-armed bandits with unrestricted de-
lays. The algorithm is based on a novel
hybrid regularizer applied in the Follow the
Regularized Leader (FTRL) framework. It
achieves O(

√
kn +

√
D log(k)) regret guar-

antee, where k is the number of arms, n
is the number of rounds, and D is the to-
tal delay. The result matches the lower
bound within constants and requires no prior
knowledge of n or D. Additionally, we pro-
pose a refined tuning of the algorithm, which
achieves O(

√
kn + minS(|S| +

√
DS̄ log(k)))

regret guarantee, where S is a set of rounds
excluded from delay counting, S̄ = [n]\S are
the counted rounds, and DS̄ is the total de-
lay in the counted rounds. If the delays are
highly unbalanced, the latter regret guaran-
tee can be significantly tighter than the for-
mer. The result requires no advance knowl-
edge of the delays and resolves an open prob-
lem of Thune et al. (2019). The new FTRL
algorithm and its refined tuning are anytime
and require no doubling, which resolves an-
other open problem of Thune et al. (2019).

1 Introduction

Multi-armed bandits are a fundamental sequential de-
cision making problem with an increasing number of
industrial applications. In the multi-armed bandit set-
ting, a learner repeatedly chooses an action from a fi-
nite set of actions and immediately observes a loss for
that specific action. The action might be, for example,
a choice of an advertisement layout out of a finite set
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of layouts. The loss could be the response of a user
to the layout, for example, a lack of a click on the ad-
vertisement. In practice, it is often required to make
decisions for new users before observing the feedback
of all previous users, either due to response latency
or parallel interaction with multiple users. This can
be modeled by introducing a delay between the action
and observation.

We focus on the oblivious adversarial (a.k.a. non-
stochastic) bandit setting, meaning that the sequence
of losses and the delays are fixed before the start of the
game. The setting was first studied by Cesa-Bianchi
et al. (2016) under the assumption of uniform delays,
which are all equal to d. They proved a lower bound
of Ω(max{

√
kn,

√
dn log(k)}) for d ≤ n/ log(k) (they

do not report the log(k) term) and an almost match-
ing upper bound of O(

√
kn log(k) +

√
dn log(k)).

By translating individual delays into the total de-
lay D = dn the lower bound for uniform delays is
Ω(max{

√
kn,

√
D log(k)}). Thune et al. (2019) and

Bistritz et al. (2019) independently derived an algo-
rithm that can handle non-uniform delays and achieves
an O(

√
kn log(k) +

√
D log(k)) regret bound under

the assumption that n and D are known in advance.
Thune et al. further provide a doubling scheme that
achieves the same regret bound under the assumption
that the delays dt are known ”at action time”, i.e., at
time t, but n and D are unknown, whereas Bistritz
et al. provide a doubling scheme that achieves an
O(
√
k2n log(k)+

√
D log(k)) regret bound when n and

D are unknown and the delays dt are observed together
with the observations, i.e., at time t+ dt.

Thune et al. further observe that if the delays are
highly unbalanced it may be worth “skipping” rounds
with excessively large delays. “Skipping” means that
the regret in the corresponding round is trivially
bounded by 1 and the observation is ignored by the
algorithm. The skipping approach of Thune et al.
requires knowledge of the delays “at action time”.
Under the assumption that this information is avail-
able, Thune et al. provide an algorithm that achieves
O(minβ |Sβ |+β log(k)+β−1(kn+DS̄β )) regret guaran-
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Table 1: Overview of state-of-the-art regret bounds for multi-armed bandits with delayed feedback. (*) requires
oracle knowledge of the time horizon n and the total delay D; the result appeared independently in two papers.
(**) requires advance knowledge of the delays dt “at action time” t.

Setting Regret upper and lower bounds Reference

Uniform delays d Ω(max{
√
kn,

√
dn log(k)}) Cesa-Bianchi et al. (2016)

O(
√
kn log(k) +

√
dn log(k)) Cesa-Bianchi et al. (2016)

O(
√
kn+

√
dn log(k)) This paper

Arbitrary delays, O(
√
kn log(k) +

√
D log(k)) (*)

{
Thune et al. (2019)

Bistritz et al. (2019)

non-adaptive bounds O(
√
k2n log(k) +

√
D log(k)) Bistritz et al. (2019)

O(
√
kn+

√
D log(k)) This paper

Arbitrary delays, O(minβ |Sβ |+ β log(k) + β−1(kn+DS̄β )) (**) Thune et al. (2019)

adaptive bounds O(
√
kn+ minS(|S|+

√
DS̄ log(k))) This paper

tee, where β is the skipping threshold (the rounds with
delays dt ≥ β are skipped), Sβ is the set of skipped
rounds and |Sβ | is their number, S̄β = [n] \ Sβ are
the remaining rounds (where [n] = {1, . . . , n}), and
DS̄β =

∑
t∈S̄β dt is their total delay. Thune et al. pro-

vide an example, where the first b
√
kn/ log(k)c rounds

have delays of order n and the remaining rounds have
zero delays. By skipping the first rounds, the depen-
dence of the regret bound on n improves from order
n3/4 to n1/2. The skipping procedure of Thune et al.
crucially depends on availability of delays “at action
time” in order to make the skipping decision and the
skipping threshold β is tuned by doubling. Relaxation
of the assumption on early availability of delays, as
well as replacement of doubling with anytime strate-
gies (i.e., algorithms without resets) were left as open
questions.

We resolve both open questions and make the following
contributions:

1. We provide an anytime FTRL algorithm based on
a novel hybrid regularizer. The regularizer com-
bines 1

2 -Tsallis entropy and negative entropy, each
with its own learning rate. The algorithm requires
no advance knowledge of the delays and achieves
a regret bound of O(

√
kn +

√
D log(k)), which

matches the lower bound within constants.

2. We provide a novel “skipping” technique, which
allows to “ignore” rounds with excessively large
delays with no advance knowledge of the delays.
We put “skipping” and “ignore” in quotation
marks, because the observations are still used by
the algorithm and the “skipped” rounds are only
excluded from updates of the learning rate. We
prove an O(

√
kn + minS(|S| +

√
DS̄ log(k))) re-

gret bound for the refined algorithm. The bound
is slightly tighter than the refined regret bound

of Thune et al. (2019), but most importantly it
requires no advance knowledge of the delays. 1

In Table 1 we provide a comparison of state-of-the art
bounds with our new results. Additional prior work in
other online learning settings with delayed feedback in-
cludes the full information setting studied by Joulani
et al. (2016), who derived a general reduction to a
non-delayed problem. To the best of our knowledge,
no similar reduction under bandit feedback has been
found yet. Another related setting are bandits with
anonymous composite feedback, where the learner is
not informed about the round from which the de-
layed observation is coming from, neither the identity
of the action it corresponds to, and delayed observa-
tions from several rounds may be composed together
with no possibility to separate them. This harder set-
ting was studied by Cesa-Bianchi et al., who derived
an O(

√
kdmaxn log(k)) regret bound, where dmax is a

known upper bound on the delays. We refer the reader
to Thune et al. (2019) for further review of prior work
in related settings.

The paper is structured in the following way: Section 2
provides a formal definition of the problem setting.
Section 3 explains in detail our algorithm and two ver-
sions of learning rate tuning. Section 4 contains our
main theorems, as well as an intuition behind the re-
fined learning rate tuning. Section 5 presents a general
analysis of FTRL for multi-armed bandits with delays
and formally proves the theorems from the previous
section. Finally, Section 6 provides a summary and
directions for future work.

1We note that the new skipping technique could also
be combined with the doubling scheme of Thune et al. to
eliminate the need in advanced knowledge of delays there
as well. However, the anytime FTRL algorithm presented
here is much more elegant than doubling.
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2 Problem setting

Adversarial bandits with delay is a sequential game
between a learner and an environment with k fixed
actions. At time steps t = 1, . . . , n the learner picks
actions At ∈ [k] and immediately suffers the loss `t,At ,
where (`t)t=1,...,n are vectors in [0, 1]k. Unlike in the
regular bandit problem, the learner does not neces-
sarily observe the loss `t,At at the end of round t.
Instead, the environment chooses a sequence of de-
lays (dt)t=1,...,n and the player observes the tuples
(s, `s,As) for each s such that s + ds = t at the
end of round t. Without loss of generality, we as-
sume that all outstanding tuples are observed at the
end of the game, i.e., t + dt ≤ n for all t. We fo-
cus on the oblivious adversarial setting (sometimes
called “non-stochastic”), which means that both the
sequence of losses (`t)t=1,...,n and the sequence of de-
lays (dt)t=1,...,n are chosen by the environment at the
beginning of the game. We use D =

∑n
t=1 dt to denote

the total delay. The learner has no prior knowledge of
the quantities n,D, or (dt)t=1,...,n. The performance
of the algorithm is measured by its expected regret

Rn := E

[
n∑
t=1

`t,At

]
−min
i∈[k]

n∑
t=1

`t,i .

Some technical definitions We use ∆([k]) = {x ∈
Rk+|‖x‖1 = 1} to denote the (k − 1)-simplex. For a
set S ⊂ [n] = {1, . . . , n}, we denote its complement by
S̄ = [n] \ S. For a convex function F we use F ∗ to
denote its convex conjugate (a.k.a. Fenchel conjugate)

and F
∗

to denote the constrained convex conjugate.
They are defined, respectively, by

F ∗(y) = max
x∈Rk
〈x, y〉 − F (x),

F
∗
(y) = max

x∈∆([k])
〈x, y〉 − F (x) .

3 Algorithm

Our Algorithm 1 is a standard Follow the Regularized
Leader (FTRL) algorithm that works with importance
weighted loss estimators of all observations available
up to the current point in time. The loss estimators
are defined by

ˆ̀
s =

`s,As
xs,As

eAs ,

where xs,As is the algorithm’s probability of selecting
actionAs at round s and eAs is a standard basis vector.
We define the cumulative observed loss estimator at
time t by

L̂obst =
∑

s:s+ds<t

ˆ̀
s .

Given a convex regularizer Ft : Rk → R, FTRL sam-
ples action At according to the distribution

xt = arg min
x∈∆([k])

〈x, L̂obst 〉+ Ft(x) .

xt can be equivalently expressed as xt = ∇F ∗t (−L̂obst ).

We are using a hybrid regularizer Ft = Ft,1 + Ft,2,
where in contrast to most prior work each of the two
parts of the regularizer has its own learning rate.

Ft(x)︸ ︷︷ ︸
=
∑k
i=1 ft(xi)

= −
k∑
i=1

2
√
tx

1/2
i︸ ︷︷ ︸

Ft,1(x)=
∑k
i=1 ft,1(xi)

+ η−1
t

k∑
i=1

xi log(xi)︸ ︷︷ ︸
Ft,2(x)=

∑k
i=1 ft,2(xi)

.

The first part of the regularizer Ft,1(x) =
√
tF1(x)

is the 1
2 -Tsallis entropy F1(x) = −2

∑k
i=1

√
xi with

learning rate 1√
t
, which is non-adaptive to the problem.

The second part of the regularizer Ft,2(x) = η−1
t F2(x)

is the negative entropy F2(x) =
∑k
i=1 xi log(xi) with

adaptive learning rate ηt. We call a sequence of learn-
ing rates (ηt)t=1,...,n proper if it is non-increasing and
can be defined using information available at the be-
ginning of round t.

3.1 Intuition behind the regularizer

Hybrid regularizers have been successfully used in
adaptive regret bounds for sparse bandits, online port-
folio selection, adversarially robust semi-bandits, and
adaptive first order bounds for multi-armed bandits
(Bubeck et al., 2018; Luo et al., 2018; Zimmert et al.,
2019; Pogodin and Lattimore, 2019). They are use-
ful for targeting multiple objectives. In our case,
the regret lower bound for bandits with fixed delay
d is Ω(max{

√
kn,

√
dn log(k)}) (Cesa-Bianchi et al.,

2016). The first part of the bound is the standard
regret lower bound for multi-armed bandits with no
delays, which is clearly also a lower bound for the
problem with delays. The second part of the bound
is achieved by grouping the game rounds into batches
of size d and reducing the game to a full information
game over n/d rounds with loss range [0, d]. The sec-
ond part is then a lower bound on the regret in the
full information game.

Our regularizer uses the same decomposition of the
problem. We combine the optimal regularizer for the
standard bandit problem with no delay, the 1

2 -Tsallis
Entropy, with the optimal regularizer for the full in-
formation problems, the negative entropy. We further
tune the learning rate for the second part to the actual
delay sequence (dt)t=1,...,n.
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3.2 Tuning of the learning rate

We propose and analyze two versions of learning rate
tuning. The simple tuning is given in Algorithm 1.
For advanced tuning, replace the colored blocks Ini-
tialize and determine ηt in Algorithm 1 with the
corresponding blocks from Algorithm 2.

Algorithm 1: FTRL for bandits with delay

Input: Proper learning rate rule ηt
Initialize L̂obs1 = 0
Initialize D0 = 0 (simple tuning)
for t = 1, . . . , n do

determine ηt
Set Dt = Dt−1 + dt

Set η−1
t =

√
2Dt/ log(k)

}
(simple tuning)

Set xt = arg minx∈∆([k])〈x, L̂obst 〉+ Ft(x)

Sample At ∼ xt
for s : s+ ds = t do

Observe (s, `s,As)

Construct ˆ̀
s and update L̂obst

Simple tuning We define the key quantity, which is
used for tuning the learning rate.

Definition 1. The number of outstanding observa-
tions at round t is defined by

dt =

t−1∑
s=1

I{s+ ds ≥ t},

where I is the indicator function.

dt counts how many observations from rounds s < t
are still missing at the beginning of round t. Note
that dt is an observable quantity, unlike the delays dt.
Therefore, dt can be used for online tuning of the learn-
ing rate. The learning rate under the simple tuning is
given by

Dt =

t∑
s=1

dt , η−1
t =

√
2Dt/ log(k) .

The algorithm only uses the inverse of the learning
rate. If Dt = 0, then η−1

t = 0 and the algorithm is
well-defined, even though ηt =∞.

Advanced tuning In the advanced tuning, we
maintain a running estimate D̃t of the optimal trun-
cated delay DS̄ . To achieve that, we modify the quan-
tity dt by “skipping” some outstanding observations.
To be precise, we keep indicator variables ats ∈ {0, 1},

where ats indicates whether an outstanding observation
from round s should still be counted at round t:

d̃t =

t−1∑
s=1

atsI{s+ ds ≥ t}.

We define

D̃t =

t∑
s=1

d̃t , η−1
t =

√
D̃t/ log(k) .

The algorithm initially waits for all observations, but
as soon as the waiting time exceeds a threshold the
round is “skipped”. If we observe a delay such that

ds >
√

D̃t/ log(k), we set (at
′

s )t′>t to 0. The indi-

cators are not changed retrospectively, which means
that the initial waiting time still counts toward D̃t.
The intuition behind advanced tuning is explained in
Section 4.3.

Algorithm 2: Advanced tuning of ηt for Alg. 1

1 Initialize D̃0 = 0 and (ats)s=1,...,n;t=1,...,n = 1
2 determine ηt
3 Set d̃t =

∑t−1
s=1 I{s+ ds ≥ t}ats

4 Update D̃t = D̃t−1 + d̃t

5 Set η−1
t =

√
D̃t/ log(k)

6 for s = 1, . . . , t− 1 do
7 if min{ds, t− s} > η−1

t then

8 (at
′

s )t′>t = 0 (At most one index s
satisfies the if -condition, see
Lemma 7)

4 Main results

In this section, we present regret upper bounds for
Algorithm 1 with simple tuning and advanced tun-
ing. The first result confirms the conjecture of Cesa-
Bianchi et al. (2016) that an upper bound of O(

√
kn+√

D log(k)) is achievable with a simple algorithm. The
second result shows that it is possible to obtain a re-
fined bound of O(

√
kn+ minS⊂[n](|S|+

√
DS̄ log(k)))

by a more careful tuning of the learning rate.

4.1 Adaptation to the total delay D

The following theorem provides a regret bound for Al-
gorithm 1 with simple tuning.

Theorem 1. The regret of Algorithm 1 with any
non-increasing positive sequence of learning rates
(ηt)t=1,...,n satisfies

Rn ≤ 4
√
kn+ η−1

n log(k) +

n∑
t=1

ηtdt .
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In particular, the simple tuning η−1
t =√

2Dt/ log(k) =
√

2(
∑t
s=1 ds)/ log(k) is proper

and leads to a regret bound of

Rn ≤ 4
√
kn+

√
8D log(k) .

Proof. The first statement is a special case of Theo-
rem 3, which is presented in Section 5. For the second
statement we use a standard summation lemma, by
which for a sequence of positive d1, . . . , dn we have∑n
t=1

(
dt/
√∑t

s=1 ds

)
≤ 2

√∑t
s=1 dt (Seldin et al.,

2014, Lemma 8) and the convention that if dt = 0
then ηtdt = 0 (so that zero terms naturally fall out
of the summation). By substituting the definition of
the learning rate in the second statement into the first
statement and using the summation lemma we obtain

Rn ≤ 4
√
kn+

√
8Dn log(k) .

Finally, note that an observation from round t with
delay dt contributes 1 to each of dt, . . . , dt+dt , i.e., it
contributes dt to the total sum of the number of out-
standing observations

∑n
t=1 dt. Since we have assumed

that t+dt ≤ n for all t, we have
∑n
t=1 dt =

∑n
t=1 dt =

D.

The main advantage of Algorithm 1 and Theorem 1
compared to the work of Thune et al. (2019) is that
the tuning requires neither the knowledge of D and n,
nor doubling.

4.2 Refined bounds for unbalanced delays

Thune et al. (2019) observed that if the delays are
highly unbalanced it may be worth skipping rounds
with overly large delays rather than keeping them in
the analysis. Let S denote the set of skipped rounds
and |S| their number. The regret in every skipped
round is trivially bounded by 1 and, assuming we knew
which rounds to skip, we could reduce the regret bound

to O
(√

kn+ |S|+
√
DS̄ log(k)

)
. As shown by Thune

et al., this could potentially be much smaller than the
regret bound in Theorem 1. For example, if the delay
in the first θ(

√
kn) rounds is of order n and the delay in

the remaining rounds is zero, then the regret bound in
Theorem 1 is of order n3/4, whereas the refined regret
bound is of order n1/2 (ignoring the dependence on
k). The challenge faced by Thune et al. was that they
had to know the delays in advance (more precisely, “at
action time”) in order to tune the parameters of their
algorithm and make the skipping decision. Since we
have an anytime algorithm, we are able to obtain the
refinement with no need in advance knowledge of the
delay information. Strictly speaking, we even do not

need to skip observations and we can obtain the refine-
ment by using all observations and only adjusting the
learning rate appropriately, although technically the
“no-skipping” solution yields the same regret bound
as skipping.

The following theorem provides our adaptive bound.

Theorem 2. Algorithm 1 with advanced learning rate
tuning provided in Algorithm 2 satisfies

Rn ≤ 4
√
kn

+ 10 max

{
minS⊂[n] |S|+

√
DS̄ log(k),

2 log(k).

The proof is postponed to Section 5

4.3 Intuition behind the “skipping”
procedure

In order to give an intuition behind the refined algo-
rithm we provide a simple back-of-the-envelope cal-
culation. If we skip |S| rounds and trivially bound
their regret by 1 and apply Theorem 1 to the re-
maining rounds, then the regret bound is O(

√
kn +√

DS̄ log(k) + |S|). Thus, the number of skipped

rounds can be as large as
√
DS̄ log(k) without signif-

icantly impacting the bound. Obviously, we want to
skip rounds with the largest delays, but how should
we determine the skipping threshold X? If we want
to achieve a significant reduction in the regret bound,
the skipped delay DS =

∑
t∈S dt ≥ X|S| should be at

least as large as the remaining delay DS̄ , because D =
DS +DS̄ and our aim is to reduce the

√
D log k term.

Thus, if we put a threshold at X and skip
√
DS̄ log(k)

rounds we want to have X
√
DS̄ log(k) ≥ DS̄ . There-

fore, we aim at X =
√
DS̄/ log(k). However, there are

two challenges: (a) we do not know the delays dt in
advance and, therefore, we do not know which rounds
to skip, and (b) the threshold definition is recursive:
X depends on DS̄ and DS̄ depends on X.

The strategy that we take in Algorithm 2 is the fol-
lowing: we keep a running estimate D̃t of DS̄ . For an
observation from round s we initially start waiting and
count it in the number of outstanding observations d̃t
for the initial rounds. However, we constantly monitor
the waiting time and if the observation has not arrived

within
√

D̃t/ log(k) rounds we stop waiting. The ini-

tial rounds we have been waiting for still count for the
estimate D̃t. Another quick back-of-the-envelope cal-
culation shows that if D̃t is indeed a good approxima-
tion of DS̄ , then the extra delay from the initial wait-
ing rounds is of order

√
DS̄ log(k)

√
DS̄/ log(k) = DS̄ ,

where the first term is a rough estimate of the num-
ber of rounds that we skip and the second term is a



Running heading title breaks the line

rough estimate of the initial waiting time for each of
the observations. Thus, the initial waiting time has no
significant impact on the final bound.

Algorithm 2 follows this intuitive approach. We use
indicator variables (ats)(s,t)∈[n]2 to keep track of which
observations `s,As we are still waiting for at round t
(expressed by ats = 1) and which not (expressed by
ats = 0). We use d̃t to count the truncated number
of outstanding observations, where those observations
we are no longer waiting for at round t are excluded
from counting. We provide a detailed analysis in Sec-
tion 5.2, but before we get there we provide a refined
version of Theorem 1, which allows us to use all ob-
servations and only use skipping in the tuning of the
learning rate. (Though, as already mentioned, com-
plete skipping of the observations would lead to the
same regret bound as in Theorem 2.)

5 Analysis of FTRL for bandits with
delays

In this section we develop a novel analysis of FTRL-
style algorithms and present a generalization of the
first part of Theorem 1. The analysis is based on a
permuted counting of losses, similar to the techniques
used by Joulani et al. (2013) and Thune et al. (2019).
Afterward, we use the general regret bound to prove
Theorem 2.

5.1 Dependency preserving permutations

Reordering of losses by a permutation ρ : [n] → [n]
is a useful tool in the analysis of online learning with
delays. Joulani et al. (2013) have used “ordering by

arrival”, where the losses ˆ̀
s are sorted by the time of

arrival s+ ds with ties broken arbitrarily. We general-
ize this type of analysis by studying a general class of
admissible permutations. This also provides insights
into why it is useful to consider permutations.

Definition 2. A permutation ρ : [n] → [n] is depen-
dency preserving if it satisfies:

∀ s, t ∈ [n] : s+ ds < t ⇒ ρ(s) < ρ(t) .

It means that if at the beginning of round t the loss
`s,As has been already observed (and thus can influence
the selection of At), then s must come before t under
the permutation.
Furthermore, we define the ρ-number of outstanding
observations at time t by

dρt =
∑

s:ρ(s)<ρ(t)

I{s+ ds ≥ t} .

Example 1. The identity function id(t) = t is depen-
dency preserving, since `s,As being observed before t
implies id(s) = s < t = id(t).

Example 2. “Ordering by arrival” is dependency pre-
serving, since s+ ds < t ⇒ s+ ds < t+ dt ⇒ ρ(s) <
ρ(t).

The ρ-number of outstanding observations extends the
previous definition of the number of outstanding ob-
servations in the sense that dt = didt . Furthermore,
the property

∑n
t=1 d

ρ
t = D holds for any dependency

preserving permutation ρ (refer to Lemma 6 in the
supplementary material, Section 7.1).

Next we present a general regret bound which holds
for any dependency preserving permutation ρ.

Theorem 3. For any dependency preserving permu-
tation ρ, the regret of Algorithm 1 with non-increasing
positive learning rates (ηt)t=1,...,n satisfies

Rn ≤ 4
√
kn+ η−1

n log(k) +

n∑
t=1

min{1, ηtdρt } .

Remark 1. The first part of Theorem 1 is a direct
corollary using ρ = id.

The proof uses Lemmas 1, 2, and 3. In order to mo-
tivate them we first present the proof and then the
lemmas.

Proof. We define cumulative losses L̂ρt =∑
s:ρ(s)<ρ(t)

ˆ̀
s (and by convention L̂ρn+1 =

∑n
s=1

ˆ̀
s)

and i∗ = arg min
∑n
t=1 `t,i. We decompose the regret

into three terms:

Rn = E

[
n∑
t=1

`t,At − `t,i∗
]

= E

[
n∑
t=1

〈xt, ˆ̀
t〉 − 〈ei∗ , ˆ̀

t〉

]

= E

[
n∑
t=1

(
F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉

)
︸ ︷︷ ︸

(A)

+

n∑
t=1

(
F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)

−F ∗t (−L̂
ρ
t ) + F

∗
t (−L̂

ρ
t+1)

)
︸ ︷︷ ︸

(B)

+

n∑
t=1

(
F
∗
t (−L̂

ρ
t )− F

∗
t (−L̂

ρ
t+1)− 〈ei∗ , ˆ̀

t〉

)
︸ ︷︷ ︸

(C)

]
.

Term (A) is a typical Bregman divergence term from
the classical FTRL/OMD analysis and depends on the
local norm of the regularizer. Lemma 1 directly gives

E[(A)] ≤
n∑
t=1

√
k/
√
t ≤ 2

√
kn .



Julian Zimmert, Yevgeny Seldin

Term (C) can also be bounded by standard techniques.
Lemma 2 gives us

(C) ≤ 2
√
kn+ η−1

n log(k) .

Term (B) requires a novel analysis, which is presented
in Lemma 3. This allows to bound the second term by

E[(B)] ≤
n∑
t=1

min{1, ηtdρt } .

Combining everything finishes the proof.

Support lemmas for the proof of Theorem 3
The proofs for all the support lemmas are given in
the supplementary material, Section 7.4. The first
Lemma is a small modification of the classical result
that bounds the Bregman divergence by the local norm
of the regularizer. We show that we can bound the lo-
cal norm by the contribution of the Tsallis entropy.

Lemma 1. For any t it holds that

E
[
F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
]
≤
√
k√
t
.

The second Lemma bounds the so-called “penalty”
term coming from the regularization penalty. It ap-
pears in almost identical form in the literature (Latti-
more and Szepesvári, 2019, Exercise 28.12).

Lemma 2. For any non-increasing learning rate ηt,
it holds that

n∑
t=1

(
F
∗
t (−L̂

ρ
t )− F

∗
t (−L̂

ρ
t+1)− 〈ei∗ , ˆ̀

t〉

)
≤ 2
√
kn+ η−1

n log(k) .

The third quantity does not show up in the regular
analysis without delays. We show that similarly to
the Bregman divergence, it depends on the local norm
of the regularizer. However, it is beneficial to use the
norm of the negative entropy instead of the Tsallis
entropy.

Lemma 3. For any t it holds that

E

[
F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)

− F ∗t (−L̂
ρ
t ) + F

∗
t (−L̂

ρ
t+1)

]
≤ min{1, ηtd̃ρt } .

5.2 Refined regret bound

The reason why it is beneficial to consider permuta-
tions in the analysis is the following lemma.

t 1 2 3 4 5 6 7 8 9 10
dt 9 0 6 0 5 0 0 0 0 0
dρ0t 0 1 1 2 2 3 3 3 3 2

t 2 3 4 5 6 7 8 9 10 1
dt 0 6 0 5 0 0 0 0 0 9
dρ1t 0 0 1 1 2 2 2 2 1 9

t 2 4 5 6 7 8 9 3 10 1
dt 0 0 5 0 0 0 0 6 0 9
dρ2t 0 0 0 1 1 1 1 6 1 9

t 2 4 6 7 8 9 3 10 5 1
dt 0 0 0 0 0 0 6 0 5 9
dρ3t 0 0 0 0 0 0 5 0 6 9

Figure 1: An iterative construction of the permuta-
tion in Lemma 4. Colored columns are elements in
S.

Lemma 4. For any S ⊂ [n] there exists a dependency
preserving permutation ρ, such that

∀t ∈ S̄ : dρt =
∑
s:s<t

I{s ∈ S̄}I{s+ ds ≥ t} .

Furthermore, this implies
∑
t∈S̄ d

ρ
t ≤

∑
t∈S̄ dt.

An iterative procedure for construction of ρ is given in
the supplementary material, Section 7.1. The lemma
allows to split the rounds into sets S and S̄ and con-
struct a permutation, so that the number of outstand-
ing delays for rounds in S̄ only depends on the delays
in other rounds in S̄, but not on rounds in S. Fig. 1
provides an example of construction of such a permu-
tation. The lemma is particularly useful for splitting
the rounds into a set S containing large delays and the
complementary set S̄ containing small delays. Then
the lemma allows to “push” the contributions to the ρ-
number of outstanding observations away from the el-
ements in S̄ to the elements in S. Skipping the rounds
in S yields the highest benefit.

Combining Lemma 4 with Theorem 3 and a suitable
learning rate leads directly to the bound

Rn ≤ 4
√
kn+ |S|+ 2

√∑
t∈S̄

ds log(k) .

In the following proof, we show that the learning rate
in Algorithm 2 brings us within a constant of the
minimum of the above bound, 4

√
kn + minS(|S| +

2
√
DS̄ log(k)).

From now on, let S be the set

S = {t ∈ [n] | ant = 0} ,
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which is the set of rounds “skipped” by Algo-
rithm 2, and let ρ be the associated permutation from
Lemma 4. Since (ats)t=1,...,n is non-increasing, we have
for any t ∈ S̄: dρt ≤ d̃t. Furthermore, the following
lemma bounds the magnitude of |S|:
Lemma 5. For any sequence of delays dt, Algorithm 2
satisfies

|S| =
n∑
t=1

I{ant = 0} ≤ 2

√
D̃n log(k) .

The proof is provided in the supplementary material,
Section 7.2.

Finally we have all the prerequisites to prove Theo-
rem 2 .

Proof of Theorem 2. Using Theorem 3 and Lemma 5
with ρ constructed for S, we have

Rn ≤ 4
√
kn+ η−1

n log(k) +

n∑
t=1

min{1, ηtdρt }

≤ 4
√
kn+ η−1

n log(k) + |S|+
∑
t∈S̄

ηtd̃t

≤ 4
√
kn+ 5

√
D̃n log(k) .

Now we need to control the term
√
D̃n log(k).

Let’s consider the case D̃n ≤ 4
√
D̃n log(k), then√

D̃n log(k) ≤ 4 log(k) and we are done. Otherwise,

define d̃t =
∑t+dt
s=t+1 a

s
t , i.e., the contribution of round

t to the sum D̃n. Then we can decompose

D̃n =

n∑
s=1

∑
t<s

I{t+ dt > s}ast

=

n∑
t=1

∑
s>t

I{t+ dt > s}ast

=

n∑
t=1

t+dt∑
s=t+1

ast =

n∑
t=1

d̃t .

Any element t ∈ S̄ satisfies

d̃t ≤
√

D̃t/ log(k) ≤
√
D̃n/ log(k) ,

while any element t ∈ S satisfies

d̃t ≤
⌈√

D̃t/ log(k)

⌉
≤
⌈√

D̃n/ log(k)

⌉
≤
√
D̃n/ log(k) + 1 .

Therefore, we can bound for any R ⊂ [n]:∑
t∈R̄

dt ≥
∑
t∈R̄

d̃t ≥ D̃n − |R|
√
D̃n/ log(k)− |S|

≥ D̃n − |R|
√

D̃n/ log(k)− 2

√
D̃n log(k)

≥ 1

2
D̃n − |R|

√
D̃n/ log(k) .

This implies that

min
R⊂[n]

|R|+
√∑
t∈R̄

dt log(k)

≥ min
r∈[0, 12

√
D̃n log(k)]

r +

√
1

2
D̃n log(k)− r

√
D̃n log(k) .

The function is concave in r so the minimum is
achieved at one of the endpoints of the interval, which

happens to be r = 1
2

√
D̃n log(k) for which the function

equals 1
2

√
D̃n log(k). Hence, we have shown

√
D̃n log(k) ≤ 2 min

R⊂[n]

|R|+√∑
s∈R̄

ds log(k)

 ,

which concludes the proof.

6 Discussion

We confirmed an open conjecture from Cesa-Bianchi
et al. (2016) by presenting a simple FTRL algorithm
for adversarial bandits with arbitrary delays and prov-
ing regret upper bound that matches the lower bound
within constants. Furthermore, we proposed a refined
tuning of the learning rate that achieves even tighter
regret bound for highly unbalanced delays. We strictly
improve on the state-of-the-art bounds and present the
first anytime result requiring no doubling, skipping, or
advance information about the delays.

If the delays are all 0, then our algorithm reduces
to the Tsallis-INF algorithm of Zimmert and Seldin
(2019), which has been proven to be simultaneously
optimal in both the stochastic and the adversarial set-
ting. We conjecture that the algorithm presented in
this paper is capable of obtaining logarithmic regret in
the stochastic setting, but leave the analysis for future
work.

Another open question is the tightness of our adaptive
bound O(

√
kn+minS⊂[n](|S|+

√
DS log(k))). We con-

jecture that for a fixed set of delays {d1, . . . , dn} which
the adversary is allowed to permute without changing
the magnitudes, the upper bound is actually tight.
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7 SUPPLEMENTARY MATERIAL

7.1 Properties of dependency preserving permutations

Lemma 6. For any dependency preserving ρ, the sum of ρ-number of outstanding observations is identical to
the total sum of delays:

n∑
t=1

dρt =

n∑
t=1

dt = D .

Proof of Lemma 6.

n∑
t=1

dρt =

n∑
t=1

∑
s:ρ(s)<ρ(t)

I{s+ ds ≥ t}

=

n∑
t=1

ρ(t)− 1−
∑

s:ρ(s)<ρ(t)

I{s+ ds < t}

=

n∑
t=1

t− 1−
∑
s

I{s+ ds < t}

=

n∑
t=1

∑
s:s<t

I{s+ ds ≥ t}

=

n∑
s=1

∑
t:t>s

I{s+ ds ≥ t}

=

n∑
s=1

ds = D .

Proof of Lemma 4. We define the permutation ρ iteratively. Let ρ0 = id be the identity permutation and let
(t1, t2, . . . , t|S|) be an increasing indexing of the set S. We iteratively define

ρm(s) :=


ρm−1(tm + dtm), if s = tm,

ρm−1(s), for ρm−1(s) < ρm−1(tm) ,

ρm−1(s), for ρm−1(s) > ρm−1(tm + dtm) ,

ρm−1(s)− 1, otherwise.

To get from ρm−1 to ρm, we only move the element tm directly behind the the element tm + dtm . The final
permutation is ρ = ρ|S|.

Proof that ρ is dependency preserving Since we start with a dependency preserving permutation ρ0,
we only need to prove the induction step that ρm is dependency preserving under the condition that ρm−1

is. In the step from ρm−1 to ρm, we move the point tm to the right, so for any t 6= tm and any s, we have
that ρm−1(t) < ρm−1(s) ⇒ ρm(t) < ρm(s). Hence, by the induction condition, for any t 6= tm we have:
t+dt < s ⇒ ρm−1(t) < ρm−1(s) ⇒ ρm(t) < ρm(s). We only need to verify that tm+dtm < s⇒ ρm(tm) < ρm(s).
In the permutation ρm−1, we know that tm + dtm < s ⇒ ρm−1(tm + dtm) < ρm−1(s), because only elements
smaller than tm have been moved. The construction of ρm defines ρm(tm) = ρm−1(tm+dtm) and ρm(s) = ρm−1(s)
for all ρm−1(s) > ρm−1(tm+dtm). Hence we have tm+dtm < s⇒ ρm(tm) = ρm−1(tm+dtm) < ρm−1(s) = ρm(s),
which concludes the first part of the lemma.
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ρ-number of outstanding delays By definition we have

dρt :=
∑

s:ρ(s)<ρ(t)

{s+ ds ≥ t} =
∑

s∈[n]\S:ρ(s)<ρ(t)

{s+ ds ≥ t}+
∑

s∈S:ρ(s)<ρ(t)

I{s+ ds ≥ t}

(a)
=

∑
s∈[n]\S:s<t

I{s+ ds ≥ t}+
∑

s∈S:ρ(s)<ρ(t)

I{s+ ds ≥ t}

(b)
=

∑
s∈[n]\S:s<t

{s+ ds ≥ t} =
∑
s:s<t

I{s ∈ [n] \ S}I{s+ ds ≥ t} .

(a) holds because the ordering does not change for s, t ∈ [n] \S. (b) follows because any s ∈ S has been moved
behind t′ = s+ ds, so s+ ds ≥ t implies ρ(s) > ρ(t).

Bounded sum Using the above property, we have

∑
t∈[n]\S

dρt =
∑

t∈[n]\S

t−1∑
s=1

I{s ∈ [n] \ S}I{s+ ds ≥ t}

=
∑

s∈[n]\S

n∑
t=s+1

I{s ∈ [n] \ S}I{s+ ds ≥ t}

=
∑

s∈[n]\S

s+ds∑
t=s+1

I{s ∈ [n] \ S} ≤
∑

s∈[n]\S

ds .

7.2 Auxiliary lemmas for Algorithm 2

Lemma 7. Algorithm 2 will not deactivate more than 1 point at a time.

By deactivating we mean setting ant = 0.

Proof. We prove the lemma by contradiction. Assume that s1, s2 are both deactivated at time t. W.l.o.g. let
s2 ≤ s1 − 1. Deactivation of s1 at time t means t − s1 ≥

√
Dt/ log(k) ≥

√
Dt−1/ log(k). At the same time we

assumed t− 1− s2 ≥ t− s1, which means that s2 would have been deactivated at round t− 1 or earlier.

Proof of Lemma 5. Recall that d̃t =
∑t+dt
s=t+1 a

s
t is the contribution of a timestep t to the sum D̃n.

Let (t1, . . . , t|S|) be an indexing of S. By Lemma 7 we deactivate at most one antm per round. Thus, we have
that

d̃tm >
√
D̃tm+dtm

/ log(k) ≥

√√√√ m∑
i=1

d̃ti/ log(k) =

√
d̃m +

∑m−1
i=1 d̃ti√

log(k)
.

By solving the quadratic inequality in dtm we obtain

d̃tm >
1 +

√
1 + 4 log(k)

∑m−1
i=1 d̃ti

2 log(k)
.

Now we prove by induction that d̃tm > m
2 log(k) . The induction base holds since d̃t1 = 1. For the inductive step

we have

d̃tm >
1 +

√
1 + 4 log(k)

∑m−1
i=1 d̃ti

2 log(k)
>

1 +
√

1 +m(m− 1)

2 log(k)
>

m

2 log(k)
.
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Finally, we have

√
D̃n log(k) ≥

√√√√ |S|∑
m=1

d̃tm log(k) >

√
|S|(|S|+ 1)

4
>

1

2
|S| .

7.3 Standard properties of FTRL analysis

First we list some standard properties of FTRL that we use in the proofs of the remaining lemmas. We recall
that ft(x) = −2

√
t
√
x+ η−1

t x log(x).

Fact 1. f ′′t (x) : R+ → R+ are monotonically decreasing functions and f∗′t : R→ R+ are convex and monotoni-
cally increasing.

Proof. By definition f ′′t (x) = 1
2

√
tx−3/2 + η−1

t x−1, which concludes the first statement. Since ft are Legendre
functions, we have f∗t

′′(y) = f ′′t (f∗t
′(y))−1 > 0. Therefore the function is monotonically increasing. Since both

f ′′t (x)−1, as well as f∗t
′(y) are increasing, the composition is as well and f∗t

′′′ > 0.

Fact 2. For any convex F , for L ∈ Rk and c ∈ R:

F
∗
(L+ c1k) = F

∗
(L) + c .

Proof. By definition F
∗
(L+c1k) = maxx∈∆([k])〈x, L+c1k〉−F (x) = maxx∈∆([k])〈x, L〉−F (x)+c = F

∗
(L)+c.

Fact 3. For any xt there exists c ∈ R, such that:

xt = ∇F ∗t (−L̂obst ) = ∇F ∗t (−L̂obst + c1k) = ∇F ∗t (∇Ft(xt)) .

Proof. By the KKT conditions, there exists c ∈ R, such that xt = arg maxx∈∆([k])〈x,−L̂obst 〉 + Ft(x) satisfies

∇Ft(xt) = −L̂obst + c1k. The rest follows by the standard property ∇F = (∇F ∗)−1 of Legendre F .

Fact 4. For any Legendre function F and L ∈ Rk it holds that

F
∗
(L) ≤ F ∗(L)

with equality iff there exists x ∈ ∆([k]), such that L = ∇F (x).

Proof. The first statement follows from the definition, since for any A ⊂ B: maxx∈A f(x) ≤ maxx∈B f(x). The
second part follows because equality means that arg maxx〈x, L〉 − F (x) = ∇F ∗(L) ∈ ∆([k]), which is equivalent
to the statement.

Fact 5. For any x ∈ ∆([k]), L ≥ 0 and i ∈ [k]:

∇F ∗t (∇Ft(x)− L)i ≥ ∇F ∗t (∇Ft(x)− L)i .

Proof. By Fact 3, there exists c ∈ R : ∇F ∗t (∇Ft(x)−L) = ∇F ∗t (∇Ft(x)−L+ c1k). The statement is equivalent
to c being non-negative, since f∗′ are monotonically increasing. If c < 0, then

1 =

k∑
i=1

(∇F ∗t (∇Ft(x)− L))i =

k∑
i=1

(∇F ∗t (∇Ft(x)− L+ c1k))i =

k∑
i=1

f∗t
′(f ′t(xi)− Li + c) <

k∑
i=1

f∗t
′(f ′t(xi)) = 1 ,

which is a contradiction and completes the proof.

Fact 6. Let DF (x, y) = F (x)−F (y)−〈x−y,∇F (y)〉 be the Bregman divergence of a function F . For any Legendre
function f with monotonically decreasing second derivative, x ∈ dom(f), and ` ≥ 0, such that f ′(x)−` ∈ dom(f∗):

Df∗(f
′(x)− `, f ′(x)) ≤ `2

2f ′′(x)
.
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Proof. By Taylor’s theorem, there exists x̃ ∈ [f∗′(f ′(x) − `), x], such that Df∗(f
′(x) − `, f ′(x)) = `2

2f ′′(x̃) . x̃

is smaller than x, since f∗′ is monotonically increasing. Finally, using the fact that the second derivative is
decreasing allows to bound f ′′(x̃)−1 ≤ f ′′(x)−1.

7.4 Proofs of the Main Lemmas

Proof of Lemma 1.

F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
(a)
= F

∗
t (∇Ft(xt)− ˆ̀

t)− F
∗
t (∇Ft(xt)) + 〈xt, ˆ̀

t〉
(b)
≤ F ∗t (∇Ft(xt)− ˆ̀

t)− F ∗t (∇Ft(xt)) + 〈xt, ˆ̀
t〉

=

k∑
i=1

Df∗t
(f ′t(xt,i)− ˆ̀

t,i, f
′
t(xt,i))

= Df∗t
(f ′t(xt,At)− `t,Atx−1

t,At
, f ′t(xt,At))

(c)
≤ 1

2
`2t,Atx

−2
t,At

f ′′t (xt,At)
−1

≤ 1

2
`2t,Atx

−2
t,At

f ′′t1(xt,At)
−1

=
1

2
`2t,Atx

−2
t,At

2x
3
2

t,At√
t

≤
x
− 1

2

t,At√
t
.

(a) Applies Facts 2 and 3. (b) Follows from both parts of Fact 4. (c) Uses Fact 6. In expectation we get

E
[
F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
]
≤

k∑
i=1

√
xt,i√
t
≤
√
k√
t
.

Proof of Lemma 2. Let x̃t = arg maxx∈∆([k])〈x,−L̂
ρ
t 〉 − Ft(x), then

F
∗
t (−L̂

ρ
t ) = 〈x̃t, L̂ρt 〉 − Ft(x̃t).

Furthermore, since F
∗
(−L̂ρt ) = maxx∈∆([k])〈x,−L̂ρt 〉 − F (x), we have

−F ∗t−1(−L̂ρt ) ≤ 〈x̃t,−L̂
ρ
t 〉 − Ft−1(x̃t) ,

−F ∗n(−L̂ρn+1) ≤ 〈ei∗ ,−L̂ρn+1〉Fn(ei∗) =

n∑
t=1

〈ei∗ , ˆ̀
t〉 .

Plugging these inequalities into the LHS leads to

n∑
t=1

(
F
∗
t (−L̂

ρ
t )− F

∗
t (−L̂

ρ
t+1)− 〈ei∗ , ˆ̀

t〉

)
≤

n∑
t=1

Ft−1(x̃t)− Ft(x̃t)

≤
n∑
t=1

max
x∈∆([k])

Ft−1(x)− Ft(x)

= −Fn(1k/k) = 2
√
kn+ η−1

n log(k) .
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Proof of Lemma 3. First we prove that the term is upper bounded by 1. We have

F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂

ρ
t ) + F

∗
t (−L̂

ρ
t+1)

= −DF
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For the second part, we define L̂misst = L̂ρt − L̂obst . Then we have
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(a) Uses the fundamental theorem of calculus. (b) Follows from the fact that ∇F ∗t (−L)At decreases if the loss
in coordinates other than At is reduced. Therefore, we have
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(c) uses the Fundamental theorem of calculus together with the inequality above. (d) substitutes z̃(x) =

∇F ∗t (−L̂obst − xˆ̀
t) and applies Fact 3. (e) applies Fact 5. (f) f∗′(t) is convex, so −f∗′(f ′(z̃At) − `) ≤

−z̃At + f∗′′(f ′(z̃At)). (g) follows because z̃At ≤ xt,At and f ′′t (x)−1 is monotonically increasing. Finally, due to
the unbiasedness of the loss estimators we have in expectation
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